mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 07:30:53 +07:00
c20821a7f0
In version 3.3 of the IP when transaction halt is set, an interrupt will be generated after each byte of a transfer instead of after every transfer but before the stop bit. Due to this behaviour we have to be careful that every time we release the transaction halt we have to re-enable it straight away so that we only process a single byte, not doing so will result in all remaining bytes been processed and a stop bit being issued, which will prevent us having a repeated start. This change will have no effect on earlier versions of the IP. Signed-off-by: Sifan Naeem <sifan.naeem@imgtec.com> Acked-by: James Hogan <james.hogan@imgtec.com> Reviewed-by: James Hartley <james.hartley@imgtec.com> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
1470 lines
40 KiB
C
1470 lines
40 KiB
C
/*
|
|
* I2C adapter for the IMG Serial Control Bus (SCB) IP block.
|
|
*
|
|
* Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* There are three ways that this I2C controller can be driven:
|
|
*
|
|
* - Raw control of the SDA and SCK signals.
|
|
*
|
|
* This corresponds to MODE_RAW, which takes control of the signals
|
|
* directly for a certain number of clock cycles (the INT_TIMING
|
|
* interrupt can be used for timing).
|
|
*
|
|
* - Atomic commands. A low level I2C symbol (such as generate
|
|
* start/stop/ack/nack bit, generate byte, receive byte, and receive
|
|
* ACK) is given to the hardware, with detection of completion by bits
|
|
* in the LINESTAT register.
|
|
*
|
|
* This mode of operation is used by MODE_ATOMIC, which uses an I2C
|
|
* state machine in the interrupt handler to compose/react to I2C
|
|
* transactions using atomic mode commands, and also by MODE_SEQUENCE,
|
|
* which emits a simple fixed sequence of atomic mode commands.
|
|
*
|
|
* Due to software control, the use of atomic commands usually results
|
|
* in suboptimal use of the bus, with gaps between the I2C symbols while
|
|
* the driver decides what to do next.
|
|
*
|
|
* - Automatic mode. A bus address, and whether to read/write is
|
|
* specified, and the hardware takes care of the I2C state machine,
|
|
* using a FIFO to send/receive bytes of data to an I2C slave. The
|
|
* driver just has to keep the FIFO drained or filled in response to the
|
|
* appropriate FIFO interrupts.
|
|
*
|
|
* This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
|
|
* with control of repeated start bits between I2C messages.
|
|
*
|
|
* Use of automatic mode and the FIFO can make much more efficient use
|
|
* of the bus compared to individual atomic commands, with potentially
|
|
* no wasted time between I2C symbols or I2C messages.
|
|
*
|
|
* In most cases MODE_AUTOMATIC is used, however if any of the messages in
|
|
* a transaction are zero byte writes (e.g. used by i2cdetect for probing
|
|
* the bus), MODE_ATOMIC must be used since automatic mode is normally
|
|
* started by the writing of data into the FIFO.
|
|
*
|
|
* The other modes are used in specific circumstances where MODE_ATOMIC and
|
|
* MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
|
|
* recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
|
|
* it is in a sane state.
|
|
*
|
|
* Notice that the driver implements a timer-based timeout mechanism.
|
|
* The reason for this mechanism is to reduce the number of interrupts
|
|
* received in automatic mode.
|
|
*
|
|
* The driver would get a slave event and transaction done interrupts for
|
|
* each atomic mode command that gets completed. However, these events are
|
|
* not needed in automatic mode, becase those atomic mode commands are
|
|
* managed automatically by the hardware.
|
|
*
|
|
* In practice, normal I2C transactions will be complete well before you
|
|
* get the timer interrupt, as the timer is re-scheduled during FIFO
|
|
* maintenance and disabled after the transaction is complete.
|
|
*
|
|
* In this way normal automatic mode operation isn't impacted by
|
|
* unnecessary interrupts, but the exceptional abort condition can still be
|
|
* detected (with a slight delay).
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/err.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/timer.h>
|
|
|
|
/* Register offsets */
|
|
|
|
#define SCB_STATUS_REG 0x00
|
|
#define SCB_OVERRIDE_REG 0x04
|
|
#define SCB_READ_ADDR_REG 0x08
|
|
#define SCB_READ_COUNT_REG 0x0c
|
|
#define SCB_WRITE_ADDR_REG 0x10
|
|
#define SCB_READ_DATA_REG 0x14
|
|
#define SCB_WRITE_DATA_REG 0x18
|
|
#define SCB_FIFO_STATUS_REG 0x1c
|
|
#define SCB_CONTROL_SOFT_RESET 0x1f
|
|
#define SCB_CLK_SET_REG 0x3c
|
|
#define SCB_INT_STATUS_REG 0x40
|
|
#define SCB_INT_CLEAR_REG 0x44
|
|
#define SCB_INT_MASK_REG 0x48
|
|
#define SCB_CONTROL_REG 0x4c
|
|
#define SCB_TIME_TPL_REG 0x50
|
|
#define SCB_TIME_TPH_REG 0x54
|
|
#define SCB_TIME_TP2S_REG 0x58
|
|
#define SCB_TIME_TBI_REG 0x60
|
|
#define SCB_TIME_TSL_REG 0x64
|
|
#define SCB_TIME_TDL_REG 0x68
|
|
#define SCB_TIME_TSDL_REG 0x6c
|
|
#define SCB_TIME_TSDH_REG 0x70
|
|
#define SCB_READ_XADDR_REG 0x74
|
|
#define SCB_WRITE_XADDR_REG 0x78
|
|
#define SCB_WRITE_COUNT_REG 0x7c
|
|
#define SCB_CORE_REV_REG 0x80
|
|
#define SCB_TIME_TCKH_REG 0x84
|
|
#define SCB_TIME_TCKL_REG 0x88
|
|
#define SCB_FIFO_FLUSH_REG 0x8c
|
|
#define SCB_READ_FIFO_REG 0x94
|
|
#define SCB_CLEAR_REG 0x98
|
|
|
|
/* SCB_CONTROL_REG bits */
|
|
|
|
#define SCB_CONTROL_CLK_ENABLE 0x1e0
|
|
#define SCB_CONTROL_TRANSACTION_HALT 0x200
|
|
|
|
#define FIFO_READ_FULL BIT(0)
|
|
#define FIFO_READ_EMPTY BIT(1)
|
|
#define FIFO_WRITE_FULL BIT(2)
|
|
#define FIFO_WRITE_EMPTY BIT(3)
|
|
|
|
/* SCB_CLK_SET_REG bits */
|
|
#define SCB_FILT_DISABLE BIT(31)
|
|
#define SCB_FILT_BYPASS BIT(30)
|
|
#define SCB_FILT_INC_MASK 0x7f
|
|
#define SCB_FILT_INC_SHIFT 16
|
|
#define SCB_INC_MASK 0x7f
|
|
#define SCB_INC_SHIFT 8
|
|
|
|
/* SCB_INT_*_REG bits */
|
|
|
|
#define INT_BUS_INACTIVE BIT(0)
|
|
#define INT_UNEXPECTED_START BIT(1)
|
|
#define INT_SCLK_LOW_TIMEOUT BIT(2)
|
|
#define INT_SDAT_LOW_TIMEOUT BIT(3)
|
|
#define INT_WRITE_ACK_ERR BIT(4)
|
|
#define INT_ADDR_ACK_ERR BIT(5)
|
|
#define INT_FIFO_FULL BIT(9)
|
|
#define INT_FIFO_FILLING BIT(10)
|
|
#define INT_FIFO_EMPTY BIT(11)
|
|
#define INT_FIFO_EMPTYING BIT(12)
|
|
#define INT_TRANSACTION_DONE BIT(15)
|
|
#define INT_SLAVE_EVENT BIT(16)
|
|
#define INT_MASTER_HALTED BIT(17)
|
|
#define INT_TIMING BIT(18)
|
|
#define INT_STOP_DETECTED BIT(19)
|
|
|
|
#define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
|
|
|
|
/* Level interrupts need clearing after handling instead of before */
|
|
#define INT_LEVEL 0x01e00
|
|
|
|
/* Don't allow any interrupts while the clock may be off */
|
|
#define INT_ENABLE_MASK_INACTIVE 0x00000
|
|
|
|
/* Interrupt masks for the different driver modes */
|
|
|
|
#define INT_ENABLE_MASK_RAW INT_TIMING
|
|
|
|
#define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
|
|
INT_SLAVE_EVENT | \
|
|
INT_ADDR_ACK_ERR | \
|
|
INT_WRITE_ACK_ERR)
|
|
|
|
#define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
|
|
INT_ADDR_ACK_ERR | \
|
|
INT_WRITE_ACK_ERR | \
|
|
INT_FIFO_FULL | \
|
|
INT_FIFO_FILLING | \
|
|
INT_FIFO_EMPTY | \
|
|
INT_MASTER_HALTED | \
|
|
INT_STOP_DETECTED)
|
|
|
|
#define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
|
|
INT_ADDR_ACK_ERR | \
|
|
INT_WRITE_ACK_ERR)
|
|
|
|
/* SCB_STATUS_REG fields */
|
|
|
|
#define LINESTAT_SCLK_LINE_STATUS BIT(0)
|
|
#define LINESTAT_SCLK_EN BIT(1)
|
|
#define LINESTAT_SDAT_LINE_STATUS BIT(2)
|
|
#define LINESTAT_SDAT_EN BIT(3)
|
|
#define LINESTAT_DET_START_STATUS BIT(4)
|
|
#define LINESTAT_DET_STOP_STATUS BIT(5)
|
|
#define LINESTAT_DET_ACK_STATUS BIT(6)
|
|
#define LINESTAT_DET_NACK_STATUS BIT(7)
|
|
#define LINESTAT_BUS_IDLE BIT(8)
|
|
#define LINESTAT_T_DONE_STATUS BIT(9)
|
|
#define LINESTAT_SCLK_OUT_STATUS BIT(10)
|
|
#define LINESTAT_SDAT_OUT_STATUS BIT(11)
|
|
#define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
|
|
#define LINESTAT_START_BIT_DET BIT(13)
|
|
#define LINESTAT_STOP_BIT_DET BIT(14)
|
|
#define LINESTAT_ACK_DET BIT(15)
|
|
#define LINESTAT_NACK_DET BIT(16)
|
|
#define LINESTAT_INPUT_HELD_V BIT(17)
|
|
#define LINESTAT_ABORT_DET BIT(18)
|
|
#define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
|
|
#define LINESTAT_INPUT_DATA 0xff000000
|
|
#define LINESTAT_INPUT_DATA_SHIFT 24
|
|
|
|
#define LINESTAT_CLEAR_SHIFT 13
|
|
#define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
|
|
|
|
/* SCB_OVERRIDE_REG fields */
|
|
|
|
#define OVERRIDE_SCLK_OVR BIT(0)
|
|
#define OVERRIDE_SCLKEN_OVR BIT(1)
|
|
#define OVERRIDE_SDAT_OVR BIT(2)
|
|
#define OVERRIDE_SDATEN_OVR BIT(3)
|
|
#define OVERRIDE_MASTER BIT(9)
|
|
#define OVERRIDE_LINE_OVR_EN BIT(10)
|
|
#define OVERRIDE_DIRECT BIT(11)
|
|
#define OVERRIDE_CMD_SHIFT 4
|
|
#define OVERRIDE_CMD_MASK 0x1f
|
|
#define OVERRIDE_DATA_SHIFT 24
|
|
|
|
#define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
|
|
OVERRIDE_SCLKEN_OVR)
|
|
#define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
|
|
OVERRIDE_SCLKEN_OVR | \
|
|
OVERRIDE_SCLK_OVR)
|
|
#define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
|
|
OVERRIDE_SDATEN_OVR)
|
|
#define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
|
|
OVERRIDE_SDATEN_OVR | \
|
|
OVERRIDE_SDAT_OVR)
|
|
|
|
/* OVERRIDE_CMD values */
|
|
|
|
#define CMD_PAUSE 0x00
|
|
#define CMD_GEN_DATA 0x01
|
|
#define CMD_GEN_START 0x02
|
|
#define CMD_GEN_STOP 0x03
|
|
#define CMD_GEN_ACK 0x04
|
|
#define CMD_GEN_NACK 0x05
|
|
#define CMD_RET_DATA 0x08
|
|
#define CMD_RET_ACK 0x09
|
|
|
|
/* Fixed timing values */
|
|
|
|
#define TIMEOUT_TBI 0x0
|
|
#define TIMEOUT_TSL 0xffff
|
|
#define TIMEOUT_TDL 0x0
|
|
|
|
/* Transaction timeout */
|
|
|
|
#define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
|
|
|
|
/*
|
|
* Worst incs are 1 (innacurate) and 16*256 (irregular).
|
|
* So a sensible inc is the logarithmic mean: 64 (2^6), which is
|
|
* in the middle of the valid range (0-127).
|
|
*/
|
|
#define SCB_OPT_INC 64
|
|
|
|
/* Setup the clock enable filtering for 25 ns */
|
|
#define SCB_FILT_GLITCH 25
|
|
|
|
/*
|
|
* Bits to return from interrupt handler functions for different modes.
|
|
* This delays completion until we've finished with the registers, so that the
|
|
* function waiting for completion can safely disable the clock to save power.
|
|
*/
|
|
#define ISR_COMPLETE_M BIT(31)
|
|
#define ISR_FATAL_M BIT(30)
|
|
#define ISR_WAITSTOP BIT(29)
|
|
#define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
|
|
#define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
|
|
#define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
|
|
|
|
enum img_i2c_mode {
|
|
MODE_INACTIVE,
|
|
MODE_RAW,
|
|
MODE_ATOMIC,
|
|
MODE_AUTOMATIC,
|
|
MODE_SEQUENCE,
|
|
MODE_FATAL,
|
|
MODE_WAITSTOP,
|
|
MODE_SUSPEND,
|
|
};
|
|
|
|
/* Timing parameters for i2c modes (in ns) */
|
|
struct img_i2c_timings {
|
|
const char *name;
|
|
unsigned int max_bitrate;
|
|
unsigned int tckh, tckl, tsdh, tsdl;
|
|
unsigned int tp2s, tpl, tph;
|
|
};
|
|
|
|
/* The timings array must be ordered from slower to faster */
|
|
static struct img_i2c_timings timings[] = {
|
|
/* Standard mode */
|
|
{
|
|
.name = "standard",
|
|
.max_bitrate = 100000,
|
|
.tckh = 4000,
|
|
.tckl = 4700,
|
|
.tsdh = 4700,
|
|
.tsdl = 8700,
|
|
.tp2s = 4700,
|
|
.tpl = 4700,
|
|
.tph = 4000,
|
|
},
|
|
/* Fast mode */
|
|
{
|
|
.name = "fast",
|
|
.max_bitrate = 400000,
|
|
.tckh = 600,
|
|
.tckl = 1300,
|
|
.tsdh = 600,
|
|
.tsdl = 1200,
|
|
.tp2s = 1300,
|
|
.tpl = 600,
|
|
.tph = 600,
|
|
},
|
|
};
|
|
|
|
/* Reset dance */
|
|
static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
|
|
CMD_GEN_DATA, 0xff,
|
|
CMD_RET_ACK,
|
|
CMD_GEN_START,
|
|
CMD_GEN_STOP,
|
|
0 };
|
|
/* Just issue a stop (after an abort condition) */
|
|
static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
|
|
0 };
|
|
|
|
/* We're interested in different interrupts depending on the mode */
|
|
static unsigned int img_i2c_int_enable_by_mode[] = {
|
|
[MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
|
|
[MODE_RAW] = INT_ENABLE_MASK_RAW,
|
|
[MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
|
|
[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
|
|
[MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
|
|
[MODE_FATAL] = 0,
|
|
[MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
|
|
[MODE_SUSPEND] = 0,
|
|
};
|
|
|
|
/* Atomic command names */
|
|
static const char * const img_i2c_atomic_cmd_names[] = {
|
|
[CMD_PAUSE] = "PAUSE",
|
|
[CMD_GEN_DATA] = "GEN_DATA",
|
|
[CMD_GEN_START] = "GEN_START",
|
|
[CMD_GEN_STOP] = "GEN_STOP",
|
|
[CMD_GEN_ACK] = "GEN_ACK",
|
|
[CMD_GEN_NACK] = "GEN_NACK",
|
|
[CMD_RET_DATA] = "RET_DATA",
|
|
[CMD_RET_ACK] = "RET_ACK",
|
|
};
|
|
|
|
struct img_i2c {
|
|
struct i2c_adapter adap;
|
|
|
|
void __iomem *base;
|
|
|
|
/*
|
|
* The scb core clock is used to get the input frequency, and to disable
|
|
* it after every set of transactions to save some power.
|
|
*/
|
|
struct clk *scb_clk, *sys_clk;
|
|
unsigned int bitrate;
|
|
bool need_wr_rd_fence;
|
|
|
|
/* state */
|
|
struct completion msg_complete;
|
|
spinlock_t lock; /* lock before doing anything with the state */
|
|
struct i2c_msg msg;
|
|
|
|
/* After the last transaction, wait for a stop bit */
|
|
bool last_msg;
|
|
int msg_status;
|
|
|
|
enum img_i2c_mode mode;
|
|
u32 int_enable; /* depends on mode */
|
|
u32 line_status; /* line status over command */
|
|
|
|
/*
|
|
* To avoid slave event interrupts in automatic mode, use a timer to
|
|
* poll the abort condition if we don't get an interrupt for too long.
|
|
*/
|
|
struct timer_list check_timer;
|
|
bool t_halt;
|
|
|
|
/* atomic mode state */
|
|
bool at_t_done;
|
|
bool at_slave_event;
|
|
int at_cur_cmd;
|
|
u8 at_cur_data;
|
|
|
|
/* Sequence: either reset or stop. See img_i2c_sequence. */
|
|
u8 *seq;
|
|
|
|
/* raw mode */
|
|
unsigned int raw_timeout;
|
|
};
|
|
|
|
static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
|
|
{
|
|
writel(value, i2c->base + offset);
|
|
}
|
|
|
|
static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
|
|
{
|
|
return readl(i2c->base + offset);
|
|
}
|
|
|
|
/*
|
|
* The code to read from the master read fifo, and write to the master
|
|
* write fifo, checks a bit in an SCB register before every byte to
|
|
* ensure that the fifo is not full (write fifo) or empty (read fifo).
|
|
* Due to clock domain crossing inside the SCB block the updated value
|
|
* of this bit is only visible after 2 cycles.
|
|
*
|
|
* The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
|
|
* revision register), and it's called after reading from or writing to the
|
|
* fifos to ensure that subsequent reads of the fifo status bits do not read
|
|
* stale values.
|
|
*/
|
|
static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
|
|
{
|
|
if (i2c->need_wr_rd_fence) {
|
|
img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
|
|
img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
|
|
}
|
|
}
|
|
|
|
static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
|
|
{
|
|
i2c->mode = mode;
|
|
i2c->int_enable = img_i2c_int_enable_by_mode[mode];
|
|
i2c->line_status = 0;
|
|
}
|
|
|
|
static void img_i2c_raw_op(struct img_i2c *i2c)
|
|
{
|
|
i2c->raw_timeout = 0;
|
|
img_i2c_writel(i2c, SCB_OVERRIDE_REG,
|
|
OVERRIDE_SCLKEN_OVR |
|
|
OVERRIDE_SDATEN_OVR |
|
|
OVERRIDE_MASTER |
|
|
OVERRIDE_LINE_OVR_EN |
|
|
OVERRIDE_DIRECT |
|
|
((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
|
|
(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
|
|
}
|
|
|
|
static const char *img_i2c_atomic_op_name(unsigned int cmd)
|
|
{
|
|
if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
|
|
return "UNKNOWN";
|
|
return img_i2c_atomic_cmd_names[cmd];
|
|
}
|
|
|
|
/* Send a single atomic mode command to the hardware */
|
|
static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
|
|
{
|
|
i2c->at_cur_cmd = cmd;
|
|
i2c->at_cur_data = data;
|
|
|
|
/* work around lack of data setup time when generating data */
|
|
if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
|
|
u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
|
|
|
|
if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
|
|
/* hold the data line down for a moment */
|
|
img_i2c_switch_mode(i2c, MODE_RAW);
|
|
img_i2c_raw_op(i2c);
|
|
return;
|
|
}
|
|
}
|
|
|
|
dev_dbg(i2c->adap.dev.parent,
|
|
"atomic cmd=%s (%d) data=%#x\n",
|
|
img_i2c_atomic_op_name(cmd), cmd, data);
|
|
i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
|
|
i2c->at_slave_event = false;
|
|
i2c->line_status = 0;
|
|
|
|
img_i2c_writel(i2c, SCB_OVERRIDE_REG,
|
|
((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
|
|
OVERRIDE_MASTER |
|
|
OVERRIDE_DIRECT |
|
|
(data << OVERRIDE_DATA_SHIFT));
|
|
}
|
|
|
|
/* Start a transaction in atomic mode */
|
|
static void img_i2c_atomic_start(struct img_i2c *i2c)
|
|
{
|
|
img_i2c_switch_mode(i2c, MODE_ATOMIC);
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
|
|
img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
|
|
}
|
|
|
|
static void img_i2c_soft_reset(struct img_i2c *i2c)
|
|
{
|
|
i2c->t_halt = false;
|
|
img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
|
|
img_i2c_writel(i2c, SCB_CONTROL_REG,
|
|
SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
|
|
}
|
|
|
|
/*
|
|
* Enable or release transaction halt for control of repeated starts.
|
|
* In version 3.3 of the IP when transaction halt is set, an interrupt
|
|
* will be generated after each byte of a transfer instead of after
|
|
* every transfer but before the stop bit.
|
|
* Due to this behaviour we have to be careful that every time we
|
|
* release the transaction halt we have to re-enable it straight away
|
|
* so that we only process a single byte, not doing so will result in
|
|
* all remaining bytes been processed and a stop bit being issued,
|
|
* which will prevent us having a repeated start.
|
|
*/
|
|
static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
|
|
{
|
|
u32 val;
|
|
|
|
if (i2c->t_halt == t_halt)
|
|
return;
|
|
i2c->t_halt = t_halt;
|
|
val = img_i2c_readl(i2c, SCB_CONTROL_REG);
|
|
if (t_halt)
|
|
val |= SCB_CONTROL_TRANSACTION_HALT;
|
|
else
|
|
val &= ~SCB_CONTROL_TRANSACTION_HALT;
|
|
img_i2c_writel(i2c, SCB_CONTROL_REG, val);
|
|
}
|
|
|
|
/* Drain data from the FIFO into the buffer (automatic mode) */
|
|
static void img_i2c_read_fifo(struct img_i2c *i2c)
|
|
{
|
|
while (i2c->msg.len) {
|
|
u32 fifo_status;
|
|
u8 data;
|
|
|
|
img_i2c_wr_rd_fence(i2c);
|
|
fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
|
|
if (fifo_status & FIFO_READ_EMPTY)
|
|
break;
|
|
|
|
data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
|
|
*i2c->msg.buf = data;
|
|
|
|
img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
|
|
i2c->msg.len--;
|
|
i2c->msg.buf++;
|
|
}
|
|
}
|
|
|
|
/* Fill the FIFO with data from the buffer (automatic mode) */
|
|
static void img_i2c_write_fifo(struct img_i2c *i2c)
|
|
{
|
|
while (i2c->msg.len) {
|
|
u32 fifo_status;
|
|
|
|
img_i2c_wr_rd_fence(i2c);
|
|
fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
|
|
if (fifo_status & FIFO_WRITE_FULL)
|
|
break;
|
|
|
|
img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
|
|
i2c->msg.len--;
|
|
i2c->msg.buf++;
|
|
}
|
|
|
|
/* Disable fifo emptying interrupt if nothing more to write */
|
|
if (!i2c->msg.len)
|
|
i2c->int_enable &= ~INT_FIFO_EMPTYING;
|
|
}
|
|
|
|
/* Start a read transaction in automatic mode */
|
|
static void img_i2c_read(struct img_i2c *i2c)
|
|
{
|
|
img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
|
|
if (!i2c->last_msg)
|
|
i2c->int_enable |= INT_SLAVE_EVENT;
|
|
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
|
|
img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
|
|
img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
|
|
|
|
mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
|
|
}
|
|
|
|
/* Start a write transaction in automatic mode */
|
|
static void img_i2c_write(struct img_i2c *i2c)
|
|
{
|
|
img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
|
|
if (!i2c->last_msg)
|
|
i2c->int_enable |= INT_SLAVE_EVENT;
|
|
|
|
img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
|
|
img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
|
|
|
|
mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
|
|
img_i2c_write_fifo(i2c);
|
|
|
|
/* img_i2c_write_fifo() may modify int_enable */
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
|
|
}
|
|
|
|
/*
|
|
* Indicate that the transaction is complete. This is called from the
|
|
* ISR to wake up the waiting thread, after which the ISR must not
|
|
* access any more SCB registers.
|
|
*/
|
|
static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
|
|
{
|
|
img_i2c_switch_mode(i2c, MODE_INACTIVE);
|
|
if (status) {
|
|
i2c->msg_status = status;
|
|
img_i2c_transaction_halt(i2c, false);
|
|
}
|
|
complete(&i2c->msg_complete);
|
|
}
|
|
|
|
static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
|
|
u32 int_status, u32 line_status)
|
|
{
|
|
/* Stay in raw mode for this, so we don't just loop infinitely */
|
|
img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
|
|
img_i2c_switch_mode(i2c, MODE_ATOMIC);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
|
|
u32 line_status)
|
|
{
|
|
if (int_status & INT_TIMING) {
|
|
if (i2c->raw_timeout == 0)
|
|
return img_i2c_raw_atomic_delay_handler(i2c,
|
|
int_status, line_status);
|
|
--i2c->raw_timeout;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
|
|
{
|
|
static const unsigned int continue_bits[] = {
|
|
[CMD_GEN_START] = LINESTAT_START_BIT_DET,
|
|
[CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
|
|
[CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
|
|
[CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
|
|
[CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
|
|
};
|
|
int next_cmd = -1;
|
|
u8 next_data = 0x00;
|
|
|
|
if (int_status & INT_SLAVE_EVENT)
|
|
i2c->at_slave_event = true;
|
|
if (int_status & INT_TRANSACTION_DONE)
|
|
i2c->at_t_done = true;
|
|
|
|
if (!i2c->at_slave_event || !i2c->at_t_done)
|
|
return 0;
|
|
|
|
/* wait if no continue bits are set */
|
|
if (i2c->at_cur_cmd >= 0 &&
|
|
i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
|
|
unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
|
|
|
|
if (cont_bits) {
|
|
cont_bits |= LINESTAT_ABORT_DET;
|
|
if (!(i2c->line_status & cont_bits))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* follow the sequence of commands in i2c->seq */
|
|
next_cmd = *i2c->seq;
|
|
/* stop on a nil */
|
|
if (!next_cmd) {
|
|
img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
|
|
return ISR_COMPLETE(0);
|
|
}
|
|
/* when generating data, the next byte is the data */
|
|
if (next_cmd == CMD_GEN_DATA) {
|
|
++i2c->seq;
|
|
next_data = *i2c->seq;
|
|
}
|
|
++i2c->seq;
|
|
img_i2c_atomic_op(i2c, next_cmd, next_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void img_i2c_reset_start(struct img_i2c *i2c)
|
|
{
|
|
/* Initiate the magic dance */
|
|
img_i2c_switch_mode(i2c, MODE_SEQUENCE);
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
|
|
i2c->seq = img_i2c_reset_seq;
|
|
i2c->at_slave_event = true;
|
|
i2c->at_t_done = true;
|
|
i2c->at_cur_cmd = -1;
|
|
|
|
/* img_i2c_reset_seq isn't empty so the following won't fail */
|
|
img_i2c_sequence(i2c, 0);
|
|
}
|
|
|
|
static void img_i2c_stop_start(struct img_i2c *i2c)
|
|
{
|
|
/* Initiate a stop bit sequence */
|
|
img_i2c_switch_mode(i2c, MODE_SEQUENCE);
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
|
|
i2c->seq = img_i2c_stop_seq;
|
|
i2c->at_slave_event = true;
|
|
i2c->at_t_done = true;
|
|
i2c->at_cur_cmd = -1;
|
|
|
|
/* img_i2c_stop_seq isn't empty so the following won't fail */
|
|
img_i2c_sequence(i2c, 0);
|
|
}
|
|
|
|
static unsigned int img_i2c_atomic(struct img_i2c *i2c,
|
|
u32 int_status,
|
|
u32 line_status)
|
|
{
|
|
int next_cmd = -1;
|
|
u8 next_data = 0x00;
|
|
|
|
if (int_status & INT_SLAVE_EVENT)
|
|
i2c->at_slave_event = true;
|
|
if (int_status & INT_TRANSACTION_DONE)
|
|
i2c->at_t_done = true;
|
|
|
|
if (!i2c->at_slave_event || !i2c->at_t_done)
|
|
goto next_atomic_cmd;
|
|
if (i2c->line_status & LINESTAT_ABORT_DET) {
|
|
dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
|
|
next_cmd = CMD_GEN_STOP;
|
|
i2c->msg_status = -EIO;
|
|
goto next_atomic_cmd;
|
|
}
|
|
|
|
/* i2c->at_cur_cmd may have completed */
|
|
switch (i2c->at_cur_cmd) {
|
|
case CMD_GEN_START:
|
|
next_cmd = CMD_GEN_DATA;
|
|
next_data = (i2c->msg.addr << 1);
|
|
if (i2c->msg.flags & I2C_M_RD)
|
|
next_data |= 0x1;
|
|
break;
|
|
case CMD_GEN_DATA:
|
|
if (i2c->line_status & LINESTAT_INPUT_HELD_V)
|
|
next_cmd = CMD_RET_ACK;
|
|
break;
|
|
case CMD_RET_ACK:
|
|
if (i2c->line_status & LINESTAT_ACK_DET ||
|
|
(i2c->line_status & LINESTAT_NACK_DET &&
|
|
i2c->msg.flags & I2C_M_IGNORE_NAK)) {
|
|
if (i2c->msg.len == 0) {
|
|
next_cmd = CMD_GEN_STOP;
|
|
} else if (i2c->msg.flags & I2C_M_RD) {
|
|
next_cmd = CMD_RET_DATA;
|
|
} else {
|
|
next_cmd = CMD_GEN_DATA;
|
|
next_data = *i2c->msg.buf;
|
|
--i2c->msg.len;
|
|
++i2c->msg.buf;
|
|
}
|
|
} else if (i2c->line_status & LINESTAT_NACK_DET) {
|
|
i2c->msg_status = -EIO;
|
|
next_cmd = CMD_GEN_STOP;
|
|
}
|
|
break;
|
|
case CMD_RET_DATA:
|
|
if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
|
|
*i2c->msg.buf = (i2c->line_status &
|
|
LINESTAT_INPUT_DATA)
|
|
>> LINESTAT_INPUT_DATA_SHIFT;
|
|
--i2c->msg.len;
|
|
++i2c->msg.buf;
|
|
if (i2c->msg.len)
|
|
next_cmd = CMD_GEN_ACK;
|
|
else
|
|
next_cmd = CMD_GEN_NACK;
|
|
}
|
|
break;
|
|
case CMD_GEN_ACK:
|
|
if (i2c->line_status & LINESTAT_ACK_DET) {
|
|
next_cmd = CMD_RET_DATA;
|
|
} else {
|
|
i2c->msg_status = -EIO;
|
|
next_cmd = CMD_GEN_STOP;
|
|
}
|
|
break;
|
|
case CMD_GEN_NACK:
|
|
next_cmd = CMD_GEN_STOP;
|
|
break;
|
|
case CMD_GEN_STOP:
|
|
img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
|
|
return ISR_COMPLETE(0);
|
|
default:
|
|
dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
|
|
i2c->at_cur_cmd);
|
|
i2c->msg_status = -EIO;
|
|
next_cmd = CMD_GEN_STOP;
|
|
break;
|
|
}
|
|
|
|
next_atomic_cmd:
|
|
if (next_cmd != -1) {
|
|
/* don't actually stop unless we're the last transaction */
|
|
if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
|
|
!i2c->last_msg)
|
|
return ISR_COMPLETE(0);
|
|
img_i2c_atomic_op(i2c, next_cmd, next_data);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Timer function to check if something has gone wrong in automatic mode (so we
|
|
* don't have to handle so many interrupts just to catch an exception).
|
|
*/
|
|
static void img_i2c_check_timer(unsigned long arg)
|
|
{
|
|
struct img_i2c *i2c = (struct img_i2c *)arg;
|
|
unsigned long flags;
|
|
unsigned int line_status;
|
|
|
|
spin_lock_irqsave(&i2c->lock, flags);
|
|
line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
|
|
|
|
/* check for an abort condition */
|
|
if (line_status & LINESTAT_ABORT_DET) {
|
|
dev_dbg(i2c->adap.dev.parent,
|
|
"abort condition detected by check timer\n");
|
|
/* enable slave event interrupt mask to trigger irq */
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG,
|
|
i2c->int_enable | INT_SLAVE_EVENT);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&i2c->lock, flags);
|
|
}
|
|
|
|
static unsigned int img_i2c_auto(struct img_i2c *i2c,
|
|
unsigned int int_status,
|
|
unsigned int line_status)
|
|
{
|
|
if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
|
|
return ISR_COMPLETE(EIO);
|
|
|
|
if (line_status & LINESTAT_ABORT_DET) {
|
|
dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
|
|
/* empty the read fifo */
|
|
if ((i2c->msg.flags & I2C_M_RD) &&
|
|
(int_status & INT_FIFO_FULL_FILLING))
|
|
img_i2c_read_fifo(i2c);
|
|
/* use atomic mode and try to force a stop bit */
|
|
i2c->msg_status = -EIO;
|
|
img_i2c_stop_start(i2c);
|
|
return 0;
|
|
}
|
|
|
|
/* Enable transaction halt on start bit */
|
|
if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
|
|
img_i2c_transaction_halt(i2c, !i2c->last_msg);
|
|
/* we're no longer interested in the slave event */
|
|
i2c->int_enable &= ~INT_SLAVE_EVENT;
|
|
}
|
|
|
|
mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
|
|
|
|
if (int_status & INT_STOP_DETECTED) {
|
|
/* Drain remaining data in FIFO and complete transaction */
|
|
if (i2c->msg.flags & I2C_M_RD)
|
|
img_i2c_read_fifo(i2c);
|
|
return ISR_COMPLETE(0);
|
|
}
|
|
|
|
if (i2c->msg.flags & I2C_M_RD) {
|
|
if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
|
|
img_i2c_read_fifo(i2c);
|
|
if (i2c->msg.len == 0)
|
|
return ISR_WAITSTOP;
|
|
}
|
|
} else {
|
|
if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
|
|
if ((int_status & INT_FIFO_EMPTY) &&
|
|
i2c->msg.len == 0)
|
|
return ISR_WAITSTOP;
|
|
img_i2c_write_fifo(i2c);
|
|
}
|
|
}
|
|
if (int_status & INT_MASTER_HALTED) {
|
|
/*
|
|
* Release and then enable transaction halt, to
|
|
* allow only a single byte to proceed.
|
|
*/
|
|
img_i2c_transaction_halt(i2c, false);
|
|
img_i2c_transaction_halt(i2c, !i2c->last_msg);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t img_i2c_isr(int irq, void *dev_id)
|
|
{
|
|
struct img_i2c *i2c = (struct img_i2c *)dev_id;
|
|
u32 int_status, line_status;
|
|
/* We handle transaction completion AFTER accessing registers */
|
|
unsigned int hret;
|
|
|
|
/* Read interrupt status register. */
|
|
int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
|
|
/* Clear detected interrupts. */
|
|
img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
|
|
|
|
/*
|
|
* Read line status and clear it until it actually is clear. We have
|
|
* to be careful not to lose any line status bits that get latched.
|
|
*/
|
|
line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
|
|
if (line_status & LINESTAT_LATCHED) {
|
|
img_i2c_writel(i2c, SCB_CLEAR_REG,
|
|
(line_status & LINESTAT_LATCHED)
|
|
>> LINESTAT_CLEAR_SHIFT);
|
|
img_i2c_wr_rd_fence(i2c);
|
|
}
|
|
|
|
spin_lock(&i2c->lock);
|
|
|
|
/* Keep track of line status bits received */
|
|
i2c->line_status &= ~LINESTAT_INPUT_DATA;
|
|
i2c->line_status |= line_status;
|
|
|
|
/*
|
|
* Certain interrupts indicate that sclk low timeout is not
|
|
* a problem. If any of these are set, just continue.
|
|
*/
|
|
if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
|
|
!(int_status & (INT_SLAVE_EVENT |
|
|
INT_FIFO_EMPTY |
|
|
INT_FIFO_FULL))) {
|
|
dev_crit(i2c->adap.dev.parent,
|
|
"fatal: clock low timeout occurred %s addr 0x%02x\n",
|
|
(i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
|
|
i2c->msg.addr);
|
|
hret = ISR_FATAL(EIO);
|
|
goto out;
|
|
}
|
|
|
|
if (i2c->mode == MODE_ATOMIC)
|
|
hret = img_i2c_atomic(i2c, int_status, line_status);
|
|
else if (i2c->mode == MODE_AUTOMATIC)
|
|
hret = img_i2c_auto(i2c, int_status, line_status);
|
|
else if (i2c->mode == MODE_SEQUENCE)
|
|
hret = img_i2c_sequence(i2c, int_status);
|
|
else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
|
|
(line_status & LINESTAT_STOP_BIT_DET))
|
|
hret = ISR_COMPLETE(0);
|
|
else if (i2c->mode == MODE_RAW)
|
|
hret = img_i2c_raw(i2c, int_status, line_status);
|
|
else
|
|
hret = 0;
|
|
|
|
/* Clear detected level interrupts. */
|
|
img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
|
|
|
|
out:
|
|
if (hret & ISR_WAITSTOP) {
|
|
/*
|
|
* Only wait for stop on last message.
|
|
* Also we may already have detected the stop bit.
|
|
*/
|
|
if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
|
|
hret = ISR_COMPLETE(0);
|
|
else
|
|
img_i2c_switch_mode(i2c, MODE_WAITSTOP);
|
|
}
|
|
|
|
/* now we've finished using regs, handle transaction completion */
|
|
if (hret & ISR_COMPLETE_M) {
|
|
int status = -(hret & ISR_STATUS_M);
|
|
|
|
img_i2c_complete_transaction(i2c, status);
|
|
if (hret & ISR_FATAL_M)
|
|
img_i2c_switch_mode(i2c, MODE_FATAL);
|
|
}
|
|
|
|
/* Enable interrupts (int_enable may be altered by changing mode) */
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
|
|
|
|
spin_unlock(&i2c->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Force a bus reset sequence and wait for it to complete */
|
|
static int img_i2c_reset_bus(struct img_i2c *i2c)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long time_left;
|
|
|
|
spin_lock_irqsave(&i2c->lock, flags);
|
|
reinit_completion(&i2c->msg_complete);
|
|
img_i2c_reset_start(i2c);
|
|
spin_unlock_irqrestore(&i2c->lock, flags);
|
|
|
|
time_left = wait_for_completion_timeout(&i2c->msg_complete,
|
|
IMG_I2C_TIMEOUT);
|
|
if (time_left == 0)
|
|
return -ETIMEDOUT;
|
|
return 0;
|
|
}
|
|
|
|
static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
|
|
int num)
|
|
{
|
|
struct img_i2c *i2c = i2c_get_adapdata(adap);
|
|
bool atomic = false;
|
|
int i, ret;
|
|
unsigned long time_left;
|
|
|
|
if (i2c->mode == MODE_SUSPEND) {
|
|
WARN(1, "refusing to service transaction in suspended state\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (i2c->mode == MODE_FATAL)
|
|
return -EIO;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
/*
|
|
* 0 byte reads are not possible because the slave could try
|
|
* and pull the data line low, preventing a stop bit.
|
|
*/
|
|
if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
|
|
return -EIO;
|
|
/*
|
|
* 0 byte writes are possible and used for probing, but we
|
|
* cannot do them in automatic mode, so use atomic mode
|
|
* instead.
|
|
*
|
|
* Also, the I2C_M_IGNORE_NAK mode can only be implemented
|
|
* in atomic mode.
|
|
*/
|
|
if (!msgs[i].len ||
|
|
(msgs[i].flags & I2C_M_IGNORE_NAK))
|
|
atomic = true;
|
|
}
|
|
|
|
ret = clk_prepare_enable(i2c->scb_clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
struct i2c_msg *msg = &msgs[i];
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i2c->lock, flags);
|
|
|
|
/*
|
|
* Make a copy of the message struct. We mustn't modify the
|
|
* original or we'll confuse drivers and i2c-dev.
|
|
*/
|
|
i2c->msg = *msg;
|
|
i2c->msg_status = 0;
|
|
|
|
/*
|
|
* After the last message we must have waited for a stop bit.
|
|
* Not waiting can cause problems when the clock is disabled
|
|
* before the stop bit is sent, and the linux I2C interface
|
|
* requires separate transfers not to joined with repeated
|
|
* start.
|
|
*/
|
|
i2c->last_msg = (i == num - 1);
|
|
reinit_completion(&i2c->msg_complete);
|
|
|
|
/*
|
|
* Clear line status and all interrupts before starting a
|
|
* transfer, as we may have unserviced interrupts from
|
|
* previous transfers that might be handled in the context
|
|
* of the new transfer.
|
|
*/
|
|
img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
|
|
img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
|
|
|
|
if (atomic) {
|
|
img_i2c_atomic_start(i2c);
|
|
} else {
|
|
/*
|
|
* Enable transaction halt if not the last message in
|
|
* the queue so that we can control repeated starts.
|
|
*/
|
|
img_i2c_transaction_halt(i2c, !i2c->last_msg);
|
|
|
|
if (msg->flags & I2C_M_RD)
|
|
img_i2c_read(i2c);
|
|
else
|
|
img_i2c_write(i2c);
|
|
|
|
/*
|
|
* Release and then enable transaction halt, to
|
|
* allow only a single byte to proceed.
|
|
* This doesn't have an effect on the initial transfer
|
|
* but will allow the following transfers to start
|
|
* processing if the previous transfer was marked as
|
|
* complete while the i2c block was halted.
|
|
*/
|
|
img_i2c_transaction_halt(i2c, false);
|
|
img_i2c_transaction_halt(i2c, !i2c->last_msg);
|
|
}
|
|
spin_unlock_irqrestore(&i2c->lock, flags);
|
|
|
|
time_left = wait_for_completion_timeout(&i2c->msg_complete,
|
|
IMG_I2C_TIMEOUT);
|
|
del_timer_sync(&i2c->check_timer);
|
|
|
|
if (time_left == 0) {
|
|
dev_err(adap->dev.parent, "i2c transfer timed out\n");
|
|
i2c->msg_status = -ETIMEDOUT;
|
|
break;
|
|
}
|
|
|
|
if (i2c->msg_status)
|
|
break;
|
|
}
|
|
|
|
clk_disable_unprepare(i2c->scb_clk);
|
|
|
|
return i2c->msg_status ? i2c->msg_status : num;
|
|
}
|
|
|
|
static u32 img_i2c_func(struct i2c_adapter *adap)
|
|
{
|
|
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
|
}
|
|
|
|
static const struct i2c_algorithm img_i2c_algo = {
|
|
.master_xfer = img_i2c_xfer,
|
|
.functionality = img_i2c_func,
|
|
};
|
|
|
|
static int img_i2c_init(struct img_i2c *i2c)
|
|
{
|
|
unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
|
|
unsigned int i, ret, data, prescale, inc, int_bitrate, filt;
|
|
struct img_i2c_timings timing;
|
|
u32 rev;
|
|
|
|
ret = clk_prepare_enable(i2c->scb_clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
|
|
if ((rev & 0x00ffffff) < 0x00020200) {
|
|
dev_info(i2c->adap.dev.parent,
|
|
"Unknown hardware revision (%d.%d.%d.%d)\n",
|
|
(rev >> 24) & 0xff, (rev >> 16) & 0xff,
|
|
(rev >> 8) & 0xff, rev & 0xff);
|
|
clk_disable_unprepare(i2c->scb_clk);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Fencing enabled by default. */
|
|
i2c->need_wr_rd_fence = true;
|
|
|
|
/* Determine what mode we're in from the bitrate */
|
|
timing = timings[0];
|
|
for (i = 0; i < ARRAY_SIZE(timings); i++) {
|
|
if (i2c->bitrate <= timings[i].max_bitrate) {
|
|
timing = timings[i];
|
|
break;
|
|
}
|
|
}
|
|
if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
|
|
dev_warn(i2c->adap.dev.parent,
|
|
"requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
|
|
i2c->bitrate,
|
|
timings[ARRAY_SIZE(timings) - 1].max_bitrate);
|
|
timing = timings[ARRAY_SIZE(timings) - 1];
|
|
i2c->bitrate = timing.max_bitrate;
|
|
}
|
|
|
|
bitrate_khz = i2c->bitrate / 1000;
|
|
clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
|
|
|
|
/* Find the prescale that would give us that inc (approx delay = 0) */
|
|
prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
|
|
prescale = clamp_t(unsigned int, prescale, 1, 8);
|
|
clk_khz /= prescale;
|
|
|
|
/* Setup the clock increment value */
|
|
inc = (256 * 16 * bitrate_khz) / clk_khz;
|
|
|
|
/*
|
|
* The clock generation logic allows to filter glitches on the bus.
|
|
* This filter is able to remove bus glitches shorter than 50ns.
|
|
* If the clock enable rate is greater than 20 MHz, no filtering
|
|
* is required, so we need to disable it.
|
|
* If it's between the 20-40 MHz range, there's no need to divide
|
|
* the clock to get a filter.
|
|
*/
|
|
if (clk_khz < 20000) {
|
|
filt = SCB_FILT_DISABLE;
|
|
} else if (clk_khz < 40000) {
|
|
filt = SCB_FILT_BYPASS;
|
|
} else {
|
|
/* Calculate filter clock */
|
|
filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
|
|
|
|
/* Scale up if needed */
|
|
if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
|
|
inc++;
|
|
|
|
if (filt > SCB_FILT_INC_MASK)
|
|
filt = SCB_FILT_INC_MASK;
|
|
|
|
filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
|
|
}
|
|
data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
|
|
img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
|
|
|
|
/* Obtain the clock period of the fx16 clock in ns */
|
|
clk_period = (256 * 1000000) / (clk_khz * inc);
|
|
|
|
/* Calculate the bitrate in terms of internal clock pulses */
|
|
int_bitrate = 1000000 / (bitrate_khz * clk_period);
|
|
if ((1000000 % (bitrate_khz * clk_period)) >=
|
|
((bitrate_khz * clk_period) / 2))
|
|
int_bitrate++;
|
|
|
|
/*
|
|
* Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
|
|
* values from there if they don't meet minimum timing requirements
|
|
*/
|
|
tckh = int_bitrate / 2;
|
|
tckl = int_bitrate - tckh;
|
|
|
|
/* Adjust TCKH and TCKL values */
|
|
data = DIV_ROUND_UP(timing.tckl, clk_period);
|
|
|
|
if (tckl < data) {
|
|
tckl = data;
|
|
tckh = int_bitrate - tckl;
|
|
}
|
|
|
|
if (tckh > 0)
|
|
--tckh;
|
|
|
|
if (tckl > 0)
|
|
--tckl;
|
|
|
|
img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
|
|
img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
|
|
|
|
/* Setup TSDH value */
|
|
tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
|
|
|
|
if (tsdh > 1)
|
|
data = tsdh - 1;
|
|
else
|
|
data = 0x01;
|
|
img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
|
|
|
|
/* This value is used later */
|
|
tsdh = data;
|
|
|
|
/* Setup TPL value */
|
|
data = timing.tpl / clk_period;
|
|
if (data > 0)
|
|
--data;
|
|
img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
|
|
|
|
/* Setup TPH value */
|
|
data = timing.tph / clk_period;
|
|
if (data > 0)
|
|
--data;
|
|
img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
|
|
|
|
/* Setup TSDL value to TPL + TSDH + 2 */
|
|
img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
|
|
|
|
/* Setup TP2S value */
|
|
data = timing.tp2s / clk_period;
|
|
if (data > 0)
|
|
--data;
|
|
img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
|
|
|
|
img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
|
|
img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
|
|
img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
|
|
|
|
/* Take module out of soft reset and enable clocks */
|
|
img_i2c_soft_reset(i2c);
|
|
|
|
/* Disable all interrupts */
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
|
|
|
|
/* Clear all interrupts */
|
|
img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
|
|
|
|
/* Clear the scb_line_status events */
|
|
img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
|
|
|
|
/* Enable interrupts */
|
|
img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
|
|
|
|
/* Perform a synchronous sequence to reset the bus */
|
|
ret = img_i2c_reset_bus(i2c);
|
|
|
|
clk_disable_unprepare(i2c->scb_clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int img_i2c_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct img_i2c *i2c;
|
|
struct resource *res;
|
|
int irq, ret;
|
|
u32 val;
|
|
|
|
i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
|
|
if (!i2c)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
i2c->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(i2c->base))
|
|
return PTR_ERR(i2c->base);
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
dev_err(&pdev->dev, "can't get irq number\n");
|
|
return irq;
|
|
}
|
|
|
|
i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
|
|
if (IS_ERR(i2c->sys_clk)) {
|
|
dev_err(&pdev->dev, "can't get system clock\n");
|
|
return PTR_ERR(i2c->sys_clk);
|
|
}
|
|
|
|
i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
|
|
if (IS_ERR(i2c->scb_clk)) {
|
|
dev_err(&pdev->dev, "can't get core clock\n");
|
|
return PTR_ERR(i2c->scb_clk);
|
|
}
|
|
|
|
ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
|
|
pdev->name, i2c);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "can't request irq %d\n", irq);
|
|
return ret;
|
|
}
|
|
|
|
/* Set up the exception check timer */
|
|
init_timer(&i2c->check_timer);
|
|
i2c->check_timer.function = img_i2c_check_timer;
|
|
i2c->check_timer.data = (unsigned long)i2c;
|
|
|
|
i2c->bitrate = timings[0].max_bitrate;
|
|
if (!of_property_read_u32(node, "clock-frequency", &val))
|
|
i2c->bitrate = val;
|
|
|
|
i2c_set_adapdata(&i2c->adap, i2c);
|
|
i2c->adap.dev.parent = &pdev->dev;
|
|
i2c->adap.dev.of_node = node;
|
|
i2c->adap.owner = THIS_MODULE;
|
|
i2c->adap.algo = &img_i2c_algo;
|
|
i2c->adap.retries = 5;
|
|
i2c->adap.nr = pdev->id;
|
|
snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
|
|
|
|
img_i2c_switch_mode(i2c, MODE_INACTIVE);
|
|
spin_lock_init(&i2c->lock);
|
|
init_completion(&i2c->msg_complete);
|
|
|
|
platform_set_drvdata(pdev, i2c);
|
|
|
|
ret = clk_prepare_enable(i2c->sys_clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = img_i2c_init(i2c);
|
|
if (ret)
|
|
goto disable_clk;
|
|
|
|
ret = i2c_add_numbered_adapter(&i2c->adap);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to add adapter\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
return 0;
|
|
|
|
disable_clk:
|
|
clk_disable_unprepare(i2c->sys_clk);
|
|
return ret;
|
|
}
|
|
|
|
static int img_i2c_remove(struct platform_device *dev)
|
|
{
|
|
struct img_i2c *i2c = platform_get_drvdata(dev);
|
|
|
|
i2c_del_adapter(&i2c->adap);
|
|
clk_disable_unprepare(i2c->sys_clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int img_i2c_suspend(struct device *dev)
|
|
{
|
|
struct img_i2c *i2c = dev_get_drvdata(dev);
|
|
|
|
img_i2c_switch_mode(i2c, MODE_SUSPEND);
|
|
|
|
clk_disable_unprepare(i2c->sys_clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int img_i2c_resume(struct device *dev)
|
|
{
|
|
struct img_i2c *i2c = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(i2c->sys_clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
img_i2c_init(i2c);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static SIMPLE_DEV_PM_OPS(img_i2c_pm, img_i2c_suspend, img_i2c_resume);
|
|
|
|
static const struct of_device_id img_scb_i2c_match[] = {
|
|
{ .compatible = "img,scb-i2c" },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
|
|
|
|
static struct platform_driver img_scb_i2c_driver = {
|
|
.driver = {
|
|
.name = "img-i2c-scb",
|
|
.of_match_table = img_scb_i2c_match,
|
|
.pm = &img_i2c_pm,
|
|
},
|
|
.probe = img_i2c_probe,
|
|
.remove = img_i2c_remove,
|
|
};
|
|
module_platform_driver(img_scb_i2c_driver);
|
|
|
|
MODULE_AUTHOR("James Hogan <james.hogan@imgtec.com>");
|
|
MODULE_DESCRIPTION("IMG host I2C driver");
|
|
MODULE_LICENSE("GPL v2");
|