mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 22:10:49 +07:00
9492587cf3
Some 64bit arch has special segment for mapping kernel text. It should be entried to /proc/kcore in addtion to direct-linear-map, vmalloc area. This patch unifies KCORE_TEXT entry scattered under x86 and ia64. I'm not familiar with other archs (mips has its own even after this patch) but range of [_stext ..._end) is a valid area of text and it's not in direct-map area, defining CONFIG_ARCH_PROC_KCORE_TEXT is only a necessary thing to do. Note: I left mips as it is now. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: WANG Cong <xiyou.wangcong@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
726 lines
19 KiB
C
726 lines
19 KiB
C
/*
|
|
* Initialize MMU support.
|
|
*
|
|
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/module.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/dma.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/io.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/patch.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/system.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/mca.h>
|
|
#include <asm/paravirt.h>
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
extern void ia64_tlb_init (void);
|
|
|
|
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
unsigned long vmalloc_end = VMALLOC_END_INIT;
|
|
EXPORT_SYMBOL(vmalloc_end);
|
|
struct page *vmem_map;
|
|
EXPORT_SYMBOL(vmem_map);
|
|
#endif
|
|
|
|
struct page *zero_page_memmap_ptr; /* map entry for zero page */
|
|
EXPORT_SYMBOL(zero_page_memmap_ptr);
|
|
|
|
void
|
|
__ia64_sync_icache_dcache (pte_t pte)
|
|
{
|
|
unsigned long addr;
|
|
struct page *page;
|
|
|
|
page = pte_page(pte);
|
|
addr = (unsigned long) page_address(page);
|
|
|
|
if (test_bit(PG_arch_1, &page->flags))
|
|
return; /* i-cache is already coherent with d-cache */
|
|
|
|
flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
|
|
set_bit(PG_arch_1, &page->flags); /* mark page as clean */
|
|
}
|
|
|
|
/*
|
|
* Since DMA is i-cache coherent, any (complete) pages that were written via
|
|
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
|
|
* flush them when they get mapped into an executable vm-area.
|
|
*/
|
|
void
|
|
dma_mark_clean(void *addr, size_t size)
|
|
{
|
|
unsigned long pg_addr, end;
|
|
|
|
pg_addr = PAGE_ALIGN((unsigned long) addr);
|
|
end = (unsigned long) addr + size;
|
|
while (pg_addr + PAGE_SIZE <= end) {
|
|
struct page *page = virt_to_page(pg_addr);
|
|
set_bit(PG_arch_1, &page->flags);
|
|
pg_addr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
inline void
|
|
ia64_set_rbs_bot (void)
|
|
{
|
|
unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
|
|
|
|
if (stack_size > MAX_USER_STACK_SIZE)
|
|
stack_size = MAX_USER_STACK_SIZE;
|
|
current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
|
|
}
|
|
|
|
/*
|
|
* This performs some platform-dependent address space initialization.
|
|
* On IA-64, we want to setup the VM area for the register backing
|
|
* store (which grows upwards) and install the gateway page which is
|
|
* used for signal trampolines, etc.
|
|
*/
|
|
void
|
|
ia64_init_addr_space (void)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
ia64_set_rbs_bot();
|
|
|
|
/*
|
|
* If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
|
|
* the problem. When the process attempts to write to the register backing store
|
|
* for the first time, it will get a SEGFAULT in this case.
|
|
*/
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
|
|
vma->vm_end = vma->vm_start + PAGE_SIZE;
|
|
vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
|
|
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
|
|
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
|
|
if (!(current->personality & MMAP_PAGE_ZERO)) {
|
|
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
|
|
if (vma) {
|
|
vma->vm_mm = current->mm;
|
|
vma->vm_end = PAGE_SIZE;
|
|
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
|
|
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
|
|
down_write(¤t->mm->mmap_sem);
|
|
if (insert_vm_struct(current->mm, vma)) {
|
|
up_write(¤t->mm->mmap_sem);
|
|
kmem_cache_free(vm_area_cachep, vma);
|
|
return;
|
|
}
|
|
up_write(¤t->mm->mmap_sem);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
free_initmem (void)
|
|
{
|
|
unsigned long addr, eaddr;
|
|
|
|
addr = (unsigned long) ia64_imva(__init_begin);
|
|
eaddr = (unsigned long) ia64_imva(__init_end);
|
|
while (addr < eaddr) {
|
|
ClearPageReserved(virt_to_page(addr));
|
|
init_page_count(virt_to_page(addr));
|
|
free_page(addr);
|
|
++totalram_pages;
|
|
addr += PAGE_SIZE;
|
|
}
|
|
printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
|
|
(__init_end - __init_begin) >> 10);
|
|
}
|
|
|
|
void __init
|
|
free_initrd_mem (unsigned long start, unsigned long end)
|
|
{
|
|
struct page *page;
|
|
/*
|
|
* EFI uses 4KB pages while the kernel can use 4KB or bigger.
|
|
* Thus EFI and the kernel may have different page sizes. It is
|
|
* therefore possible to have the initrd share the same page as
|
|
* the end of the kernel (given current setup).
|
|
*
|
|
* To avoid freeing/using the wrong page (kernel sized) we:
|
|
* - align up the beginning of initrd
|
|
* - align down the end of initrd
|
|
*
|
|
* | |
|
|
* |=============| a000
|
|
* | |
|
|
* | |
|
|
* | | 9000
|
|
* |/////////////|
|
|
* |/////////////|
|
|
* |=============| 8000
|
|
* |///INITRD////|
|
|
* |/////////////|
|
|
* |/////////////| 7000
|
|
* | |
|
|
* |KKKKKKKKKKKKK|
|
|
* |=============| 6000
|
|
* |KKKKKKKKKKKKK|
|
|
* |KKKKKKKKKKKKK|
|
|
* K=kernel using 8KB pages
|
|
*
|
|
* In this example, we must free page 8000 ONLY. So we must align up
|
|
* initrd_start and keep initrd_end as is.
|
|
*/
|
|
start = PAGE_ALIGN(start);
|
|
end = end & PAGE_MASK;
|
|
|
|
if (start < end)
|
|
printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
|
|
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
if (!virt_addr_valid(start))
|
|
continue;
|
|
page = virt_to_page(start);
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
free_page(start);
|
|
++totalram_pages;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This installs a clean page in the kernel's page table.
|
|
*/
|
|
static struct page * __init
|
|
put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (!PageReserved(page))
|
|
printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
|
|
page_address(page));
|
|
|
|
pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
|
|
|
|
{
|
|
pud = pud_alloc(&init_mm, pgd, address);
|
|
if (!pud)
|
|
goto out;
|
|
pmd = pmd_alloc(&init_mm, pud, address);
|
|
if (!pmd)
|
|
goto out;
|
|
pte = pte_alloc_kernel(pmd, address);
|
|
if (!pte)
|
|
goto out;
|
|
if (!pte_none(*pte))
|
|
goto out;
|
|
set_pte(pte, mk_pte(page, pgprot));
|
|
}
|
|
out:
|
|
/* no need for flush_tlb */
|
|
return page;
|
|
}
|
|
|
|
static void __init
|
|
setup_gate (void)
|
|
{
|
|
void *gate_section;
|
|
struct page *page;
|
|
|
|
/*
|
|
* Map the gate page twice: once read-only to export the ELF
|
|
* headers etc. and once execute-only page to enable
|
|
* privilege-promotion via "epc":
|
|
*/
|
|
gate_section = paravirt_get_gate_section();
|
|
page = virt_to_page(ia64_imva(gate_section));
|
|
put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
|
|
#ifdef HAVE_BUGGY_SEGREL
|
|
page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
|
|
put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
|
|
#else
|
|
put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
|
|
/* Fill in the holes (if any) with read-only zero pages: */
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = GATE_ADDR + PAGE_SIZE;
|
|
addr < GATE_ADDR + PERCPU_PAGE_SIZE;
|
|
addr += PAGE_SIZE)
|
|
{
|
|
put_kernel_page(ZERO_PAGE(0), addr,
|
|
PAGE_READONLY);
|
|
put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
|
|
PAGE_READONLY);
|
|
}
|
|
}
|
|
#endif
|
|
ia64_patch_gate();
|
|
}
|
|
|
|
void __devinit
|
|
ia64_mmu_init (void *my_cpu_data)
|
|
{
|
|
unsigned long pta, impl_va_bits;
|
|
extern void __devinit tlb_init (void);
|
|
|
|
#ifdef CONFIG_DISABLE_VHPT
|
|
# define VHPT_ENABLE_BIT 0
|
|
#else
|
|
# define VHPT_ENABLE_BIT 1
|
|
#endif
|
|
|
|
/*
|
|
* Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
|
|
* address space. The IA-64 architecture guarantees that at least 50 bits of
|
|
* virtual address space are implemented but if we pick a large enough page size
|
|
* (e.g., 64KB), the mapped address space is big enough that it will overlap with
|
|
* VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
|
|
* IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
|
|
* problem in practice. Alternatively, we could truncate the top of the mapped
|
|
* address space to not permit mappings that would overlap with the VMLPT.
|
|
* --davidm 00/12/06
|
|
*/
|
|
# define pte_bits 3
|
|
# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
|
|
/*
|
|
* The virtual page table has to cover the entire implemented address space within
|
|
* a region even though not all of this space may be mappable. The reason for
|
|
* this is that the Access bit and Dirty bit fault handlers perform
|
|
* non-speculative accesses to the virtual page table, so the address range of the
|
|
* virtual page table itself needs to be covered by virtual page table.
|
|
*/
|
|
# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
|
|
# define POW2(n) (1ULL << (n))
|
|
|
|
impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
|
|
|
|
if (impl_va_bits < 51 || impl_va_bits > 61)
|
|
panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
|
|
/*
|
|
* mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
|
|
* which must fit into "vmlpt_bits - pte_bits" slots. Second half of
|
|
* the test makes sure that our mapped space doesn't overlap the
|
|
* unimplemented hole in the middle of the region.
|
|
*/
|
|
if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
|
|
(mapped_space_bits > impl_va_bits - 1))
|
|
panic("Cannot build a big enough virtual-linear page table"
|
|
" to cover mapped address space.\n"
|
|
" Try using a smaller page size.\n");
|
|
|
|
|
|
/* place the VMLPT at the end of each page-table mapped region: */
|
|
pta = POW2(61) - POW2(vmlpt_bits);
|
|
|
|
/*
|
|
* Set the (virtually mapped linear) page table address. Bit
|
|
* 8 selects between the short and long format, bits 2-7 the
|
|
* size of the table, and bit 0 whether the VHPT walker is
|
|
* enabled.
|
|
*/
|
|
ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
|
|
|
|
ia64_tlb_init();
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
|
|
ia64_srlz_d();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
|
int vmemmap_find_next_valid_pfn(int node, int i)
|
|
{
|
|
unsigned long end_address, hole_next_pfn;
|
|
unsigned long stop_address;
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
|
|
end_address = PAGE_ALIGN(end_address);
|
|
|
|
stop_address = (unsigned long) &vmem_map[
|
|
pgdat->node_start_pfn + pgdat->node_spanned_pages];
|
|
|
|
do {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = pgd_offset_k(end_address);
|
|
if (pgd_none(*pgd)) {
|
|
end_address += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pud = pud_offset(pgd, end_address);
|
|
if (pud_none(*pud)) {
|
|
end_address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, end_address);
|
|
if (pmd_none(*pmd)) {
|
|
end_address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, end_address);
|
|
retry_pte:
|
|
if (pte_none(*pte)) {
|
|
end_address += PAGE_SIZE;
|
|
pte++;
|
|
if ((end_address < stop_address) &&
|
|
(end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
|
|
goto retry_pte;
|
|
continue;
|
|
}
|
|
/* Found next valid vmem_map page */
|
|
break;
|
|
} while (end_address < stop_address);
|
|
|
|
end_address = min(end_address, stop_address);
|
|
end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
|
|
hole_next_pfn = end_address / sizeof(struct page);
|
|
return hole_next_pfn - pgdat->node_start_pfn;
|
|
}
|
|
|
|
int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long address, start_page, end_page;
|
|
struct page *map_start, *map_end;
|
|
int node;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
start_page = (unsigned long) map_start & PAGE_MASK;
|
|
end_page = PAGE_ALIGN((unsigned long) map_end);
|
|
node = paddr_to_nid(__pa(start));
|
|
|
|
for (address = start_page; address < end_page; address += PAGE_SIZE) {
|
|
pgd = pgd_offset_k(address);
|
|
if (pgd_none(*pgd))
|
|
pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pud = pud_offset(pgd, address);
|
|
|
|
if (pud_none(*pud))
|
|
pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
if (pmd_none(*pmd))
|
|
pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
|
pte = pte_offset_kernel(pmd, address);
|
|
|
|
if (pte_none(*pte))
|
|
set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
|
|
PAGE_KERNEL));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct memmap_init_callback_data {
|
|
struct page *start;
|
|
struct page *end;
|
|
int nid;
|
|
unsigned long zone;
|
|
};
|
|
|
|
static int __meminit
|
|
virtual_memmap_init(u64 start, u64 end, void *arg)
|
|
{
|
|
struct memmap_init_callback_data *args;
|
|
struct page *map_start, *map_end;
|
|
|
|
args = (struct memmap_init_callback_data *) arg;
|
|
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
|
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
|
|
|
if (map_start < args->start)
|
|
map_start = args->start;
|
|
if (map_end > args->end)
|
|
map_end = args->end;
|
|
|
|
/*
|
|
* We have to initialize "out of bounds" struct page elements that fit completely
|
|
* on the same pages that were allocated for the "in bounds" elements because they
|
|
* may be referenced later (and found to be "reserved").
|
|
*/
|
|
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
|
|
map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
|
|
/ sizeof(struct page));
|
|
|
|
if (map_start < map_end)
|
|
memmap_init_zone((unsigned long)(map_end - map_start),
|
|
args->nid, args->zone, page_to_pfn(map_start),
|
|
MEMMAP_EARLY);
|
|
return 0;
|
|
}
|
|
|
|
void __meminit
|
|
memmap_init (unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn)
|
|
{
|
|
if (!vmem_map)
|
|
memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
|
|
else {
|
|
struct page *start;
|
|
struct memmap_init_callback_data args;
|
|
|
|
start = pfn_to_page(start_pfn);
|
|
args.start = start;
|
|
args.end = start + size;
|
|
args.nid = nid;
|
|
args.zone = zone;
|
|
|
|
efi_memmap_walk(virtual_memmap_init, &args);
|
|
}
|
|
}
|
|
|
|
int
|
|
ia64_pfn_valid (unsigned long pfn)
|
|
{
|
|
char byte;
|
|
struct page *pg = pfn_to_page(pfn);
|
|
|
|
return (__get_user(byte, (char __user *) pg) == 0)
|
|
&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
|
|
|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
|
|
}
|
|
EXPORT_SYMBOL(ia64_pfn_valid);
|
|
|
|
int __init find_largest_hole(u64 start, u64 end, void *arg)
|
|
{
|
|
u64 *max_gap = arg;
|
|
|
|
static u64 last_end = PAGE_OFFSET;
|
|
|
|
/* NOTE: this algorithm assumes efi memmap table is ordered */
|
|
|
|
if (*max_gap < (start - last_end))
|
|
*max_gap = start - last_end;
|
|
last_end = end;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_VIRTUAL_MEM_MAP */
|
|
|
|
int __init register_active_ranges(u64 start, u64 len, int nid)
|
|
{
|
|
u64 end = start + len;
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
if (start > crashk_res.start && start < crashk_res.end)
|
|
start = crashk_res.end;
|
|
if (end > crashk_res.start && end < crashk_res.end)
|
|
end = crashk_res.start;
|
|
#endif
|
|
|
|
if (start < end)
|
|
add_active_range(nid, __pa(start) >> PAGE_SHIFT,
|
|
__pa(end) >> PAGE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static int __init
|
|
count_reserved_pages(u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long num_reserved = 0;
|
|
unsigned long *count = arg;
|
|
|
|
for (; start < end; start += PAGE_SIZE)
|
|
if (PageReserved(virt_to_page(start)))
|
|
++num_reserved;
|
|
*count += num_reserved;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
find_max_min_low_pfn (u64 start, u64 end, void *arg)
|
|
{
|
|
unsigned long pfn_start, pfn_end;
|
|
#ifdef CONFIG_FLATMEM
|
|
pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
|
|
pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
|
|
#else
|
|
pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
|
|
pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
|
|
#endif
|
|
min_low_pfn = min(min_low_pfn, pfn_start);
|
|
max_low_pfn = max(max_low_pfn, pfn_end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Boot command-line option "nolwsys" can be used to disable the use of any light-weight
|
|
* system call handler. When this option is in effect, all fsyscalls will end up bubbling
|
|
* down into the kernel and calling the normal (heavy-weight) syscall handler. This is
|
|
* useful for performance testing, but conceivably could also come in handy for debugging
|
|
* purposes.
|
|
*/
|
|
|
|
static int nolwsys __initdata;
|
|
|
|
static int __init
|
|
nolwsys_setup (char *s)
|
|
{
|
|
nolwsys = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("nolwsys", nolwsys_setup);
|
|
|
|
void __init
|
|
mem_init (void)
|
|
{
|
|
long reserved_pages, codesize, datasize, initsize;
|
|
pg_data_t *pgdat;
|
|
int i;
|
|
static struct kcore_list kcore_mem;
|
|
|
|
BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
|
|
BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_PCI
|
|
/*
|
|
* This needs to be called _after_ the command line has been parsed but _before_
|
|
* any drivers that may need the PCI DMA interface are initialized or bootmem has
|
|
* been freed.
|
|
*/
|
|
platform_dma_init();
|
|
#endif
|
|
|
|
#ifdef CONFIG_FLATMEM
|
|
BUG_ON(!mem_map);
|
|
max_mapnr = max_low_pfn;
|
|
#endif
|
|
|
|
high_memory = __va(max_low_pfn * PAGE_SIZE);
|
|
|
|
kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE, KCORE_RAM);
|
|
|
|
for_each_online_pgdat(pgdat)
|
|
if (pgdat->bdata->node_bootmem_map)
|
|
totalram_pages += free_all_bootmem_node(pgdat);
|
|
|
|
reserved_pages = 0;
|
|
efi_memmap_walk(count_reserved_pages, &reserved_pages);
|
|
|
|
codesize = (unsigned long) _etext - (unsigned long) _stext;
|
|
datasize = (unsigned long) _edata - (unsigned long) _etext;
|
|
initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
|
|
"%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
|
|
num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
|
|
reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
|
|
|
|
|
|
/*
|
|
* For fsyscall entrpoints with no light-weight handler, use the ordinary
|
|
* (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
|
|
* code can tell them apart.
|
|
*/
|
|
for (i = 0; i < NR_syscalls; ++i) {
|
|
extern unsigned long sys_call_table[NR_syscalls];
|
|
unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
|
|
|
|
if (!fsyscall_table[i] || nolwsys)
|
|
fsyscall_table[i] = sys_call_table[i] | 1;
|
|
}
|
|
setup_gate();
|
|
|
|
#ifdef CONFIG_IA32_SUPPORT
|
|
ia32_mem_init();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
int arch_add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
pg_data_t *pgdat;
|
|
struct zone *zone;
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
pgdat = NODE_DATA(nid);
|
|
|
|
zone = pgdat->node_zones + ZONE_NORMAL;
|
|
ret = __add_pages(nid, zone, start_pfn, nr_pages);
|
|
|
|
if (ret)
|
|
printk("%s: Problem encountered in __add_pages() as ret=%d\n",
|
|
__func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Even when CONFIG_IA32_SUPPORT is not enabled it is
|
|
* useful to have the Linux/x86 domain registered to
|
|
* avoid an attempted module load when emulators call
|
|
* personality(PER_LINUX32). This saves several milliseconds
|
|
* on each such call.
|
|
*/
|
|
static struct exec_domain ia32_exec_domain;
|
|
|
|
static int __init
|
|
per_linux32_init(void)
|
|
{
|
|
ia32_exec_domain.name = "Linux/x86";
|
|
ia32_exec_domain.handler = NULL;
|
|
ia32_exec_domain.pers_low = PER_LINUX32;
|
|
ia32_exec_domain.pers_high = PER_LINUX32;
|
|
ia32_exec_domain.signal_map = default_exec_domain.signal_map;
|
|
ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
|
|
register_exec_domain(&ia32_exec_domain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
__initcall(per_linux32_init);
|