linux_dsm_epyc7002/drivers/net/wireless/p54/p54common.c
Chr 9483407d09 p54: initialize all deprecated fields
The new mechanism for allocing space for control frames,
didn't "zero" out the payload data... However I haven't
heard of any hiccups so far...

Signed-off-by: Christian Lamparter <chunkeey@web.de>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-11-10 15:17:39 -05:00

1886 lines
50 KiB
C

/*
* Common code for mac80211 Prism54 drivers
*
* Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
* Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
*
* Based on:
* - the islsm (softmac prism54) driver, which is:
* Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
* - stlc45xx driver
* Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include "p54.h"
#include "p54common.h"
MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
MODULE_DESCRIPTION("Softmac Prism54 common code");
MODULE_LICENSE("GPL");
MODULE_ALIAS("prism54common");
static struct ieee80211_rate p54_bgrates[] = {
{ .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static struct ieee80211_channel p54_bgchannels[] = {
{ .center_freq = 2412, .hw_value = 1, },
{ .center_freq = 2417, .hw_value = 2, },
{ .center_freq = 2422, .hw_value = 3, },
{ .center_freq = 2427, .hw_value = 4, },
{ .center_freq = 2432, .hw_value = 5, },
{ .center_freq = 2437, .hw_value = 6, },
{ .center_freq = 2442, .hw_value = 7, },
{ .center_freq = 2447, .hw_value = 8, },
{ .center_freq = 2452, .hw_value = 9, },
{ .center_freq = 2457, .hw_value = 10, },
{ .center_freq = 2462, .hw_value = 11, },
{ .center_freq = 2467, .hw_value = 12, },
{ .center_freq = 2472, .hw_value = 13, },
{ .center_freq = 2484, .hw_value = 14, },
};
static struct ieee80211_supported_band band_2GHz = {
.channels = p54_bgchannels,
.n_channels = ARRAY_SIZE(p54_bgchannels),
.bitrates = p54_bgrates,
.n_bitrates = ARRAY_SIZE(p54_bgrates),
};
static struct ieee80211_rate p54_arates[] = {
{ .bitrate = 60, .hw_value = 4, },
{ .bitrate = 90, .hw_value = 5, },
{ .bitrate = 120, .hw_value = 6, },
{ .bitrate = 180, .hw_value = 7, },
{ .bitrate = 240, .hw_value = 8, },
{ .bitrate = 360, .hw_value = 9, },
{ .bitrate = 480, .hw_value = 10, },
{ .bitrate = 540, .hw_value = 11, },
};
static struct ieee80211_channel p54_achannels[] = {
{ .center_freq = 4920 },
{ .center_freq = 4940 },
{ .center_freq = 4960 },
{ .center_freq = 4980 },
{ .center_freq = 5040 },
{ .center_freq = 5060 },
{ .center_freq = 5080 },
{ .center_freq = 5170 },
{ .center_freq = 5180 },
{ .center_freq = 5190 },
{ .center_freq = 5200 },
{ .center_freq = 5210 },
{ .center_freq = 5220 },
{ .center_freq = 5230 },
{ .center_freq = 5240 },
{ .center_freq = 5260 },
{ .center_freq = 5280 },
{ .center_freq = 5300 },
{ .center_freq = 5320 },
{ .center_freq = 5500 },
{ .center_freq = 5520 },
{ .center_freq = 5540 },
{ .center_freq = 5560 },
{ .center_freq = 5580 },
{ .center_freq = 5600 },
{ .center_freq = 5620 },
{ .center_freq = 5640 },
{ .center_freq = 5660 },
{ .center_freq = 5680 },
{ .center_freq = 5700 },
{ .center_freq = 5745 },
{ .center_freq = 5765 },
{ .center_freq = 5785 },
{ .center_freq = 5805 },
{ .center_freq = 5825 },
};
static struct ieee80211_supported_band band_5GHz = {
.channels = p54_achannels,
.n_channels = ARRAY_SIZE(p54_achannels),
.bitrates = p54_arates,
.n_bitrates = ARRAY_SIZE(p54_arates),
};
int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
{
struct p54_common *priv = dev->priv;
struct bootrec_exp_if *exp_if;
struct bootrec *bootrec;
u32 *data = (u32 *)fw->data;
u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
u8 *fw_version = NULL;
size_t len;
int i;
if (priv->rx_start)
return 0;
while (data < end_data && *data)
data++;
while (data < end_data && !*data)
data++;
bootrec = (struct bootrec *) data;
while (bootrec->data <= end_data &&
(bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
u32 code = le32_to_cpu(bootrec->code);
switch (code) {
case BR_CODE_COMPONENT_ID:
priv->fw_interface = be32_to_cpup((__be32 *)
bootrec->data);
switch (priv->fw_interface) {
case FW_FMAC:
printk(KERN_INFO "p54: FreeMAC firmware\n");
break;
case FW_LM20:
printk(KERN_INFO "p54: LM20 firmware\n");
break;
case FW_LM86:
printk(KERN_INFO "p54: LM86 firmware\n");
break;
case FW_LM87:
printk(KERN_INFO "p54: LM87 firmware\n");
break;
default:
printk(KERN_INFO "p54: unknown firmware\n");
break;
}
break;
case BR_CODE_COMPONENT_VERSION:
/* 24 bytes should be enough for all firmwares */
if (strnlen((unsigned char*)bootrec->data, 24) < 24)
fw_version = (unsigned char*)bootrec->data;
break;
case BR_CODE_DESCR: {
struct bootrec_desc *desc =
(struct bootrec_desc *)bootrec->data;
priv->rx_start = le32_to_cpu(desc->rx_start);
/* FIXME add sanity checking */
priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
priv->headroom = desc->headroom;
priv->tailroom = desc->tailroom;
if (le32_to_cpu(bootrec->len) == 11)
priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
else
priv->rx_mtu = (size_t)
0x620 - priv->tx_hdr_len;
break;
}
case BR_CODE_EXPOSED_IF:
exp_if = (struct bootrec_exp_if *) bootrec->data;
for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
if (exp_if[i].if_id == cpu_to_le16(0x1a))
priv->fw_var = le16_to_cpu(exp_if[i].variant);
break;
case BR_CODE_DEPENDENT_IF:
break;
case BR_CODE_END_OF_BRA:
case LEGACY_BR_CODE_END_OF_BRA:
end_data = NULL;
break;
default:
break;
}
bootrec = (struct bootrec *)&bootrec->data[len];
}
if (fw_version)
printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
if (priv->fw_var < 0x500)
printk(KERN_INFO "p54: you are using an obsolete firmware. "
"visit http://wireless.kernel.org/en/users/Drivers/p54 "
"and grab one for \"kernel >= 2.6.28\"!\n");
if (priv->fw_var >= 0x300) {
/* Firmware supports QoS, use it! */
priv->tx_stats[4].limit = 3; /* AC_VO */
priv->tx_stats[5].limit = 4; /* AC_VI */
priv->tx_stats[6].limit = 3; /* AC_BE */
priv->tx_stats[7].limit = 2; /* AC_BK */
dev->queues = 4;
}
return 0;
}
EXPORT_SYMBOL_GPL(p54_parse_firmware);
static int p54_convert_rev0(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev0 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = priv->curve_data->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
dst = target;
src = source;
dst->rf_power = src->rf_power;
dst->pa_detector = src->pa_detector;
dst->data_64qam = src->pcv;
/* "invent" the points for the other modulations */
#define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
dst->data_16qam = SUB(src->pcv, 12);
dst->data_qpsk = SUB(dst->data_16qam, 12);
dst->data_bpsk = SUB(dst->data_qpsk, 12);
dst->data_barker = SUB(dst->data_bpsk, 14);
#undef SUB
target += sizeof(*dst);
source += sizeof(*src);
}
}
return 0;
}
static int p54_convert_rev1(struct ieee80211_hw *dev,
struct pda_pa_curve_data *curve_data)
{
struct p54_common *priv = dev->priv;
struct p54_pa_curve_data_sample *dst;
struct pda_pa_curve_data_sample_rev1 *src;
size_t cd_len = sizeof(*curve_data) +
(curve_data->points_per_channel*sizeof(*dst) + 2) *
curve_data->channels;
unsigned int i, j;
void *source, *target;
priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
if (!priv->curve_data)
return -ENOMEM;
memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
source = curve_data->data;
target = priv->curve_data->data;
for (i = 0; i < curve_data->channels; i++) {
__le16 *freq = source;
source += sizeof(__le16);
*((__le16 *)target) = *freq;
target += sizeof(__le16);
for (j = 0; j < curve_data->points_per_channel; j++) {
memcpy(target, source, sizeof(*src));
target += sizeof(*dst);
source += sizeof(*src);
}
source++;
}
return 0;
}
static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
"Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
static int p54_init_xbow_synth(struct ieee80211_hw *dev);
static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
{
struct p54_common *priv = dev->priv;
struct eeprom_pda_wrap *wrap = NULL;
struct pda_entry *entry;
unsigned int data_len, entry_len;
void *tmp;
int err;
u8 *end = (u8 *)eeprom + len;
u16 synth = 0;
wrap = (struct eeprom_pda_wrap *) eeprom;
entry = (void *)wrap->data + le16_to_cpu(wrap->len);
/* verify that at least the entry length/code fits */
while ((u8 *)entry <= end - sizeof(*entry)) {
entry_len = le16_to_cpu(entry->len);
data_len = ((entry_len - 1) << 1);
/* abort if entry exceeds whole structure */
if ((u8 *)entry + sizeof(*entry) + data_len > end)
break;
switch (le16_to_cpu(entry->code)) {
case PDR_MAC_ADDRESS:
SET_IEEE80211_PERM_ADDR(dev, entry->data);
break;
case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
if (data_len < 2) {
err = -EINVAL;
goto err;
}
if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
err = -EINVAL;
goto err;
}
priv->output_limit = kmalloc(entry->data[1] *
sizeof(*priv->output_limit), GFP_KERNEL);
if (!priv->output_limit) {
err = -ENOMEM;
goto err;
}
memcpy(priv->output_limit, &entry->data[2],
entry->data[1]*sizeof(*priv->output_limit));
priv->output_limit_len = entry->data[1];
break;
case PDR_PRISM_PA_CAL_CURVE_DATA: {
struct pda_pa_curve_data *curve_data =
(struct pda_pa_curve_data *)entry->data;
if (data_len < sizeof(*curve_data)) {
err = -EINVAL;
goto err;
}
switch (curve_data->cal_method_rev) {
case 0:
err = p54_convert_rev0(dev, curve_data);
break;
case 1:
err = p54_convert_rev1(dev, curve_data);
break;
default:
printk(KERN_ERR "p54: unknown curve data "
"revision %d\n",
curve_data->cal_method_rev);
err = -ENODEV;
break;
}
if (err)
goto err;
}
case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
if (!priv->iq_autocal) {
err = -ENOMEM;
goto err;
}
memcpy(priv->iq_autocal, entry->data, data_len);
priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
break;
case PDR_INTERFACE_LIST:
tmp = entry->data;
while ((u8 *)tmp < entry->data + data_len) {
struct bootrec_exp_if *exp_if = tmp;
if (le16_to_cpu(exp_if->if_id) == 0xf)
synth = le16_to_cpu(exp_if->variant);
tmp += sizeof(struct bootrec_exp_if);
}
break;
case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
priv->version = *(u8 *)(entry->data + 1);
break;
case PDR_END:
/* make it overrun */
entry_len = len;
break;
case PDR_MANUFACTURING_PART_NUMBER:
case PDR_PDA_VERSION:
case PDR_NIC_SERIAL_NUMBER:
case PDR_REGULATORY_DOMAIN_LIST:
case PDR_TEMPERATURE_TYPE:
case PDR_PRISM_PCI_IDENTIFIER:
case PDR_COUNTRY_INFORMATION:
case PDR_OEM_NAME:
case PDR_PRODUCT_NAME:
case PDR_UTF8_OEM_NAME:
case PDR_UTF8_PRODUCT_NAME:
case PDR_COUNTRY_LIST:
case PDR_DEFAULT_COUNTRY:
case PDR_ANTENNA_GAIN:
case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
case PDR_RSSI_LINEAR_APPROXIMATION:
case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
case PDR_REGULATORY_POWER_LIMITS:
case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
case PDR_RADIATED_TRANSMISSION_CORRECTION:
case PDR_PRISM_TX_IQ_CALIBRATION:
case PDR_BASEBAND_REGISTERS:
case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
break;
default:
printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
le16_to_cpu(entry->code));
break;
}
entry = (void *)entry + (entry_len + 1)*2;
}
if (!synth || !priv->iq_autocal || !priv->output_limit ||
!priv->curve_data) {
printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
err = -EINVAL;
goto err;
}
priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
if (priv->rxhw == 4)
p54_init_xbow_synth(dev);
if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
u8 perm_addr[ETH_ALEN];
printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
wiphy_name(dev->wiphy));
random_ether_addr(perm_addr);
SET_IEEE80211_PERM_ADDR(dev, perm_addr);
}
printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
wiphy_name(dev->wiphy),
dev->wiphy->perm_addr,
priv->version, p54_rf_chips[priv->rxhw]);
return 0;
err:
if (priv->iq_autocal) {
kfree(priv->iq_autocal);
priv->iq_autocal = NULL;
}
if (priv->output_limit) {
kfree(priv->output_limit);
priv->output_limit = NULL;
}
if (priv->curve_data) {
kfree(priv->curve_data);
priv->curve_data = NULL;
}
printk(KERN_ERR "p54: eeprom parse failed!\n");
return err;
}
static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
{
/* TODO: get the rssi_add & rssi_mul data from the eeprom */
return ((rssi * 0x83) / 64 - 400) / 4;
}
static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_common *priv = dev->priv;
struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
struct ieee80211_rx_status rx_status = {0};
u16 freq = le16_to_cpu(hdr->freq);
size_t header_len = sizeof(*hdr);
u32 tsf32;
if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
if (priv->filter_flags & FIF_FCSFAIL)
rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
else
return 0;
}
rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
rx_status.noise = priv->noise;
/* XX correct? */
rx_status.qual = (100 * hdr->rssi) / 127;
rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
hdr->rate : (hdr->rate - 4)) & 0xf;
rx_status.freq = freq;
rx_status.band = dev->conf.channel->band;
rx_status.antenna = hdr->antenna;
tsf32 = le32_to_cpu(hdr->tsf32);
if (tsf32 < priv->tsf_low32)
priv->tsf_high32++;
rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
priv->tsf_low32 = tsf32;
rx_status.flag |= RX_FLAG_TSFT;
if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
header_len += hdr->align[0];
skb_pull(skb, header_len);
skb_trim(skb, le16_to_cpu(hdr->len));
ieee80211_rx_irqsafe(dev, skb, &rx_status);
return -1;
}
static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
int i;
if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
return ;
for (i = 0; i < dev->queues; i++)
if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
ieee80211_wake_queue(dev, i);
}
void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_common *priv = dev->priv;
struct ieee80211_tx_info *info;
struct memrecord *range;
unsigned long flags;
u32 freed = 0, last_addr = priv->rx_start;
if (!skb || !dev)
return;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
info = IEEE80211_SKB_CB(skb);
range = (void *)info->rate_driver_data;
if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
struct ieee80211_tx_info *ni;
struct memrecord *mr;
ni = IEEE80211_SKB_CB(skb->prev);
mr = (struct memrecord *)ni->rate_driver_data;
last_addr = mr->end_addr;
}
if (skb->next != (struct sk_buff *)&priv->tx_queue) {
struct ieee80211_tx_info *ni;
struct memrecord *mr;
ni = IEEE80211_SKB_CB(skb->next);
mr = (struct memrecord *)ni->rate_driver_data;
freed = mr->start_addr - last_addr;
} else
freed = priv->rx_end - last_addr;
__skb_unlink(skb, &priv->tx_queue);
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
kfree_skb(skb);
if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
p54_wake_free_queues(dev);
}
EXPORT_SYMBOL_GPL(p54_free_skb);
static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_common *priv = dev->priv;
struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
struct memrecord *range = NULL;
u32 freed = 0;
u32 last_addr = priv->rx_start;
unsigned long flags;
int count, idx;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
while (entry != (struct sk_buff *)&priv->tx_queue) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
struct p54_hdr *entry_hdr;
struct p54_tx_data *entry_data;
int pad = 0;
range = (void *)info->rate_driver_data;
if (range->start_addr != addr) {
last_addr = range->end_addr;
entry = entry->next;
continue;
}
if (entry->next != (struct sk_buff *)&priv->tx_queue) {
struct ieee80211_tx_info *ni;
struct memrecord *mr;
ni = IEEE80211_SKB_CB(entry->next);
mr = (struct memrecord *)ni->rate_driver_data;
freed = mr->start_addr - last_addr;
} else
freed = priv->rx_end - last_addr;
last_addr = range->end_addr;
__skb_unlink(entry, &priv->tx_queue);
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
if (unlikely(entry == priv->cached_beacon)) {
kfree_skb(entry);
priv->cached_beacon = NULL;
goto out;
}
/*
* Clear manually, ieee80211_tx_info_clear_status would
* clear the counts too and we need them.
*/
memset(&info->status.ampdu_ack_len, 0,
sizeof(struct ieee80211_tx_info) -
offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
status.ampdu_ack_len) != 23);
entry_hdr = (struct p54_hdr *) entry->data;
entry_data = (struct p54_tx_data *) entry_hdr->data;
if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
pad = entry_data->align[0];
/* walk through the rates array and adjust the counts */
count = payload->tries;
for (idx = 0; idx < 4; idx++) {
if (count >= info->status.rates[idx].count) {
count -= info->status.rates[idx].count;
} else if (count > 0) {
info->status.rates[idx].count = count;
count = 0;
} else {
info->status.rates[idx].idx = -1;
info->status.rates[idx].count = 0;
}
}
priv->tx_stats[entry_data->hw_queue].len--;
if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
(!payload->status))
info->flags |= IEEE80211_TX_STAT_ACK;
if (payload->status & P54_TX_PSM_CANCELLED)
info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
info->status.ack_signal = p54_rssi_to_dbm(dev,
(int)payload->ack_rssi);
skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
ieee80211_tx_status_irqsafe(dev, entry);
goto out;
}
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
out:
if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
p54_wake_free_queues(dev);
}
static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
struct sk_buff *skb)
{
struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
struct p54_common *priv = dev->priv;
if (!priv->eeprom)
return ;
memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
complete(&priv->eeprom_comp);
}
static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_common *priv = dev->priv;
struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
u32 tsf32 = le32_to_cpu(stats->tsf32);
if (tsf32 < priv->tsf_low32)
priv->tsf_high32++;
priv->tsf_low32 = tsf32;
priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
complete(&priv->stats_comp);
mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
}
static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
struct p54_trap *trap = (struct p54_trap *) hdr->data;
u16 event = le16_to_cpu(trap->event);
u16 freq = le16_to_cpu(trap->frequency);
switch (event) {
case P54_TRAP_BEACON_TX:
break;
case P54_TRAP_RADAR:
printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
wiphy_name(dev->wiphy), freq);
break;
case P54_TRAP_NO_BEACON:
break;
case P54_TRAP_SCAN:
break;
case P54_TRAP_TBTT:
break;
case P54_TRAP_TIMER:
break;
default:
printk(KERN_INFO "%s: received event:%x freq:%d\n",
wiphy_name(dev->wiphy), event, freq);
break;
}
}
static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
switch (le16_to_cpu(hdr->type)) {
case P54_CONTROL_TYPE_TXDONE:
p54_rx_frame_sent(dev, skb);
break;
case P54_CONTROL_TYPE_TRAP:
p54_rx_trap(dev, skb);
break;
case P54_CONTROL_TYPE_BBP:
break;
case P54_CONTROL_TYPE_STAT_READBACK:
p54_rx_stats(dev, skb);
break;
case P54_CONTROL_TYPE_EEPROM_READBACK:
p54_rx_eeprom_readback(dev, skb);
break;
default:
printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
break;
}
return 0;
}
/* returns zero if skb can be reused */
int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
u16 type = le16_to_cpu(*((__le16 *)skb->data));
if (type & P54_HDR_FLAG_CONTROL)
return p54_rx_control(dev, skb);
else
return p54_rx_data(dev, skb);
}
EXPORT_SYMBOL_GPL(p54_rx);
/*
* So, the firmware is somewhat stupid and doesn't know what places in its
* memory incoming data should go to. By poking around in the firmware, we
* can find some unused memory to upload our packets to. However, data that we
* want the card to TX needs to stay intact until the card has told us that
* it is done with it. This function finds empty places we can upload to and
* marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
* allocated areas.
*/
static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
struct p54_hdr *data, u32 len)
{
struct p54_common *priv = dev->priv;
struct sk_buff *entry = priv->tx_queue.next;
struct sk_buff *target_skb = NULL;
struct ieee80211_tx_info *info;
struct memrecord *range;
u32 last_addr = priv->rx_start;
u32 largest_hole = 0;
u32 target_addr = priv->rx_start;
unsigned long flags;
unsigned int left;
len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
if (!skb)
return -EINVAL;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
left = skb_queue_len(&priv->tx_queue);
while (left--) {
u32 hole_size;
info = IEEE80211_SKB_CB(entry);
range = (void *)info->rate_driver_data;
hole_size = range->start_addr - last_addr;
if (!target_skb && hole_size >= len) {
target_skb = entry->prev;
hole_size -= len;
target_addr = last_addr;
}
largest_hole = max(largest_hole, hole_size);
last_addr = range->end_addr;
entry = entry->next;
}
if (!target_skb && priv->rx_end - last_addr >= len) {
target_skb = priv->tx_queue.prev;
largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
if (!skb_queue_empty(&priv->tx_queue)) {
info = IEEE80211_SKB_CB(target_skb);
range = (void *)info->rate_driver_data;
target_addr = range->end_addr;
}
} else
largest_hole = max(largest_hole, priv->rx_end - last_addr);
if (!target_skb) {
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
ieee80211_stop_queues(dev);
return -ENOMEM;
}
info = IEEE80211_SKB_CB(skb);
range = (void *)info->rate_driver_data;
range->start_addr = target_addr;
range->end_addr = target_addr + len;
__skb_queue_after(&priv->tx_queue, target_skb, skb);
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
ieee80211_stop_queues(dev);
data->req_id = cpu_to_le32(target_addr + priv->headroom);
return 0;
}
static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
{
struct p54_common *priv = dev->priv;
struct p54_hdr *hdr;
struct sk_buff *skb;
skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
if (!skb)
return NULL;
skb_reserve(skb, priv->tx_hdr_len);
hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
hdr->flags = cpu_to_le16(hdr_flags);
hdr->len = cpu_to_le16(len - sizeof(*hdr));
hdr->type = cpu_to_le16(type);
hdr->tries = hdr->rts_tries = 0;
if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
kfree_skb(skb);
return NULL;
}
return skb;
}
int p54_read_eeprom(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct p54_hdr *hdr = NULL;
struct p54_eeprom_lm86 *eeprom_hdr;
struct sk_buff *skb;
size_t eeprom_size = 0x2020, offset = 0, blocksize;
int ret = -ENOMEM;
void *eeprom = NULL;
skb = p54_alloc_skb(dev, 0x8000, sizeof(*hdr) + sizeof(*eeprom_hdr) +
EEPROM_READBACK_LEN,
P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
if (!skb)
goto free;
priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
if (!priv->eeprom)
goto free;
eeprom = kzalloc(eeprom_size, GFP_KERNEL);
if (!eeprom)
goto free;
eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN);
while (eeprom_size) {
blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
eeprom_hdr->offset = cpu_to_le16(offset);
eeprom_hdr->len = cpu_to_le16(blocksize);
priv->tx(dev, skb, 0);
if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
printk(KERN_ERR "%s: device does not respond!\n",
wiphy_name(dev->wiphy));
ret = -EBUSY;
goto free;
}
memcpy(eeprom + offset, priv->eeprom, blocksize);
offset += blocksize;
eeprom_size -= blocksize;
}
ret = p54_parse_eeprom(dev, eeprom, offset);
free:
kfree(priv->eeprom);
priv->eeprom = NULL;
p54_free_skb(dev, skb);
kfree(eeprom);
return ret;
}
EXPORT_SYMBOL_GPL(p54_read_eeprom);
static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
bool set)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_tim *tim;
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
sizeof(struct p54_hdr) + sizeof(*tim),
P54_CONTROL_TYPE_TIM, GFP_KERNEL);
if (!skb)
return -ENOMEM;
tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
tim->count = 1;
tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
priv->tx(dev, skb, 1);
return 0;
}
static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_sta_unlock *sta;
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
sizeof(struct p54_hdr) + sizeof(*sta),
P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
memcpy(sta->addr, addr, ETH_ALEN);
priv->tx(dev, skb, 1);
return 0;
}
static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_hdr *hdr;
struct p54_txcancel *cancel;
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
sizeof(struct p54_hdr) + sizeof(*cancel),
P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
hdr = (void *)entry->data;
cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
cancel->req_id = hdr->req_id;
priv->tx(dev, skb, 1);
return 0;
}
static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
u16 *flags, u16 *aid)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct p54_common *priv = dev->priv;
int ret = 0;
if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
if (ieee80211_is_beacon(hdr->frame_control)) {
*aid = 0;
*queue = 0;
*extra_len = IEEE80211_MAX_TIM_LEN;
*flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
return 0;
} else if (ieee80211_is_probe_resp(hdr->frame_control)) {
*aid = 0;
*queue = 2;
*flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
P54_HDR_FLAG_DATA_OUT_NOCANCEL;
return 0;
} else {
*queue = 2;
ret = 0;
}
} else {
*queue += 4;
ret = 1;
}
switch (priv->mode) {
case NL80211_IFTYPE_STATION:
*aid = 1;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_ADHOC:
if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
*aid = 0;
*queue = 3;
return 0;
}
if (info->control.sta)
*aid = info->control.sta->aid;
else
*flags = P54_HDR_FLAG_DATA_OUT_NOCANCEL;
}
return ret;
}
static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_queue_stats *current_queue = NULL;
struct p54_common *priv = dev->priv;
struct p54_hdr *hdr;
struct p54_tx_data *txhdr;
size_t padding, len, tim_len = 0;
int i, j, ridx;
u16 hdr_flags = 0, aid = 0;
u8 rate, queue;
u8 cts_rate = 0x20;
u8 rc_flags;
u8 calculated_tries[4];
u8 nrates = 0, nremaining = 8;
queue = skb_get_queue_mapping(skb);
if (p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid)) {
current_queue = &priv->tx_stats[queue];
if (unlikely(current_queue->len > current_queue->limit))
return NETDEV_TX_BUSY;
current_queue->len++;
current_queue->count++;
if (current_queue->len == current_queue->limit)
ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
}
padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
len = skb->len;
if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) {
if (info->control.sta)
if (p54_sta_unlock(dev, info->control.sta->addr)) {
if (current_queue) {
current_queue->len--;
current_queue->count--;
}
return NETDEV_TX_BUSY;
}
}
txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
if (padding)
hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
hdr->len = cpu_to_le16(len);
hdr->type = cpu_to_le16(aid);
hdr->rts_tries = info->control.rates[0].count;
/*
* we register the rates in perfect order, and
* RTS/CTS won't happen on 5 GHz
*/
cts_rate = info->control.rts_cts_rate_idx;
memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
/* see how many rates got used */
for (i = 0; i < 4; i++) {
if (info->control.rates[i].idx < 0)
break;
nrates++;
}
/* limit tries to 8/nrates per rate */
for (i = 0; i < nrates; i++) {
/*
* The magic expression here is equivalent to 8/nrates for
* all values that matter, but avoids division and jumps.
* Note that nrates can only take the values 1 through 4.
*/
calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
info->control.rates[i].count);
nremaining -= calculated_tries[i];
}
/* if there are tries left, distribute from back to front */
for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
int tmp = info->control.rates[i].count - calculated_tries[i];
if (tmp <= 0)
continue;
/* RC requested more tries at this rate */
tmp = min_t(int, tmp, nremaining);
calculated_tries[i] += tmp;
nremaining -= tmp;
}
ridx = 0;
for (i = 0; i < nrates && ridx < 8; i++) {
/* we register the rates in perfect order */
rate = info->control.rates[i].idx;
if (info->band == IEEE80211_BAND_5GHZ)
rate += 4;
/* store the count we actually calculated for TX status */
info->control.rates[i].count = calculated_tries[i];
rc_flags = info->control.rates[i].flags;
if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
rate |= 0x10;
cts_rate |= 0x10;
}
if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
rate |= 0x40;
else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
rate |= 0x20;
for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
txhdr->rateset[ridx] = rate;
ridx++;
}
}
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
/* TODO: enable bursting */
hdr->flags = cpu_to_le16(hdr_flags);
hdr->tries = ridx;
txhdr->crypt_offset = 0;
txhdr->rts_rate_idx = 0;
txhdr->key_type = 0;
txhdr->key_len = 0;
txhdr->hw_queue = queue;
txhdr->backlog = 32;
memset(txhdr->durations, 0, sizeof(txhdr->durations));
txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
2 : info->antenna_sel_tx - 1;
txhdr->output_power = priv->output_power;
txhdr->cts_rate = cts_rate;
if (padding)
txhdr->align[0] = padding;
/* modifies skb->cb and with it info, so must be last! */
if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len))) {
skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
if (current_queue) {
current_queue->len--;
current_queue->count--;
}
return NETDEV_TX_BUSY;
}
priv->tx(dev, skb, 0);
return 0;
}
static int p54_setup_mac(struct ieee80211_hw *dev, u16 mode, const u8 *bssid)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_setup_mac *setup;
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
GFP_ATOMIC);
if (!skb)
return -ENOMEM;
setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
priv->mac_mode = mode;
setup->mac_mode = cpu_to_le16(mode);
memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
if (!bssid)
memset(setup->bssid, ~0, ETH_ALEN);
else
memcpy(setup->bssid, bssid, ETH_ALEN);
setup->rx_antenna = priv->rx_antenna;
setup->rx_align = 0;
if (priv->fw_var < 0x500) {
setup->v1.basic_rate_mask = cpu_to_le32(0x15f);
memset(setup->v1.rts_rates, 0, 8);
setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
setup->v1.rxhw = cpu_to_le16(priv->rxhw);
setup->v1.wakeup_timer = cpu_to_le16(500);
setup->v1.unalloc0 = cpu_to_le16(0);
} else {
setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
setup->v2.rxhw = cpu_to_le16(priv->rxhw);
setup->v2.timer = cpu_to_le16(1000);
setup->v2.truncate = cpu_to_le16(48896);
setup->v2.basic_rate_mask = cpu_to_le32(0x15f);
setup->v2.sbss_offset = 0;
setup->v2.mcast_window = 0;
setup->v2.rx_rssi_threshold = 0;
setup->v2.rx_ed_threshold = 0;
setup->v2.ref_clock = cpu_to_le32(644245094);
setup->v2.lpf_bandwidth = cpu_to_le16(65535);
setup->v2.osc_start_delay = cpu_to_le16(65535);
}
priv->tx(dev, skb, 1);
return 0;
}
static int p54_set_freq(struct ieee80211_hw *dev, u16 frequency)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_scan *chan;
unsigned int i;
void *entry;
__le16 freq = cpu_to_le16(frequency);
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
GFP_ATOMIC);
if (!skb)
return -ENOMEM;
chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
memset(chan->padding1, 0, sizeof(chan->padding1));
chan->mode = cpu_to_le16(P54_SCAN_EXIT);
chan->dwell = cpu_to_le16(0x0);
for (i = 0; i < priv->iq_autocal_len; i++) {
if (priv->iq_autocal[i].freq != freq)
continue;
memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
sizeof(*priv->iq_autocal));
break;
}
if (i == priv->iq_autocal_len)
goto err;
for (i = 0; i < priv->output_limit_len; i++) {
if (priv->output_limit[i].freq != freq)
continue;
chan->val_barker = 0x38;
chan->val_bpsk = chan->dup_bpsk =
priv->output_limit[i].val_bpsk;
chan->val_qpsk = chan->dup_qpsk =
priv->output_limit[i].val_qpsk;
chan->val_16qam = chan->dup_16qam =
priv->output_limit[i].val_16qam;
chan->val_64qam = chan->dup_64qam =
priv->output_limit[i].val_64qam;
break;
}
if (i == priv->output_limit_len)
goto err;
entry = priv->curve_data->data;
for (i = 0; i < priv->curve_data->channels; i++) {
if (*((__le16 *)entry) != freq) {
entry += sizeof(__le16);
entry += sizeof(struct p54_pa_curve_data_sample) *
priv->curve_data->points_per_channel;
continue;
}
entry += sizeof(__le16);
chan->pa_points_per_curve = 8;
memset(chan->curve_data, 0, sizeof(*chan->curve_data));
memcpy(chan->curve_data, entry,
sizeof(struct p54_pa_curve_data_sample) *
min((u8)8, priv->curve_data->points_per_channel));
break;
}
if (priv->fw_var < 0x500) {
chan->v1.rssical_mul = cpu_to_le16(130);
chan->v1.rssical_add = cpu_to_le16(0xfe70);
} else {
chan->v2.rssical_mul = cpu_to_le16(130);
chan->v2.rssical_add = cpu_to_le16(0xfe70);
chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
memset(chan->v2.rts_rates, 0, 8);
}
priv->tx(dev, skb, 1);
return 0;
err:
printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
kfree_skb(skb);
return -EINVAL;
}
static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_led *led;
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
GFP_ATOMIC);
if (!skb)
return -ENOMEM;
led = (struct p54_led *)skb_put(skb, sizeof(*led));
led->mode = cpu_to_le16(mode);
led->led_permanent = cpu_to_le16(link);
led->led_temporary = cpu_to_le16(act);
led->duration = cpu_to_le16(1000);
priv->tx(dev, skb, 1);
return 0;
}
#define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop) \
do { \
queue.aifs = cpu_to_le16(ai_fs); \
queue.cwmin = cpu_to_le16(cw_min); \
queue.cwmax = cpu_to_le16(cw_max); \
queue.txop = cpu_to_le16(_txop); \
} while(0)
static int p54_set_edcf(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_edcf *edcf;
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
GFP_ATOMIC);
if (!skb)
return -ENOMEM;
edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
if (priv->use_short_slot) {
edcf->slottime = 9;
edcf->sifs = 0x10;
edcf->eofpad = 0x00;
} else {
edcf->slottime = 20;
edcf->sifs = 0x0a;
edcf->eofpad = 0x06;
}
/* (see prism54/isl_oid.h for further details) */
edcf->frameburst = cpu_to_le16(0);
edcf->round_trip_delay = cpu_to_le16(0);
edcf->flags = 0;
memset(edcf->mapping, 0, sizeof(edcf->mapping));
memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
priv->tx(dev, skb, 1);
return 0;
}
static int p54_init_stats(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
priv->cached_stats = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
sizeof(struct p54_hdr) + sizeof(struct p54_statistics),
P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
if (!priv->cached_stats)
return -ENOMEM;
mod_timer(&priv->stats_timer, jiffies + HZ);
return 0;
}
static int p54_beacon_tim(struct sk_buff *skb)
{
/*
* the good excuse for this mess is ... the firmware.
* The dummy TIM MUST be at the end of the beacon frame,
* because it'll be overwritten!
*/
struct ieee80211_mgmt *mgmt = (void *)skb->data;
u8 *pos, *end;
if (skb->len <= sizeof(mgmt)) {
printk(KERN_ERR "p54: beacon is too short!\n");
return -EINVAL;
}
pos = (u8 *)mgmt->u.beacon.variable;
end = skb->data + skb->len;
while (pos < end) {
if (pos + 2 + pos[1] > end) {
printk(KERN_ERR "p54: parsing beacon failed\n");
return -EINVAL;
}
if (pos[0] == WLAN_EID_TIM) {
u8 dtim_len = pos[1];
u8 dtim_period = pos[3];
u8 *next = pos + 2 + dtim_len;
if (dtim_len < 3) {
printk(KERN_ERR "p54: invalid dtim len!\n");
return -EINVAL;
}
memmove(pos, next, end - next);
if (dtim_len > 3)
skb_trim(skb, skb->len - (dtim_len - 3));
pos = end - (dtim_len + 2);
/* add the dummy at the end */
pos[0] = WLAN_EID_TIM;
pos[1] = 3;
pos[2] = 0;
pos[3] = dtim_period;
pos[4] = 0;
return 0;
}
pos += 2 + pos[1];
}
return 0;
}
static int p54_beacon_update(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct p54_common *priv = dev->priv;
struct sk_buff *beacon;
int ret;
if (priv->cached_beacon) {
p54_tx_cancel(dev, priv->cached_beacon);
/* wait for the last beacon the be freed */
msleep(10);
}
beacon = ieee80211_beacon_get(dev, vif);
if (!beacon)
return -ENOMEM;
ret = p54_beacon_tim(beacon);
if (ret)
return ret;
ret = p54_tx(dev, beacon);
if (ret)
return ret;
priv->cached_beacon = beacon;
priv->tsf_high32 = 0;
priv->tsf_low32 = 0;
return 0;
}
static int p54_start(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
int err;
mutex_lock(&priv->conf_mutex);
err = priv->open(dev);
if (!err)
priv->mode = NL80211_IFTYPE_MONITOR;
P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
err = p54_set_edcf(dev);
if (!err)
err = p54_init_stats(dev);
mutex_unlock(&priv->conf_mutex);
return err;
}
static void p54_stop(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
mutex_lock(&priv->conf_mutex);
del_timer(&priv->stats_timer);
p54_free_skb(dev, priv->cached_stats);
priv->cached_stats = NULL;
if (priv->cached_beacon)
p54_tx_cancel(dev, priv->cached_beacon);
while ((skb = skb_dequeue(&priv->tx_queue)))
kfree_skb(skb);
kfree(priv->cached_beacon);
priv->cached_beacon = NULL;
priv->stop(dev);
priv->tsf_high32 = priv->tsf_low32 = 0;
priv->mode = NL80211_IFTYPE_UNSPECIFIED;
mutex_unlock(&priv->conf_mutex);
}
static int p54_add_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct p54_common *priv = dev->priv;
mutex_lock(&priv->conf_mutex);
if (priv->mode != NL80211_IFTYPE_MONITOR) {
mutex_unlock(&priv->conf_mutex);
return -EOPNOTSUPP;
}
switch (conf->type) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_AP:
priv->mode = conf->type;
break;
default:
mutex_unlock(&priv->conf_mutex);
return -EOPNOTSUPP;
}
memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
switch (conf->type) {
case NL80211_IFTYPE_STATION:
p54_setup_mac(dev, P54_FILTER_TYPE_STATION, NULL);
break;
case NL80211_IFTYPE_AP:
p54_setup_mac(dev, P54_FILTER_TYPE_AP, priv->mac_addr);
break;
case NL80211_IFTYPE_ADHOC:
p54_setup_mac(dev, P54_FILTER_TYPE_IBSS, NULL);
break;
default:
BUG(); /* impossible */
break;
}
p54_set_leds(dev, 1, 0, 0);
mutex_unlock(&priv->conf_mutex);
return 0;
}
static void p54_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_if_init_conf *conf)
{
struct p54_common *priv = dev->priv;
mutex_lock(&priv->conf_mutex);
if (priv->cached_beacon)
p54_tx_cancel(dev, priv->cached_beacon);
p54_setup_mac(dev, P54_FILTER_TYPE_NONE, NULL);
priv->mode = NL80211_IFTYPE_MONITOR;
memset(priv->mac_addr, 0, ETH_ALEN);
mutex_unlock(&priv->conf_mutex);
}
static int p54_config(struct ieee80211_hw *dev, u32 changed)
{
int ret;
struct p54_common *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
mutex_lock(&priv->conf_mutex);
priv->rx_antenna = 2; /* automatic */
priv->output_power = conf->power_level << 2;
ret = p54_set_freq(dev, conf->channel->center_freq);
if (!ret)
ret = p54_set_edcf(dev);
mutex_unlock(&priv->conf_mutex);
return ret;
}
static int p54_config_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_if_conf *conf)
{
struct p54_common *priv = dev->priv;
int ret = 0;
mutex_lock(&priv->conf_mutex);
switch (priv->mode) {
case NL80211_IFTYPE_STATION:
ret = p54_setup_mac(dev, P54_FILTER_TYPE_STATION, conf->bssid);
if (ret)
goto out;
ret = p54_set_leds(dev, 1,
!is_multicast_ether_addr(conf->bssid), 0);
if (ret)
goto out;
memcpy(priv->bssid, conf->bssid, ETH_ALEN);
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_ADHOC:
memcpy(priv->bssid, conf->bssid, ETH_ALEN);
ret = p54_set_freq(dev, dev->conf.channel->center_freq);
if (ret)
goto out;
ret = p54_setup_mac(dev, priv->mac_mode, priv->bssid);
if (ret)
goto out;
if (conf->changed & IEEE80211_IFCC_BEACON) {
ret = p54_beacon_update(dev, vif);
if (ret)
goto out;
ret = p54_set_edcf(dev);
if (ret)
goto out;
}
}
out:
mutex_unlock(&priv->conf_mutex);
return ret;
}
static void p54_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
int mc_count, struct dev_mc_list *mclist)
{
struct p54_common *priv = dev->priv;
*total_flags &= FIF_BCN_PRBRESP_PROMISC |
FIF_PROMISC_IN_BSS |
FIF_FCSFAIL;
priv->filter_flags = *total_flags;
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
p54_setup_mac(dev, priv->mac_mode, NULL);
else
p54_setup_mac(dev, priv->mac_mode, priv->bssid);
}
if (changed_flags & FIF_PROMISC_IN_BSS) {
if (*total_flags & FIF_PROMISC_IN_BSS)
p54_setup_mac(dev, priv->mac_mode | 0x8, NULL);
else
p54_setup_mac(dev, priv->mac_mode & ~0x8, priv->bssid);
}
}
static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct p54_common *priv = dev->priv;
int ret;
mutex_lock(&priv->conf_mutex);
if ((params) && !(queue > 4)) {
P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
params->cw_min, params->cw_max, params->txop);
} else
ret = -EINVAL;
if (!ret)
ret = p54_set_edcf(dev);
mutex_unlock(&priv->conf_mutex);
return ret;
}
static int p54_init_xbow_synth(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
struct sk_buff *skb;
struct p54_xbow_synth *xbow;
skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
sizeof(struct p54_hdr),
P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
GFP_KERNEL);
if (!skb)
return -ENOMEM;
xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
xbow->magic1 = cpu_to_le16(0x1);
xbow->magic2 = cpu_to_le16(0x2);
xbow->freq = cpu_to_le16(5390);
memset(xbow->padding, 0, sizeof(xbow->padding));
priv->tx(dev, skb, 1);
return 0;
}
static void p54_statistics_timer(unsigned long data)
{
struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
struct p54_common *priv = dev->priv;
BUG_ON(!priv->cached_stats);
priv->tx(dev, priv->cached_stats, 0);
}
static int p54_get_stats(struct ieee80211_hw *dev,
struct ieee80211_low_level_stats *stats)
{
struct p54_common *priv = dev->priv;
del_timer(&priv->stats_timer);
p54_statistics_timer((unsigned long)dev);
if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
printk(KERN_ERR "%s: device does not respond!\n",
wiphy_name(dev->wiphy));
return -EBUSY;
}
memcpy(stats, &priv->stats, sizeof(*stats));
return 0;
}
static int p54_get_tx_stats(struct ieee80211_hw *dev,
struct ieee80211_tx_queue_stats *stats)
{
struct p54_common *priv = dev->priv;
memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
return 0;
}
static void p54_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct p54_common *priv = dev->priv;
if (changed & BSS_CHANGED_ERP_SLOT) {
priv->use_short_slot = info->use_short_slot;
p54_set_edcf(dev);
}
}
static const struct ieee80211_ops p54_ops = {
.tx = p54_tx,
.start = p54_start,
.stop = p54_stop,
.add_interface = p54_add_interface,
.remove_interface = p54_remove_interface,
.set_tim = p54_set_tim,
.config = p54_config,
.config_interface = p54_config_interface,
.bss_info_changed = p54_bss_info_changed,
.configure_filter = p54_configure_filter,
.conf_tx = p54_conf_tx,
.get_stats = p54_get_stats,
.get_tx_stats = p54_get_tx_stats
};
struct ieee80211_hw *p54_init_common(size_t priv_data_len)
{
struct ieee80211_hw *dev;
struct p54_common *priv;
dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
if (!dev)
return NULL;
priv = dev->priv;
priv->mode = NL80211_IFTYPE_UNSPECIFIED;
skb_queue_head_init(&priv->tx_queue);
dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_NOISE_DBM;
dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION |
NL80211_IFTYPE_ADHOC |
NL80211_IFTYPE_AP);
dev->channel_change_time = 1000; /* TODO: find actual value */
priv->tx_stats[0].limit = 1; /* Beacon queue */
priv->tx_stats[1].limit = 1; /* Probe queue for HW scan */
priv->tx_stats[2].limit = 3; /* queue for MLMEs */
priv->tx_stats[3].limit = 3; /* Broadcast / MC queue */
priv->tx_stats[4].limit = 5; /* Data */
dev->queues = 1;
priv->noise = -94;
/*
* We support at most 8 tries no matter which rate they're at,
* we cannot support max_rates * max_rate_tries as we set it
* here, but setting it correctly to 4/2 or so would limit us
* artificially if the RC algorithm wants just two rates, so
* let's say 4/7, we'll redistribute it at TX time, see the
* comments there.
*/
dev->max_rates = 4;
dev->max_rate_tries = 7;
dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
sizeof(struct p54_tx_data);
mutex_init(&priv->conf_mutex);
init_completion(&priv->eeprom_comp);
init_completion(&priv->stats_comp);
setup_timer(&priv->stats_timer, p54_statistics_timer,
(unsigned long)dev);
return dev;
}
EXPORT_SYMBOL_GPL(p54_init_common);
void p54_free_common(struct ieee80211_hw *dev)
{
struct p54_common *priv = dev->priv;
del_timer(&priv->stats_timer);
kfree_skb(priv->cached_stats);
kfree(priv->iq_autocal);
kfree(priv->output_limit);
kfree(priv->curve_data);
}
EXPORT_SYMBOL_GPL(p54_free_common);
static int __init p54_init(void)
{
return 0;
}
static void __exit p54_exit(void)
{
}
module_init(p54_init);
module_exit(p54_exit);