mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 23:36:49 +07:00
2456e85535
ktime is a union because the initial implementation stored the time in scalar nanoseconds on 64 bit machine and in a endianess optimized timespec variant for 32bit machines. The Y2038 cleanup removed the timespec variant and switched everything to scalar nanoseconds. The union remained, but become completely pointless. Get rid of the union and just keep ktime_t as simple typedef of type s64. The conversion was done with coccinelle and some manual mopping up. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org>
1009 lines
26 KiB
C
1009 lines
26 KiB
C
/*
|
|
* linux/kernel/time/tick-broadcast.c
|
|
*
|
|
* This file contains functions which emulate a local clock-event
|
|
* device via a broadcast event source.
|
|
*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
|
|
*
|
|
* This code is licenced under the GPL version 2. For details see
|
|
* kernel-base/COPYING.
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
/*
|
|
* Broadcast support for broken x86 hardware, where the local apic
|
|
* timer stops in C3 state.
|
|
*/
|
|
|
|
static struct tick_device tick_broadcast_device;
|
|
static cpumask_var_t tick_broadcast_mask;
|
|
static cpumask_var_t tick_broadcast_on;
|
|
static cpumask_var_t tmpmask;
|
|
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
|
|
static int tick_broadcast_forced;
|
|
|
|
#ifdef CONFIG_TICK_ONESHOT
|
|
static void tick_broadcast_clear_oneshot(int cpu);
|
|
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
|
|
#else
|
|
static inline void tick_broadcast_clear_oneshot(int cpu) { }
|
|
static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
|
|
#endif
|
|
|
|
/*
|
|
* Debugging: see timer_list.c
|
|
*/
|
|
struct tick_device *tick_get_broadcast_device(void)
|
|
{
|
|
return &tick_broadcast_device;
|
|
}
|
|
|
|
struct cpumask *tick_get_broadcast_mask(void)
|
|
{
|
|
return tick_broadcast_mask;
|
|
}
|
|
|
|
/*
|
|
* Start the device in periodic mode
|
|
*/
|
|
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
|
|
{
|
|
if (bc)
|
|
tick_setup_periodic(bc, 1);
|
|
}
|
|
|
|
/*
|
|
* Check, if the device can be utilized as broadcast device:
|
|
*/
|
|
static bool tick_check_broadcast_device(struct clock_event_device *curdev,
|
|
struct clock_event_device *newdev)
|
|
{
|
|
if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
|
|
(newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
|
|
(newdev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
return false;
|
|
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
|
|
!(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
|
|
return false;
|
|
|
|
return !curdev || newdev->rating > curdev->rating;
|
|
}
|
|
|
|
/*
|
|
* Conditionally install/replace broadcast device
|
|
*/
|
|
void tick_install_broadcast_device(struct clock_event_device *dev)
|
|
{
|
|
struct clock_event_device *cur = tick_broadcast_device.evtdev;
|
|
|
|
if (!tick_check_broadcast_device(cur, dev))
|
|
return;
|
|
|
|
if (!try_module_get(dev->owner))
|
|
return;
|
|
|
|
clockevents_exchange_device(cur, dev);
|
|
if (cur)
|
|
cur->event_handler = clockevents_handle_noop;
|
|
tick_broadcast_device.evtdev = dev;
|
|
if (!cpumask_empty(tick_broadcast_mask))
|
|
tick_broadcast_start_periodic(dev);
|
|
/*
|
|
* Inform all cpus about this. We might be in a situation
|
|
* where we did not switch to oneshot mode because the per cpu
|
|
* devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
|
|
* of a oneshot capable broadcast device. Without that
|
|
* notification the systems stays stuck in periodic mode
|
|
* forever.
|
|
*/
|
|
if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
|
|
tick_clock_notify();
|
|
}
|
|
|
|
/*
|
|
* Check, if the device is the broadcast device
|
|
*/
|
|
int tick_is_broadcast_device(struct clock_event_device *dev)
|
|
{
|
|
return (dev && tick_broadcast_device.evtdev == dev);
|
|
}
|
|
|
|
int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
|
|
{
|
|
int ret = -ENODEV;
|
|
|
|
if (tick_is_broadcast_device(dev)) {
|
|
raw_spin_lock(&tick_broadcast_lock);
|
|
ret = __clockevents_update_freq(dev, freq);
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void err_broadcast(const struct cpumask *mask)
|
|
{
|
|
pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
|
|
}
|
|
|
|
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
|
|
{
|
|
if (!dev->broadcast)
|
|
dev->broadcast = tick_broadcast;
|
|
if (!dev->broadcast) {
|
|
pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
|
|
dev->name);
|
|
dev->broadcast = err_broadcast;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check, if the device is disfunctional and a place holder, which
|
|
* needs to be handled by the broadcast device.
|
|
*/
|
|
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
|
|
{
|
|
struct clock_event_device *bc = tick_broadcast_device.evtdev;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
/*
|
|
* Devices might be registered with both periodic and oneshot
|
|
* mode disabled. This signals, that the device needs to be
|
|
* operated from the broadcast device and is a placeholder for
|
|
* the cpu local device.
|
|
*/
|
|
if (!tick_device_is_functional(dev)) {
|
|
dev->event_handler = tick_handle_periodic;
|
|
tick_device_setup_broadcast_func(dev);
|
|
cpumask_set_cpu(cpu, tick_broadcast_mask);
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
|
|
tick_broadcast_start_periodic(bc);
|
|
else
|
|
tick_broadcast_setup_oneshot(bc);
|
|
ret = 1;
|
|
} else {
|
|
/*
|
|
* Clear the broadcast bit for this cpu if the
|
|
* device is not power state affected.
|
|
*/
|
|
if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
cpumask_clear_cpu(cpu, tick_broadcast_mask);
|
|
else
|
|
tick_device_setup_broadcast_func(dev);
|
|
|
|
/*
|
|
* Clear the broadcast bit if the CPU is not in
|
|
* periodic broadcast on state.
|
|
*/
|
|
if (!cpumask_test_cpu(cpu, tick_broadcast_on))
|
|
cpumask_clear_cpu(cpu, tick_broadcast_mask);
|
|
|
|
switch (tick_broadcast_device.mode) {
|
|
case TICKDEV_MODE_ONESHOT:
|
|
/*
|
|
* If the system is in oneshot mode we can
|
|
* unconditionally clear the oneshot mask bit,
|
|
* because the CPU is running and therefore
|
|
* not in an idle state which causes the power
|
|
* state affected device to stop. Let the
|
|
* caller initialize the device.
|
|
*/
|
|
tick_broadcast_clear_oneshot(cpu);
|
|
ret = 0;
|
|
break;
|
|
|
|
case TICKDEV_MODE_PERIODIC:
|
|
/*
|
|
* If the system is in periodic mode, check
|
|
* whether the broadcast device can be
|
|
* switched off now.
|
|
*/
|
|
if (cpumask_empty(tick_broadcast_mask) && bc)
|
|
clockevents_shutdown(bc);
|
|
/*
|
|
* If we kept the cpu in the broadcast mask,
|
|
* tell the caller to leave the per cpu device
|
|
* in shutdown state. The periodic interrupt
|
|
* is delivered by the broadcast device, if
|
|
* the broadcast device exists and is not
|
|
* hrtimer based.
|
|
*/
|
|
if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
|
|
ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
int tick_receive_broadcast(void)
|
|
{
|
|
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
|
|
struct clock_event_device *evt = td->evtdev;
|
|
|
|
if (!evt)
|
|
return -ENODEV;
|
|
|
|
if (!evt->event_handler)
|
|
return -EINVAL;
|
|
|
|
evt->event_handler(evt);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Broadcast the event to the cpus, which are set in the mask (mangled).
|
|
*/
|
|
static bool tick_do_broadcast(struct cpumask *mask)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct tick_device *td;
|
|
bool local = false;
|
|
|
|
/*
|
|
* Check, if the current cpu is in the mask
|
|
*/
|
|
if (cpumask_test_cpu(cpu, mask)) {
|
|
struct clock_event_device *bc = tick_broadcast_device.evtdev;
|
|
|
|
cpumask_clear_cpu(cpu, mask);
|
|
/*
|
|
* We only run the local handler, if the broadcast
|
|
* device is not hrtimer based. Otherwise we run into
|
|
* a hrtimer recursion.
|
|
*
|
|
* local timer_interrupt()
|
|
* local_handler()
|
|
* expire_hrtimers()
|
|
* bc_handler()
|
|
* local_handler()
|
|
* expire_hrtimers()
|
|
*/
|
|
local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
|
|
}
|
|
|
|
if (!cpumask_empty(mask)) {
|
|
/*
|
|
* It might be necessary to actually check whether the devices
|
|
* have different broadcast functions. For now, just use the
|
|
* one of the first device. This works as long as we have this
|
|
* misfeature only on x86 (lapic)
|
|
*/
|
|
td = &per_cpu(tick_cpu_device, cpumask_first(mask));
|
|
td->evtdev->broadcast(mask);
|
|
}
|
|
return local;
|
|
}
|
|
|
|
/*
|
|
* Periodic broadcast:
|
|
* - invoke the broadcast handlers
|
|
*/
|
|
static bool tick_do_periodic_broadcast(void)
|
|
{
|
|
cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
|
|
return tick_do_broadcast(tmpmask);
|
|
}
|
|
|
|
/*
|
|
* Event handler for periodic broadcast ticks
|
|
*/
|
|
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
|
|
{
|
|
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
|
|
bool bc_local;
|
|
|
|
raw_spin_lock(&tick_broadcast_lock);
|
|
|
|
/* Handle spurious interrupts gracefully */
|
|
if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
return;
|
|
}
|
|
|
|
bc_local = tick_do_periodic_broadcast();
|
|
|
|
if (clockevent_state_oneshot(dev)) {
|
|
ktime_t next = ktime_add(dev->next_event, tick_period);
|
|
|
|
clockevents_program_event(dev, next, true);
|
|
}
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
|
|
/*
|
|
* We run the handler of the local cpu after dropping
|
|
* tick_broadcast_lock because the handler might deadlock when
|
|
* trying to switch to oneshot mode.
|
|
*/
|
|
if (bc_local)
|
|
td->evtdev->event_handler(td->evtdev);
|
|
}
|
|
|
|
/**
|
|
* tick_broadcast_control - Enable/disable or force broadcast mode
|
|
* @mode: The selected broadcast mode
|
|
*
|
|
* Called when the system enters a state where affected tick devices
|
|
* might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
|
|
*
|
|
* Called with interrupts disabled, so clockevents_lock is not
|
|
* required here because the local clock event device cannot go away
|
|
* under us.
|
|
*/
|
|
void tick_broadcast_control(enum tick_broadcast_mode mode)
|
|
{
|
|
struct clock_event_device *bc, *dev;
|
|
struct tick_device *td;
|
|
int cpu, bc_stopped;
|
|
|
|
td = this_cpu_ptr(&tick_cpu_device);
|
|
dev = td->evtdev;
|
|
|
|
/*
|
|
* Is the device not affected by the powerstate ?
|
|
*/
|
|
if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
|
|
return;
|
|
|
|
if (!tick_device_is_functional(dev))
|
|
return;
|
|
|
|
raw_spin_lock(&tick_broadcast_lock);
|
|
cpu = smp_processor_id();
|
|
bc = tick_broadcast_device.evtdev;
|
|
bc_stopped = cpumask_empty(tick_broadcast_mask);
|
|
|
|
switch (mode) {
|
|
case TICK_BROADCAST_FORCE:
|
|
tick_broadcast_forced = 1;
|
|
case TICK_BROADCAST_ON:
|
|
cpumask_set_cpu(cpu, tick_broadcast_on);
|
|
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
|
|
/*
|
|
* Only shutdown the cpu local device, if:
|
|
*
|
|
* - the broadcast device exists
|
|
* - the broadcast device is not a hrtimer based one
|
|
* - the broadcast device is in periodic mode to
|
|
* avoid a hickup during switch to oneshot mode
|
|
*/
|
|
if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
|
|
tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
|
|
clockevents_shutdown(dev);
|
|
}
|
|
break;
|
|
|
|
case TICK_BROADCAST_OFF:
|
|
if (tick_broadcast_forced)
|
|
break;
|
|
cpumask_clear_cpu(cpu, tick_broadcast_on);
|
|
if (!tick_device_is_functional(dev))
|
|
break;
|
|
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
|
|
if (tick_broadcast_device.mode ==
|
|
TICKDEV_MODE_PERIODIC)
|
|
tick_setup_periodic(dev, 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (bc) {
|
|
if (cpumask_empty(tick_broadcast_mask)) {
|
|
if (!bc_stopped)
|
|
clockevents_shutdown(bc);
|
|
} else if (bc_stopped) {
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
|
|
tick_broadcast_start_periodic(bc);
|
|
else
|
|
tick_broadcast_setup_oneshot(bc);
|
|
}
|
|
}
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_broadcast_control);
|
|
|
|
/*
|
|
* Set the periodic handler depending on broadcast on/off
|
|
*/
|
|
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
|
|
{
|
|
if (!broadcast)
|
|
dev->event_handler = tick_handle_periodic;
|
|
else
|
|
dev->event_handler = tick_handle_periodic_broadcast;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/*
|
|
* Remove a CPU from broadcasting
|
|
*/
|
|
void tick_shutdown_broadcast(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
cpumask_clear_cpu(cpu, tick_broadcast_mask);
|
|
cpumask_clear_cpu(cpu, tick_broadcast_on);
|
|
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
|
|
if (bc && cpumask_empty(tick_broadcast_mask))
|
|
clockevents_shutdown(bc);
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
#endif
|
|
|
|
void tick_suspend_broadcast(void)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
if (bc)
|
|
clockevents_shutdown(bc);
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This is called from tick_resume_local() on a resuming CPU. That's
|
|
* called from the core resume function, tick_unfreeze() and the magic XEN
|
|
* resume hackery.
|
|
*
|
|
* In none of these cases the broadcast device mode can change and the
|
|
* bit of the resuming CPU in the broadcast mask is safe as well.
|
|
*/
|
|
bool tick_resume_check_broadcast(void)
|
|
{
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
|
|
return false;
|
|
else
|
|
return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
|
|
}
|
|
|
|
void tick_resume_broadcast(void)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
bc = tick_broadcast_device.evtdev;
|
|
|
|
if (bc) {
|
|
clockevents_tick_resume(bc);
|
|
|
|
switch (tick_broadcast_device.mode) {
|
|
case TICKDEV_MODE_PERIODIC:
|
|
if (!cpumask_empty(tick_broadcast_mask))
|
|
tick_broadcast_start_periodic(bc);
|
|
break;
|
|
case TICKDEV_MODE_ONESHOT:
|
|
if (!cpumask_empty(tick_broadcast_mask))
|
|
tick_resume_broadcast_oneshot(bc);
|
|
break;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_TICK_ONESHOT
|
|
|
|
static cpumask_var_t tick_broadcast_oneshot_mask;
|
|
static cpumask_var_t tick_broadcast_pending_mask;
|
|
static cpumask_var_t tick_broadcast_force_mask;
|
|
|
|
/*
|
|
* Exposed for debugging: see timer_list.c
|
|
*/
|
|
struct cpumask *tick_get_broadcast_oneshot_mask(void)
|
|
{
|
|
return tick_broadcast_oneshot_mask;
|
|
}
|
|
|
|
/*
|
|
* Called before going idle with interrupts disabled. Checks whether a
|
|
* broadcast event from the other core is about to happen. We detected
|
|
* that in tick_broadcast_oneshot_control(). The callsite can use this
|
|
* to avoid a deep idle transition as we are about to get the
|
|
* broadcast IPI right away.
|
|
*/
|
|
int tick_check_broadcast_expired(void)
|
|
{
|
|
return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
|
|
}
|
|
|
|
/*
|
|
* Set broadcast interrupt affinity
|
|
*/
|
|
static void tick_broadcast_set_affinity(struct clock_event_device *bc,
|
|
const struct cpumask *cpumask)
|
|
{
|
|
if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
|
|
return;
|
|
|
|
if (cpumask_equal(bc->cpumask, cpumask))
|
|
return;
|
|
|
|
bc->cpumask = cpumask;
|
|
irq_set_affinity(bc->irq, bc->cpumask);
|
|
}
|
|
|
|
static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
|
|
ktime_t expires)
|
|
{
|
|
if (!clockevent_state_oneshot(bc))
|
|
clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
|
|
|
|
clockevents_program_event(bc, expires, 1);
|
|
tick_broadcast_set_affinity(bc, cpumask_of(cpu));
|
|
}
|
|
|
|
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
|
|
{
|
|
clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
|
|
}
|
|
|
|
/*
|
|
* Called from irq_enter() when idle was interrupted to reenable the
|
|
* per cpu device.
|
|
*/
|
|
void tick_check_oneshot_broadcast_this_cpu(void)
|
|
{
|
|
if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
|
|
struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
|
|
|
|
/*
|
|
* We might be in the middle of switching over from
|
|
* periodic to oneshot. If the CPU has not yet
|
|
* switched over, leave the device alone.
|
|
*/
|
|
if (td->mode == TICKDEV_MODE_ONESHOT) {
|
|
clockevents_switch_state(td->evtdev,
|
|
CLOCK_EVT_STATE_ONESHOT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle oneshot mode broadcasting
|
|
*/
|
|
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
|
|
{
|
|
struct tick_device *td;
|
|
ktime_t now, next_event;
|
|
int cpu, next_cpu = 0;
|
|
bool bc_local;
|
|
|
|
raw_spin_lock(&tick_broadcast_lock);
|
|
dev->next_event = KTIME_MAX;
|
|
next_event = KTIME_MAX;
|
|
cpumask_clear(tmpmask);
|
|
now = ktime_get();
|
|
/* Find all expired events */
|
|
for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
if (td->evtdev->next_event <= now) {
|
|
cpumask_set_cpu(cpu, tmpmask);
|
|
/*
|
|
* Mark the remote cpu in the pending mask, so
|
|
* it can avoid reprogramming the cpu local
|
|
* timer in tick_broadcast_oneshot_control().
|
|
*/
|
|
cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
|
|
} else if (td->evtdev->next_event < next_event) {
|
|
next_event = td->evtdev->next_event;
|
|
next_cpu = cpu;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove the current cpu from the pending mask. The event is
|
|
* delivered immediately in tick_do_broadcast() !
|
|
*/
|
|
cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
|
|
|
|
/* Take care of enforced broadcast requests */
|
|
cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
|
|
cpumask_clear(tick_broadcast_force_mask);
|
|
|
|
/*
|
|
* Sanity check. Catch the case where we try to broadcast to
|
|
* offline cpus.
|
|
*/
|
|
if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
|
|
cpumask_and(tmpmask, tmpmask, cpu_online_mask);
|
|
|
|
/*
|
|
* Wakeup the cpus which have an expired event.
|
|
*/
|
|
bc_local = tick_do_broadcast(tmpmask);
|
|
|
|
/*
|
|
* Two reasons for reprogram:
|
|
*
|
|
* - The global event did not expire any CPU local
|
|
* events. This happens in dyntick mode, as the maximum PIT
|
|
* delta is quite small.
|
|
*
|
|
* - There are pending events on sleeping CPUs which were not
|
|
* in the event mask
|
|
*/
|
|
if (next_event != KTIME_MAX)
|
|
tick_broadcast_set_event(dev, next_cpu, next_event);
|
|
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
|
|
if (bc_local) {
|
|
td = this_cpu_ptr(&tick_cpu_device);
|
|
td->evtdev->event_handler(td->evtdev);
|
|
}
|
|
}
|
|
|
|
static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
|
|
{
|
|
if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
|
|
return 0;
|
|
if (bc->next_event == KTIME_MAX)
|
|
return 0;
|
|
return bc->bound_on == cpu ? -EBUSY : 0;
|
|
}
|
|
|
|
static void broadcast_shutdown_local(struct clock_event_device *bc,
|
|
struct clock_event_device *dev)
|
|
{
|
|
/*
|
|
* For hrtimer based broadcasting we cannot shutdown the cpu
|
|
* local device if our own event is the first one to expire or
|
|
* if we own the broadcast timer.
|
|
*/
|
|
if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
|
|
if (broadcast_needs_cpu(bc, smp_processor_id()))
|
|
return;
|
|
if (dev->next_event < bc->next_event)
|
|
return;
|
|
}
|
|
clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
|
|
}
|
|
|
|
int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
|
|
{
|
|
struct clock_event_device *bc, *dev;
|
|
int cpu, ret = 0;
|
|
ktime_t now;
|
|
|
|
/*
|
|
* If there is no broadcast device, tell the caller not to go
|
|
* into deep idle.
|
|
*/
|
|
if (!tick_broadcast_device.evtdev)
|
|
return -EBUSY;
|
|
|
|
dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
|
|
|
|
raw_spin_lock(&tick_broadcast_lock);
|
|
bc = tick_broadcast_device.evtdev;
|
|
cpu = smp_processor_id();
|
|
|
|
if (state == TICK_BROADCAST_ENTER) {
|
|
/*
|
|
* If the current CPU owns the hrtimer broadcast
|
|
* mechanism, it cannot go deep idle and we do not add
|
|
* the CPU to the broadcast mask. We don't have to go
|
|
* through the EXIT path as the local timer is not
|
|
* shutdown.
|
|
*/
|
|
ret = broadcast_needs_cpu(bc, cpu);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* If the broadcast device is in periodic mode, we
|
|
* return.
|
|
*/
|
|
if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
|
|
/* If it is a hrtimer based broadcast, return busy */
|
|
if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
|
|
WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
|
|
|
|
/* Conditionally shut down the local timer. */
|
|
broadcast_shutdown_local(bc, dev);
|
|
|
|
/*
|
|
* We only reprogram the broadcast timer if we
|
|
* did not mark ourself in the force mask and
|
|
* if the cpu local event is earlier than the
|
|
* broadcast event. If the current CPU is in
|
|
* the force mask, then we are going to be
|
|
* woken by the IPI right away; we return
|
|
* busy, so the CPU does not try to go deep
|
|
* idle.
|
|
*/
|
|
if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
|
|
ret = -EBUSY;
|
|
} else if (dev->next_event < bc->next_event) {
|
|
tick_broadcast_set_event(bc, cpu, dev->next_event);
|
|
/*
|
|
* In case of hrtimer broadcasts the
|
|
* programming might have moved the
|
|
* timer to this cpu. If yes, remove
|
|
* us from the broadcast mask and
|
|
* return busy.
|
|
*/
|
|
ret = broadcast_needs_cpu(bc, cpu);
|
|
if (ret) {
|
|
cpumask_clear_cpu(cpu,
|
|
tick_broadcast_oneshot_mask);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
|
|
clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
|
|
/*
|
|
* The cpu which was handling the broadcast
|
|
* timer marked this cpu in the broadcast
|
|
* pending mask and fired the broadcast
|
|
* IPI. So we are going to handle the expired
|
|
* event anyway via the broadcast IPI
|
|
* handler. No need to reprogram the timer
|
|
* with an already expired event.
|
|
*/
|
|
if (cpumask_test_and_clear_cpu(cpu,
|
|
tick_broadcast_pending_mask))
|
|
goto out;
|
|
|
|
/*
|
|
* Bail out if there is no next event.
|
|
*/
|
|
if (dev->next_event == KTIME_MAX)
|
|
goto out;
|
|
/*
|
|
* If the pending bit is not set, then we are
|
|
* either the CPU handling the broadcast
|
|
* interrupt or we got woken by something else.
|
|
*
|
|
* We are not longer in the broadcast mask, so
|
|
* if the cpu local expiry time is already
|
|
* reached, we would reprogram the cpu local
|
|
* timer with an already expired event.
|
|
*
|
|
* This can lead to a ping-pong when we return
|
|
* to idle and therefor rearm the broadcast
|
|
* timer before the cpu local timer was able
|
|
* to fire. This happens because the forced
|
|
* reprogramming makes sure that the event
|
|
* will happen in the future and depending on
|
|
* the min_delta setting this might be far
|
|
* enough out that the ping-pong starts.
|
|
*
|
|
* If the cpu local next_event has expired
|
|
* then we know that the broadcast timer
|
|
* next_event has expired as well and
|
|
* broadcast is about to be handled. So we
|
|
* avoid reprogramming and enforce that the
|
|
* broadcast handler, which did not run yet,
|
|
* will invoke the cpu local handler.
|
|
*
|
|
* We cannot call the handler directly from
|
|
* here, because we might be in a NOHZ phase
|
|
* and we did not go through the irq_enter()
|
|
* nohz fixups.
|
|
*/
|
|
now = ktime_get();
|
|
if (dev->next_event <= now) {
|
|
cpumask_set_cpu(cpu, tick_broadcast_force_mask);
|
|
goto out;
|
|
}
|
|
/*
|
|
* We got woken by something else. Reprogram
|
|
* the cpu local timer device.
|
|
*/
|
|
tick_program_event(dev->next_event, 1);
|
|
}
|
|
}
|
|
out:
|
|
raw_spin_unlock(&tick_broadcast_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reset the one shot broadcast for a cpu
|
|
*
|
|
* Called with tick_broadcast_lock held
|
|
*/
|
|
static void tick_broadcast_clear_oneshot(int cpu)
|
|
{
|
|
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
|
|
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
|
|
}
|
|
|
|
static void tick_broadcast_init_next_event(struct cpumask *mask,
|
|
ktime_t expires)
|
|
{
|
|
struct tick_device *td;
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
td = &per_cpu(tick_cpu_device, cpu);
|
|
if (td->evtdev)
|
|
td->evtdev->next_event = expires;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tick_broadcast_setup_oneshot - setup the broadcast device
|
|
*/
|
|
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!bc)
|
|
return;
|
|
|
|
/* Set it up only once ! */
|
|
if (bc->event_handler != tick_handle_oneshot_broadcast) {
|
|
int was_periodic = clockevent_state_periodic(bc);
|
|
|
|
bc->event_handler = tick_handle_oneshot_broadcast;
|
|
|
|
/*
|
|
* We must be careful here. There might be other CPUs
|
|
* waiting for periodic broadcast. We need to set the
|
|
* oneshot_mask bits for those and program the
|
|
* broadcast device to fire.
|
|
*/
|
|
cpumask_copy(tmpmask, tick_broadcast_mask);
|
|
cpumask_clear_cpu(cpu, tmpmask);
|
|
cpumask_or(tick_broadcast_oneshot_mask,
|
|
tick_broadcast_oneshot_mask, tmpmask);
|
|
|
|
if (was_periodic && !cpumask_empty(tmpmask)) {
|
|
clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
|
|
tick_broadcast_init_next_event(tmpmask,
|
|
tick_next_period);
|
|
tick_broadcast_set_event(bc, cpu, tick_next_period);
|
|
} else
|
|
bc->next_event = KTIME_MAX;
|
|
} else {
|
|
/*
|
|
* The first cpu which switches to oneshot mode sets
|
|
* the bit for all other cpus which are in the general
|
|
* (periodic) broadcast mask. So the bit is set and
|
|
* would prevent the first broadcast enter after this
|
|
* to program the bc device.
|
|
*/
|
|
tick_broadcast_clear_oneshot(cpu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Select oneshot operating mode for the broadcast device
|
|
*/
|
|
void tick_broadcast_switch_to_oneshot(void)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
|
|
bc = tick_broadcast_device.evtdev;
|
|
if (bc)
|
|
tick_broadcast_setup_oneshot(bc);
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void hotplug_cpu__broadcast_tick_pull(int deadcpu)
|
|
{
|
|
struct clock_event_device *bc;
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
bc = tick_broadcast_device.evtdev;
|
|
|
|
if (bc && broadcast_needs_cpu(bc, deadcpu)) {
|
|
/* This moves the broadcast assignment to this CPU: */
|
|
clockevents_program_event(bc, bc->next_event, 1);
|
|
}
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Remove a dead CPU from broadcasting
|
|
*/
|
|
void tick_shutdown_broadcast_oneshot(unsigned int cpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
|
|
|
/*
|
|
* Clear the broadcast masks for the dead cpu, but do not stop
|
|
* the broadcast device!
|
|
*/
|
|
cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
|
|
cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
|
|
cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
|
|
|
|
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Check, whether the broadcast device is in one shot mode
|
|
*/
|
|
int tick_broadcast_oneshot_active(void)
|
|
{
|
|
return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
|
|
}
|
|
|
|
/*
|
|
* Check whether the broadcast device supports oneshot.
|
|
*/
|
|
bool tick_broadcast_oneshot_available(void)
|
|
{
|
|
struct clock_event_device *bc = tick_broadcast_device.evtdev;
|
|
|
|
return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
|
|
}
|
|
|
|
#else
|
|
int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
|
|
{
|
|
struct clock_event_device *bc = tick_broadcast_device.evtdev;
|
|
|
|
if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void __init tick_broadcast_init(void)
|
|
{
|
|
zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
|
|
zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
|
|
zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
|
|
#ifdef CONFIG_TICK_ONESHOT
|
|
zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
|
|
zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
|
|
zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
|
|
#endif
|
|
}
|