mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 09:35:06 +07:00
bc197b2a9c
The ccp_actions structure is never modified, so declare it as const. Done with the help of Coccinelle. Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr> Acked-by: Gary Hook <gary.hook@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
545 lines
14 KiB
C
545 lines
14 KiB
C
/*
|
|
* AMD Cryptographic Coprocessor (CCP) driver
|
|
*
|
|
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ccp.h>
|
|
|
|
#include "ccp-dev.h"
|
|
|
|
static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
|
|
{
|
|
struct ccp_cmd_queue *cmd_q = op->cmd_q;
|
|
struct ccp_device *ccp = cmd_q->ccp;
|
|
void __iomem *cr_addr;
|
|
u32 cr0, cmd;
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
/* We could read a status register to see how many free slots
|
|
* are actually available, but reading that register resets it
|
|
* and you could lose some error information.
|
|
*/
|
|
cmd_q->free_slots--;
|
|
|
|
cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
|
|
| (op->jobid << REQ0_JOBID_SHIFT)
|
|
| REQ0_WAIT_FOR_WRITE;
|
|
|
|
if (op->soc)
|
|
cr0 |= REQ0_STOP_ON_COMPLETE
|
|
| REQ0_INT_ON_COMPLETE;
|
|
|
|
if (op->ioc || !cmd_q->free_slots)
|
|
cr0 |= REQ0_INT_ON_COMPLETE;
|
|
|
|
/* Start at CMD_REQ1 */
|
|
cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
|
|
|
|
mutex_lock(&ccp->req_mutex);
|
|
|
|
/* Write CMD_REQ1 through CMD_REQx first */
|
|
for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
|
|
iowrite32(*(cr + i), cr_addr);
|
|
|
|
/* Tell the CCP to start */
|
|
wmb();
|
|
iowrite32(cr0, ccp->io_regs + CMD_REQ0);
|
|
|
|
mutex_unlock(&ccp->req_mutex);
|
|
|
|
if (cr0 & REQ0_INT_ON_COMPLETE) {
|
|
/* Wait for the job to complete */
|
|
ret = wait_event_interruptible(cmd_q->int_queue,
|
|
cmd_q->int_rcvd);
|
|
if (ret || cmd_q->cmd_error) {
|
|
/* On error delete all related jobs from the queue */
|
|
cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
|
|
| op->jobid;
|
|
|
|
iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
|
|
|
|
if (!ret)
|
|
ret = -EIO;
|
|
} else if (op->soc) {
|
|
/* Delete just head job from the queue on SoC */
|
|
cmd = DEL_Q_ACTIVE
|
|
| (cmd_q->id << DEL_Q_ID_SHIFT)
|
|
| op->jobid;
|
|
|
|
iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
|
|
}
|
|
|
|
cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
|
|
|
|
cmd_q->int_rcvd = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_perform_aes(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
|
|
| (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
|
|
| (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
|
|
| (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
|
|
| (op->ksb_key << REQ1_KEY_KSB_SHIFT);
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
if (op->u.aes.mode == CCP_AES_MODE_CFB)
|
|
cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
|
|
|
|
if (op->eom)
|
|
cr[0] |= REQ1_EOM;
|
|
|
|
if (op->init)
|
|
cr[0] |= REQ1_INIT;
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_xts_aes(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
|
|
| (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
|
|
| (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
|
|
| (op->ksb_key << REQ1_KEY_KSB_SHIFT);
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
if (op->eom)
|
|
cr[0] |= REQ1_EOM;
|
|
|
|
if (op->init)
|
|
cr[0] |= REQ1_INIT;
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_sha(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
|
|
| (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
|
|
| REQ1_INIT;
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
|
|
if (op->eom) {
|
|
cr[0] |= REQ1_EOM;
|
|
cr[4] = lower_32_bits(op->u.sha.msg_bits);
|
|
cr[5] = upper_32_bits(op->u.sha.msg_bits);
|
|
} else {
|
|
cr[4] = 0;
|
|
cr[5] = 0;
|
|
}
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_rsa(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
|
|
| (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
|
|
| (op->ksb_key << REQ1_KEY_KSB_SHIFT)
|
|
| REQ1_EOM;
|
|
cr[1] = op->u.rsa.input_len - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (op->ksb_ctx << REQ4_KSB_SHIFT)
|
|
| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_passthru(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
|
|
| (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
|
|
| (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
|
|
|
|
if (op->src.type == CCP_MEMTYPE_SYSTEM)
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
else
|
|
cr[1] = op->dst.u.dma.length - 1;
|
|
|
|
if (op->src.type == CCP_MEMTYPE_SYSTEM) {
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
|
|
if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
|
|
cr[3] |= (op->ksb_key << REQ4_KSB_SHIFT);
|
|
} else {
|
|
cr[2] = op->src.u.ksb * CCP_KSB_BYTES;
|
|
cr[3] = (CCP_MEMTYPE_KSB << REQ4_MEMTYPE_SHIFT);
|
|
}
|
|
|
|
if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
} else {
|
|
cr[4] = op->dst.u.ksb * CCP_KSB_BYTES;
|
|
cr[5] = (CCP_MEMTYPE_KSB << REQ6_MEMTYPE_SHIFT);
|
|
}
|
|
|
|
if (op->eom)
|
|
cr[0] |= REQ1_EOM;
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_perform_ecc(struct ccp_op *op)
|
|
{
|
|
u32 cr[6];
|
|
|
|
/* Fill out the register contents for REQ1 through REQ6 */
|
|
cr[0] = REQ1_ECC_AFFINE_CONVERT
|
|
| (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
|
|
| (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
|
|
| REQ1_EOM;
|
|
cr[1] = op->src.u.dma.length - 1;
|
|
cr[2] = ccp_addr_lo(&op->src.u.dma);
|
|
cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->src.u.dma);
|
|
cr[4] = ccp_addr_lo(&op->dst.u.dma);
|
|
cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
|
|
| ccp_addr_hi(&op->dst.u.dma);
|
|
|
|
return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
|
|
}
|
|
|
|
static int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
|
|
{
|
|
struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
|
|
u32 trng_value;
|
|
int len = min_t(int, sizeof(trng_value), max);
|
|
|
|
/*
|
|
* Locking is provided by the caller so we can update device
|
|
* hwrng-related fields safely
|
|
*/
|
|
trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
|
|
if (!trng_value) {
|
|
/* Zero is returned if not data is available or if a
|
|
* bad-entropy error is present. Assume an error if
|
|
* we exceed TRNG_RETRIES reads of zero.
|
|
*/
|
|
if (ccp->hwrng_retries++ > TRNG_RETRIES)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reset the counter and save the rng value */
|
|
ccp->hwrng_retries = 0;
|
|
memcpy(data, &trng_value, len);
|
|
|
|
return len;
|
|
}
|
|
|
|
static int ccp_init(struct ccp_device *ccp)
|
|
{
|
|
struct device *dev = ccp->dev;
|
|
struct ccp_cmd_queue *cmd_q;
|
|
struct dma_pool *dma_pool;
|
|
char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
|
|
unsigned int qmr, qim, i;
|
|
int ret;
|
|
|
|
/* Find available queues */
|
|
qim = 0;
|
|
qmr = ioread32(ccp->io_regs + Q_MASK_REG);
|
|
for (i = 0; i < MAX_HW_QUEUES; i++) {
|
|
if (!(qmr & (1 << i)))
|
|
continue;
|
|
|
|
/* Allocate a dma pool for this queue */
|
|
snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
|
|
ccp->name, i);
|
|
dma_pool = dma_pool_create(dma_pool_name, dev,
|
|
CCP_DMAPOOL_MAX_SIZE,
|
|
CCP_DMAPOOL_ALIGN, 0);
|
|
if (!dma_pool) {
|
|
dev_err(dev, "unable to allocate dma pool\n");
|
|
ret = -ENOMEM;
|
|
goto e_pool;
|
|
}
|
|
|
|
cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
|
|
ccp->cmd_q_count++;
|
|
|
|
cmd_q->ccp = ccp;
|
|
cmd_q->id = i;
|
|
cmd_q->dma_pool = dma_pool;
|
|
|
|
/* Reserve 2 KSB regions for the queue */
|
|
cmd_q->ksb_key = KSB_START + ccp->ksb_start++;
|
|
cmd_q->ksb_ctx = KSB_START + ccp->ksb_start++;
|
|
ccp->ksb_count -= 2;
|
|
|
|
/* Preset some register values and masks that are queue
|
|
* number dependent
|
|
*/
|
|
cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
|
|
(CMD_Q_STATUS_INCR * i);
|
|
cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
|
|
(CMD_Q_STATUS_INCR * i);
|
|
cmd_q->int_ok = 1 << (i * 2);
|
|
cmd_q->int_err = 1 << ((i * 2) + 1);
|
|
|
|
cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
|
|
|
|
init_waitqueue_head(&cmd_q->int_queue);
|
|
|
|
/* Build queue interrupt mask (two interrupts per queue) */
|
|
qim |= cmd_q->int_ok | cmd_q->int_err;
|
|
|
|
#ifdef CONFIG_ARM64
|
|
/* For arm64 set the recommended queue cache settings */
|
|
iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
|
|
(CMD_Q_CACHE_INC * i));
|
|
#endif
|
|
|
|
dev_dbg(dev, "queue #%u available\n", i);
|
|
}
|
|
if (ccp->cmd_q_count == 0) {
|
|
dev_notice(dev, "no command queues available\n");
|
|
ret = -EIO;
|
|
goto e_pool;
|
|
}
|
|
dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
|
|
|
|
/* Disable and clear interrupts until ready */
|
|
iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
|
|
for (i = 0; i < ccp->cmd_q_count; i++) {
|
|
cmd_q = &ccp->cmd_q[i];
|
|
|
|
ioread32(cmd_q->reg_int_status);
|
|
ioread32(cmd_q->reg_status);
|
|
}
|
|
iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
|
|
|
|
/* Request an irq */
|
|
ret = ccp->get_irq(ccp);
|
|
if (ret) {
|
|
dev_err(dev, "unable to allocate an IRQ\n");
|
|
goto e_pool;
|
|
}
|
|
|
|
/* Initialize the queues used to wait for KSB space and suspend */
|
|
init_waitqueue_head(&ccp->ksb_queue);
|
|
init_waitqueue_head(&ccp->suspend_queue);
|
|
|
|
/* Create a kthread for each queue */
|
|
for (i = 0; i < ccp->cmd_q_count; i++) {
|
|
struct task_struct *kthread;
|
|
|
|
cmd_q = &ccp->cmd_q[i];
|
|
|
|
kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
|
|
"%s-q%u", ccp->name, cmd_q->id);
|
|
if (IS_ERR(kthread)) {
|
|
dev_err(dev, "error creating queue thread (%ld)\n",
|
|
PTR_ERR(kthread));
|
|
ret = PTR_ERR(kthread);
|
|
goto e_kthread;
|
|
}
|
|
|
|
cmd_q->kthread = kthread;
|
|
wake_up_process(kthread);
|
|
}
|
|
|
|
/* Register the RNG */
|
|
ccp->hwrng.name = ccp->rngname;
|
|
ccp->hwrng.read = ccp_trng_read;
|
|
ret = hwrng_register(&ccp->hwrng);
|
|
if (ret) {
|
|
dev_err(dev, "error registering hwrng (%d)\n", ret);
|
|
goto e_kthread;
|
|
}
|
|
|
|
/* Register the DMA engine support */
|
|
ret = ccp_dmaengine_register(ccp);
|
|
if (ret)
|
|
goto e_hwrng;
|
|
|
|
ccp_add_device(ccp);
|
|
|
|
/* Enable interrupts */
|
|
iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
|
|
|
|
return 0;
|
|
|
|
e_hwrng:
|
|
hwrng_unregister(&ccp->hwrng);
|
|
|
|
e_kthread:
|
|
for (i = 0; i < ccp->cmd_q_count; i++)
|
|
if (ccp->cmd_q[i].kthread)
|
|
kthread_stop(ccp->cmd_q[i].kthread);
|
|
|
|
ccp->free_irq(ccp);
|
|
|
|
e_pool:
|
|
for (i = 0; i < ccp->cmd_q_count; i++)
|
|
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ccp_destroy(struct ccp_device *ccp)
|
|
{
|
|
struct ccp_cmd_queue *cmd_q;
|
|
struct ccp_cmd *cmd;
|
|
unsigned int qim, i;
|
|
|
|
/* Remove this device from the list of available units first */
|
|
ccp_del_device(ccp);
|
|
|
|
/* Unregister the DMA engine */
|
|
ccp_dmaengine_unregister(ccp);
|
|
|
|
/* Unregister the RNG */
|
|
hwrng_unregister(&ccp->hwrng);
|
|
|
|
/* Stop the queue kthreads */
|
|
for (i = 0; i < ccp->cmd_q_count; i++)
|
|
if (ccp->cmd_q[i].kthread)
|
|
kthread_stop(ccp->cmd_q[i].kthread);
|
|
|
|
/* Build queue interrupt mask (two interrupt masks per queue) */
|
|
qim = 0;
|
|
for (i = 0; i < ccp->cmd_q_count; i++) {
|
|
cmd_q = &ccp->cmd_q[i];
|
|
qim |= cmd_q->int_ok | cmd_q->int_err;
|
|
}
|
|
|
|
/* Disable and clear interrupts */
|
|
iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
|
|
for (i = 0; i < ccp->cmd_q_count; i++) {
|
|
cmd_q = &ccp->cmd_q[i];
|
|
|
|
ioread32(cmd_q->reg_int_status);
|
|
ioread32(cmd_q->reg_status);
|
|
}
|
|
iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
|
|
|
|
ccp->free_irq(ccp);
|
|
|
|
for (i = 0; i < ccp->cmd_q_count; i++)
|
|
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
|
|
|
|
/* Flush the cmd and backlog queue */
|
|
while (!list_empty(&ccp->cmd)) {
|
|
/* Invoke the callback directly with an error code */
|
|
cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
|
|
list_del(&cmd->entry);
|
|
cmd->callback(cmd->data, -ENODEV);
|
|
}
|
|
while (!list_empty(&ccp->backlog)) {
|
|
/* Invoke the callback directly with an error code */
|
|
cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
|
|
list_del(&cmd->entry);
|
|
cmd->callback(cmd->data, -ENODEV);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t ccp_irq_handler(int irq, void *data)
|
|
{
|
|
struct device *dev = data;
|
|
struct ccp_device *ccp = dev_get_drvdata(dev);
|
|
struct ccp_cmd_queue *cmd_q;
|
|
u32 q_int, status;
|
|
unsigned int i;
|
|
|
|
status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
|
|
|
|
for (i = 0; i < ccp->cmd_q_count; i++) {
|
|
cmd_q = &ccp->cmd_q[i];
|
|
|
|
q_int = status & (cmd_q->int_ok | cmd_q->int_err);
|
|
if (q_int) {
|
|
cmd_q->int_status = status;
|
|
cmd_q->q_status = ioread32(cmd_q->reg_status);
|
|
cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
|
|
|
|
/* On error, only save the first error value */
|
|
if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
|
|
cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
|
|
|
|
cmd_q->int_rcvd = 1;
|
|
|
|
/* Acknowledge the interrupt and wake the kthread */
|
|
iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
|
|
wake_up_interruptible(&cmd_q->int_queue);
|
|
}
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct ccp_actions ccp3_actions = {
|
|
.perform_aes = ccp_perform_aes,
|
|
.perform_xts_aes = ccp_perform_xts_aes,
|
|
.perform_sha = ccp_perform_sha,
|
|
.perform_rsa = ccp_perform_rsa,
|
|
.perform_passthru = ccp_perform_passthru,
|
|
.perform_ecc = ccp_perform_ecc,
|
|
.init = ccp_init,
|
|
.destroy = ccp_destroy,
|
|
.irqhandler = ccp_irq_handler,
|
|
};
|
|
|
|
struct ccp_vdata ccpv3 = {
|
|
.version = CCP_VERSION(3, 0),
|
|
.perform = &ccp3_actions,
|
|
};
|