mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 03:57:08 +07:00
7fda953ffe
Since the attribute avoid_reset_quirk is work for all devices including those devices that can't morph, convert USB_QUIRK_RESET_MORPHS to USB_QUIRK_RESET. Signed-off-by: Lan Tianyu <tianyu.lan@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1354 lines
42 KiB
C
1354 lines
42 KiB
C
/* Driver for USB Mass Storage compliant devices
|
|
*
|
|
* Current development and maintenance by:
|
|
* (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
|
|
*
|
|
* Developed with the assistance of:
|
|
* (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
|
|
* (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
|
|
* (c) 2002 Alan Stern <stern@rowland.org>
|
|
*
|
|
* Initial work by:
|
|
* (c) 1999 Michael Gee (michael@linuxspecific.com)
|
|
*
|
|
* This driver is based on the 'USB Mass Storage Class' document. This
|
|
* describes in detail the protocol used to communicate with such
|
|
* devices. Clearly, the designers had SCSI and ATAPI commands in
|
|
* mind when they created this document. The commands are all very
|
|
* similar to commands in the SCSI-II and ATAPI specifications.
|
|
*
|
|
* It is important to note that in a number of cases this class
|
|
* exhibits class-specific exemptions from the USB specification.
|
|
* Notably the usage of NAK, STALL and ACK differs from the norm, in
|
|
* that they are used to communicate wait, failed and OK on commands.
|
|
*
|
|
* Also, for certain devices, the interrupt endpoint is used to convey
|
|
* status of a command.
|
|
*
|
|
* Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
|
|
* information about this driver.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2, or (at your option) any
|
|
* later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/usb/quirks.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_eh.h>
|
|
#include <scsi/scsi_device.h>
|
|
|
|
#include "usb.h"
|
|
#include "transport.h"
|
|
#include "protocol.h"
|
|
#include "scsiglue.h"
|
|
#include "debug.h"
|
|
|
|
#include <linux/blkdev.h>
|
|
#include "../../scsi/sd.h"
|
|
|
|
|
|
/***********************************************************************
|
|
* Data transfer routines
|
|
***********************************************************************/
|
|
|
|
/*
|
|
* This is subtle, so pay attention:
|
|
* ---------------------------------
|
|
* We're very concerned about races with a command abort. Hanging this code
|
|
* is a sure fire way to hang the kernel. (Note that this discussion applies
|
|
* only to transactions resulting from a scsi queued-command, since only
|
|
* these transactions are subject to a scsi abort. Other transactions, such
|
|
* as those occurring during device-specific initialization, must be handled
|
|
* by a separate code path.)
|
|
*
|
|
* The abort function (usb_storage_command_abort() in scsiglue.c) first
|
|
* sets the machine state and the ABORTING bit in us->dflags to prevent
|
|
* new URBs from being submitted. It then calls usb_stor_stop_transport()
|
|
* below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
|
|
* to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
|
|
* bit is tested to see if the current_sg scatter-gather request needs to be
|
|
* stopped. The timeout callback routine does much the same thing.
|
|
*
|
|
* When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
|
|
* prevent new URBs from being submitted, and usb_stor_stop_transport() is
|
|
* called to stop any ongoing requests.
|
|
*
|
|
* The submit function first verifies that the submitting is allowed
|
|
* (neither ABORTING nor DISCONNECTING bits are set) and that the submit
|
|
* completes without errors, and only then sets the URB_ACTIVE bit. This
|
|
* prevents the stop_transport() function from trying to cancel the URB
|
|
* while the submit call is underway. Next, the submit function must test
|
|
* the flags to see if an abort or disconnect occurred during the submission
|
|
* or before the URB_ACTIVE bit was set. If so, it's essential to cancel
|
|
* the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
|
|
* is still set). Either way, the function must then wait for the URB to
|
|
* finish. Note that the URB can still be in progress even after a call to
|
|
* usb_unlink_urb() returns.
|
|
*
|
|
* The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
|
|
* either the stop_transport() function or the submitting function
|
|
* is guaranteed to call usb_unlink_urb() for an active URB,
|
|
* and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
|
|
* called more than once or from being called during usb_submit_urb().
|
|
*/
|
|
|
|
/* This is the completion handler which will wake us up when an URB
|
|
* completes.
|
|
*/
|
|
static void usb_stor_blocking_completion(struct urb *urb)
|
|
{
|
|
struct completion *urb_done_ptr = urb->context;
|
|
|
|
complete(urb_done_ptr);
|
|
}
|
|
|
|
/* This is the common part of the URB message submission code
|
|
*
|
|
* All URBs from the usb-storage driver involved in handling a queued scsi
|
|
* command _must_ pass through this function (or something like it) for the
|
|
* abort mechanisms to work properly.
|
|
*/
|
|
static int usb_stor_msg_common(struct us_data *us, int timeout)
|
|
{
|
|
struct completion urb_done;
|
|
long timeleft;
|
|
int status;
|
|
|
|
/* don't submit URBs during abort processing */
|
|
if (test_bit(US_FLIDX_ABORTING, &us->dflags))
|
|
return -EIO;
|
|
|
|
/* set up data structures for the wakeup system */
|
|
init_completion(&urb_done);
|
|
|
|
/* fill the common fields in the URB */
|
|
us->current_urb->context = &urb_done;
|
|
us->current_urb->transfer_flags = 0;
|
|
|
|
/* we assume that if transfer_buffer isn't us->iobuf then it
|
|
* hasn't been mapped for DMA. Yes, this is clunky, but it's
|
|
* easier than always having the caller tell us whether the
|
|
* transfer buffer has already been mapped. */
|
|
if (us->current_urb->transfer_buffer == us->iobuf)
|
|
us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
|
|
us->current_urb->transfer_dma = us->iobuf_dma;
|
|
|
|
/* submit the URB */
|
|
status = usb_submit_urb(us->current_urb, GFP_NOIO);
|
|
if (status) {
|
|
/* something went wrong */
|
|
return status;
|
|
}
|
|
|
|
/* since the URB has been submitted successfully, it's now okay
|
|
* to cancel it */
|
|
set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
|
|
|
|
/* did an abort occur during the submission? */
|
|
if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
|
|
|
|
/* cancel the URB, if it hasn't been cancelled already */
|
|
if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
|
|
US_DEBUGP("-- cancelling URB\n");
|
|
usb_unlink_urb(us->current_urb);
|
|
}
|
|
}
|
|
|
|
/* wait for the completion of the URB */
|
|
timeleft = wait_for_completion_interruptible_timeout(
|
|
&urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
|
|
|
|
clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
|
|
|
|
if (timeleft <= 0) {
|
|
US_DEBUGP("%s -- cancelling URB\n",
|
|
timeleft == 0 ? "Timeout" : "Signal");
|
|
usb_kill_urb(us->current_urb);
|
|
}
|
|
|
|
/* return the URB status */
|
|
return us->current_urb->status;
|
|
}
|
|
|
|
/*
|
|
* Transfer one control message, with timeouts, and allowing early
|
|
* termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
|
|
*/
|
|
int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
|
|
u8 request, u8 requesttype, u16 value, u16 index,
|
|
void *data, u16 size, int timeout)
|
|
{
|
|
int status;
|
|
|
|
US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
|
|
__func__, request, requesttype,
|
|
value, index, size);
|
|
|
|
/* fill in the devrequest structure */
|
|
us->cr->bRequestType = requesttype;
|
|
us->cr->bRequest = request;
|
|
us->cr->wValue = cpu_to_le16(value);
|
|
us->cr->wIndex = cpu_to_le16(index);
|
|
us->cr->wLength = cpu_to_le16(size);
|
|
|
|
/* fill and submit the URB */
|
|
usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
|
|
(unsigned char*) us->cr, data, size,
|
|
usb_stor_blocking_completion, NULL);
|
|
status = usb_stor_msg_common(us, timeout);
|
|
|
|
/* return the actual length of the data transferred if no error */
|
|
if (status == 0)
|
|
status = us->current_urb->actual_length;
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_control_msg);
|
|
|
|
/* This is a version of usb_clear_halt() that allows early termination and
|
|
* doesn't read the status from the device -- this is because some devices
|
|
* crash their internal firmware when the status is requested after a halt.
|
|
*
|
|
* A definitive list of these 'bad' devices is too difficult to maintain or
|
|
* make complete enough to be useful. This problem was first observed on the
|
|
* Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
|
|
* MacOS nor Windows checks the status after clearing a halt.
|
|
*
|
|
* Since many vendors in this space limit their testing to interoperability
|
|
* with these two OSes, specification violations like this one are common.
|
|
*/
|
|
int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
|
|
{
|
|
int result;
|
|
int endp = usb_pipeendpoint(pipe);
|
|
|
|
if (usb_pipein (pipe))
|
|
endp |= USB_DIR_IN;
|
|
|
|
result = usb_stor_control_msg(us, us->send_ctrl_pipe,
|
|
USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
|
|
USB_ENDPOINT_HALT, endp,
|
|
NULL, 0, 3*HZ);
|
|
|
|
if (result >= 0)
|
|
usb_reset_endpoint(us->pusb_dev, endp);
|
|
|
|
US_DEBUGP("%s: result = %d\n", __func__, result);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_clear_halt);
|
|
|
|
|
|
/*
|
|
* Interpret the results of a URB transfer
|
|
*
|
|
* This function prints appropriate debugging messages, clears halts on
|
|
* non-control endpoints, and translates the status to the corresponding
|
|
* USB_STOR_XFER_xxx return code.
|
|
*/
|
|
static int interpret_urb_result(struct us_data *us, unsigned int pipe,
|
|
unsigned int length, int result, unsigned int partial)
|
|
{
|
|
US_DEBUGP("Status code %d; transferred %u/%u\n",
|
|
result, partial, length);
|
|
switch (result) {
|
|
|
|
/* no error code; did we send all the data? */
|
|
case 0:
|
|
if (partial != length) {
|
|
US_DEBUGP("-- short transfer\n");
|
|
return USB_STOR_XFER_SHORT;
|
|
}
|
|
|
|
US_DEBUGP("-- transfer complete\n");
|
|
return USB_STOR_XFER_GOOD;
|
|
|
|
/* stalled */
|
|
case -EPIPE:
|
|
/* for control endpoints, (used by CB[I]) a stall indicates
|
|
* a failed command */
|
|
if (usb_pipecontrol(pipe)) {
|
|
US_DEBUGP("-- stall on control pipe\n");
|
|
return USB_STOR_XFER_STALLED;
|
|
}
|
|
|
|
/* for other sorts of endpoint, clear the stall */
|
|
US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe);
|
|
if (usb_stor_clear_halt(us, pipe) < 0)
|
|
return USB_STOR_XFER_ERROR;
|
|
return USB_STOR_XFER_STALLED;
|
|
|
|
/* babble - the device tried to send more than we wanted to read */
|
|
case -EOVERFLOW:
|
|
US_DEBUGP("-- babble\n");
|
|
return USB_STOR_XFER_LONG;
|
|
|
|
/* the transfer was cancelled by abort, disconnect, or timeout */
|
|
case -ECONNRESET:
|
|
US_DEBUGP("-- transfer cancelled\n");
|
|
return USB_STOR_XFER_ERROR;
|
|
|
|
/* short scatter-gather read transfer */
|
|
case -EREMOTEIO:
|
|
US_DEBUGP("-- short read transfer\n");
|
|
return USB_STOR_XFER_SHORT;
|
|
|
|
/* abort or disconnect in progress */
|
|
case -EIO:
|
|
US_DEBUGP("-- abort or disconnect in progress\n");
|
|
return USB_STOR_XFER_ERROR;
|
|
|
|
/* the catch-all error case */
|
|
default:
|
|
US_DEBUGP("-- unknown error\n");
|
|
return USB_STOR_XFER_ERROR;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transfer one control message, without timeouts, but allowing early
|
|
* termination. Return codes are USB_STOR_XFER_xxx.
|
|
*/
|
|
int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
|
|
u8 request, u8 requesttype, u16 value, u16 index,
|
|
void *data, u16 size)
|
|
{
|
|
int result;
|
|
|
|
US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
|
|
__func__, request, requesttype,
|
|
value, index, size);
|
|
|
|
/* fill in the devrequest structure */
|
|
us->cr->bRequestType = requesttype;
|
|
us->cr->bRequest = request;
|
|
us->cr->wValue = cpu_to_le16(value);
|
|
us->cr->wIndex = cpu_to_le16(index);
|
|
us->cr->wLength = cpu_to_le16(size);
|
|
|
|
/* fill and submit the URB */
|
|
usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
|
|
(unsigned char*) us->cr, data, size,
|
|
usb_stor_blocking_completion, NULL);
|
|
result = usb_stor_msg_common(us, 0);
|
|
|
|
return interpret_urb_result(us, pipe, size, result,
|
|
us->current_urb->actual_length);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_ctrl_transfer);
|
|
|
|
/*
|
|
* Receive one interrupt buffer, without timeouts, but allowing early
|
|
* termination. Return codes are USB_STOR_XFER_xxx.
|
|
*
|
|
* This routine always uses us->recv_intr_pipe as the pipe and
|
|
* us->ep_bInterval as the interrupt interval.
|
|
*/
|
|
static int usb_stor_intr_transfer(struct us_data *us, void *buf,
|
|
unsigned int length)
|
|
{
|
|
int result;
|
|
unsigned int pipe = us->recv_intr_pipe;
|
|
unsigned int maxp;
|
|
|
|
US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
|
|
|
|
/* calculate the max packet size */
|
|
maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
|
|
if (maxp > length)
|
|
maxp = length;
|
|
|
|
/* fill and submit the URB */
|
|
usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
|
|
maxp, usb_stor_blocking_completion, NULL,
|
|
us->ep_bInterval);
|
|
result = usb_stor_msg_common(us, 0);
|
|
|
|
return interpret_urb_result(us, pipe, length, result,
|
|
us->current_urb->actual_length);
|
|
}
|
|
|
|
/*
|
|
* Transfer one buffer via bulk pipe, without timeouts, but allowing early
|
|
* termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
|
|
* stalls during the transfer, the halt is automatically cleared.
|
|
*/
|
|
int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
|
|
void *buf, unsigned int length, unsigned int *act_len)
|
|
{
|
|
int result;
|
|
|
|
US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
|
|
|
|
/* fill and submit the URB */
|
|
usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
|
|
usb_stor_blocking_completion, NULL);
|
|
result = usb_stor_msg_common(us, 0);
|
|
|
|
/* store the actual length of the data transferred */
|
|
if (act_len)
|
|
*act_len = us->current_urb->actual_length;
|
|
return interpret_urb_result(us, pipe, length, result,
|
|
us->current_urb->actual_length);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_buf);
|
|
|
|
/*
|
|
* Transfer a scatter-gather list via bulk transfer
|
|
*
|
|
* This function does basically the same thing as usb_stor_bulk_transfer_buf()
|
|
* above, but it uses the usbcore scatter-gather library.
|
|
*/
|
|
static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
|
|
struct scatterlist *sg, int num_sg, unsigned int length,
|
|
unsigned int *act_len)
|
|
{
|
|
int result;
|
|
|
|
/* don't submit s-g requests during abort processing */
|
|
if (test_bit(US_FLIDX_ABORTING, &us->dflags))
|
|
return USB_STOR_XFER_ERROR;
|
|
|
|
/* initialize the scatter-gather request block */
|
|
US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__,
|
|
length, num_sg);
|
|
result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
|
|
sg, num_sg, length, GFP_NOIO);
|
|
if (result) {
|
|
US_DEBUGP("usb_sg_init returned %d\n", result);
|
|
return USB_STOR_XFER_ERROR;
|
|
}
|
|
|
|
/* since the block has been initialized successfully, it's now
|
|
* okay to cancel it */
|
|
set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
|
|
|
|
/* did an abort occur during the submission? */
|
|
if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
|
|
|
|
/* cancel the request, if it hasn't been cancelled already */
|
|
if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
|
|
US_DEBUGP("-- cancelling sg request\n");
|
|
usb_sg_cancel(&us->current_sg);
|
|
}
|
|
}
|
|
|
|
/* wait for the completion of the transfer */
|
|
usb_sg_wait(&us->current_sg);
|
|
clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
|
|
|
|
result = us->current_sg.status;
|
|
if (act_len)
|
|
*act_len = us->current_sg.bytes;
|
|
return interpret_urb_result(us, pipe, length, result,
|
|
us->current_sg.bytes);
|
|
}
|
|
|
|
/*
|
|
* Common used function. Transfer a complete command
|
|
* via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
|
|
*/
|
|
int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
|
|
struct scsi_cmnd* srb)
|
|
{
|
|
unsigned int partial;
|
|
int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
|
|
scsi_sg_count(srb), scsi_bufflen(srb),
|
|
&partial);
|
|
|
|
scsi_set_resid(srb, scsi_bufflen(srb) - partial);
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_bulk_srb);
|
|
|
|
/*
|
|
* Transfer an entire SCSI command's worth of data payload over the bulk
|
|
* pipe.
|
|
*
|
|
* Note that this uses usb_stor_bulk_transfer_buf() and
|
|
* usb_stor_bulk_transfer_sglist() to achieve its goals --
|
|
* this function simply determines whether we're going to use
|
|
* scatter-gather or not, and acts appropriately.
|
|
*/
|
|
int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
|
|
void *buf, unsigned int length_left, int use_sg, int *residual)
|
|
{
|
|
int result;
|
|
unsigned int partial;
|
|
|
|
/* are we scatter-gathering? */
|
|
if (use_sg) {
|
|
/* use the usb core scatter-gather primitives */
|
|
result = usb_stor_bulk_transfer_sglist(us, pipe,
|
|
(struct scatterlist *) buf, use_sg,
|
|
length_left, &partial);
|
|
length_left -= partial;
|
|
} else {
|
|
/* no scatter-gather, just make the request */
|
|
result = usb_stor_bulk_transfer_buf(us, pipe, buf,
|
|
length_left, &partial);
|
|
length_left -= partial;
|
|
}
|
|
|
|
/* store the residual and return the error code */
|
|
if (residual)
|
|
*residual = length_left;
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_bulk_transfer_sg);
|
|
|
|
/***********************************************************************
|
|
* Transport routines
|
|
***********************************************************************/
|
|
|
|
/* There are so many devices that report the capacity incorrectly,
|
|
* this routine was written to counteract some of the resulting
|
|
* problems.
|
|
*/
|
|
static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
|
|
{
|
|
struct gendisk *disk;
|
|
struct scsi_disk *sdkp;
|
|
u32 sector;
|
|
|
|
/* To Report "Medium Error: Record Not Found */
|
|
static unsigned char record_not_found[18] = {
|
|
[0] = 0x70, /* current error */
|
|
[2] = MEDIUM_ERROR, /* = 0x03 */
|
|
[7] = 0x0a, /* additional length */
|
|
[12] = 0x14 /* Record Not Found */
|
|
};
|
|
|
|
/* If last-sector problems can't occur, whether because the
|
|
* capacity was already decremented or because the device is
|
|
* known to report the correct capacity, then we don't need
|
|
* to do anything.
|
|
*/
|
|
if (!us->use_last_sector_hacks)
|
|
return;
|
|
|
|
/* Was this command a READ(10) or a WRITE(10)? */
|
|
if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
|
|
goto done;
|
|
|
|
/* Did this command access the last sector? */
|
|
sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
|
|
(srb->cmnd[4] << 8) | (srb->cmnd[5]);
|
|
disk = srb->request->rq_disk;
|
|
if (!disk)
|
|
goto done;
|
|
sdkp = scsi_disk(disk);
|
|
if (!sdkp)
|
|
goto done;
|
|
if (sector + 1 != sdkp->capacity)
|
|
goto done;
|
|
|
|
if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
|
|
|
|
/* The command succeeded. We know this device doesn't
|
|
* have the last-sector bug, so stop checking it.
|
|
*/
|
|
us->use_last_sector_hacks = 0;
|
|
|
|
} else {
|
|
/* The command failed. Allow up to 3 retries in case this
|
|
* is some normal sort of failure. After that, assume the
|
|
* capacity is wrong and we're trying to access the sector
|
|
* beyond the end. Replace the result code and sense data
|
|
* with values that will cause the SCSI core to fail the
|
|
* command immediately, instead of going into an infinite
|
|
* (or even just a very long) retry loop.
|
|
*/
|
|
if (++us->last_sector_retries < 3)
|
|
return;
|
|
srb->result = SAM_STAT_CHECK_CONDITION;
|
|
memcpy(srb->sense_buffer, record_not_found,
|
|
sizeof(record_not_found));
|
|
}
|
|
|
|
done:
|
|
/* Don't reset the retry counter for TEST UNIT READY commands,
|
|
* because they get issued after device resets which might be
|
|
* caused by a failed last-sector access.
|
|
*/
|
|
if (srb->cmnd[0] != TEST_UNIT_READY)
|
|
us->last_sector_retries = 0;
|
|
}
|
|
|
|
/* Invoke the transport and basic error-handling/recovery methods
|
|
*
|
|
* This is used by the protocol layers to actually send the message to
|
|
* the device and receive the response.
|
|
*/
|
|
void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
|
|
{
|
|
int need_auto_sense;
|
|
int result;
|
|
|
|
/* send the command to the transport layer */
|
|
scsi_set_resid(srb, 0);
|
|
result = us->transport(srb, us);
|
|
|
|
/* if the command gets aborted by the higher layers, we need to
|
|
* short-circuit all other processing
|
|
*/
|
|
if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
|
|
US_DEBUGP("-- command was aborted\n");
|
|
srb->result = DID_ABORT << 16;
|
|
goto Handle_Errors;
|
|
}
|
|
|
|
/* if there is a transport error, reset and don't auto-sense */
|
|
if (result == USB_STOR_TRANSPORT_ERROR) {
|
|
US_DEBUGP("-- transport indicates error, resetting\n");
|
|
srb->result = DID_ERROR << 16;
|
|
goto Handle_Errors;
|
|
}
|
|
|
|
/* if the transport provided its own sense data, don't auto-sense */
|
|
if (result == USB_STOR_TRANSPORT_NO_SENSE) {
|
|
srb->result = SAM_STAT_CHECK_CONDITION;
|
|
last_sector_hacks(us, srb);
|
|
return;
|
|
}
|
|
|
|
srb->result = SAM_STAT_GOOD;
|
|
|
|
/* Determine if we need to auto-sense
|
|
*
|
|
* I normally don't use a flag like this, but it's almost impossible
|
|
* to understand what's going on here if I don't.
|
|
*/
|
|
need_auto_sense = 0;
|
|
|
|
/*
|
|
* If we're running the CB transport, which is incapable
|
|
* of determining status on its own, we will auto-sense
|
|
* unless the operation involved a data-in transfer. Devices
|
|
* can signal most data-in errors by stalling the bulk-in pipe.
|
|
*/
|
|
if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_DPCM_USB) &&
|
|
srb->sc_data_direction != DMA_FROM_DEVICE) {
|
|
US_DEBUGP("-- CB transport device requiring auto-sense\n");
|
|
need_auto_sense = 1;
|
|
}
|
|
|
|
/*
|
|
* If we have a failure, we're going to do a REQUEST_SENSE
|
|
* automatically. Note that we differentiate between a command
|
|
* "failure" and an "error" in the transport mechanism.
|
|
*/
|
|
if (result == USB_STOR_TRANSPORT_FAILED) {
|
|
US_DEBUGP("-- transport indicates command failure\n");
|
|
need_auto_sense = 1;
|
|
}
|
|
|
|
/*
|
|
* Determine if this device is SAT by seeing if the
|
|
* command executed successfully. Otherwise we'll have
|
|
* to wait for at least one CHECK_CONDITION to determine
|
|
* SANE_SENSE support
|
|
*/
|
|
if (unlikely((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
|
|
result == USB_STOR_TRANSPORT_GOOD &&
|
|
!(us->fflags & US_FL_SANE_SENSE) &&
|
|
!(us->fflags & US_FL_BAD_SENSE) &&
|
|
!(srb->cmnd[2] & 0x20))) {
|
|
US_DEBUGP("-- SAT supported, increasing auto-sense\n");
|
|
us->fflags |= US_FL_SANE_SENSE;
|
|
}
|
|
|
|
/*
|
|
* A short transfer on a command where we don't expect it
|
|
* is unusual, but it doesn't mean we need to auto-sense.
|
|
*/
|
|
if ((scsi_get_resid(srb) > 0) &&
|
|
!((srb->cmnd[0] == REQUEST_SENSE) ||
|
|
(srb->cmnd[0] == INQUIRY) ||
|
|
(srb->cmnd[0] == MODE_SENSE) ||
|
|
(srb->cmnd[0] == LOG_SENSE) ||
|
|
(srb->cmnd[0] == MODE_SENSE_10))) {
|
|
US_DEBUGP("-- unexpectedly short transfer\n");
|
|
}
|
|
|
|
/* Now, if we need to do the auto-sense, let's do it */
|
|
if (need_auto_sense) {
|
|
int temp_result;
|
|
struct scsi_eh_save ses;
|
|
int sense_size = US_SENSE_SIZE;
|
|
struct scsi_sense_hdr sshdr;
|
|
const u8 *scdd;
|
|
u8 fm_ili;
|
|
|
|
/* device supports and needs bigger sense buffer */
|
|
if (us->fflags & US_FL_SANE_SENSE)
|
|
sense_size = ~0;
|
|
Retry_Sense:
|
|
US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
|
|
|
|
scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
|
|
|
|
/* FIXME: we must do the protocol translation here */
|
|
if (us->subclass == USB_SC_RBC || us->subclass == USB_SC_SCSI ||
|
|
us->subclass == USB_SC_CYP_ATACB)
|
|
srb->cmd_len = 6;
|
|
else
|
|
srb->cmd_len = 12;
|
|
|
|
/* issue the auto-sense command */
|
|
scsi_set_resid(srb, 0);
|
|
temp_result = us->transport(us->srb, us);
|
|
|
|
/* let's clean up right away */
|
|
scsi_eh_restore_cmnd(srb, &ses);
|
|
|
|
if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
|
|
US_DEBUGP("-- auto-sense aborted\n");
|
|
srb->result = DID_ABORT << 16;
|
|
|
|
/* If SANE_SENSE caused this problem, disable it */
|
|
if (sense_size != US_SENSE_SIZE) {
|
|
us->fflags &= ~US_FL_SANE_SENSE;
|
|
us->fflags |= US_FL_BAD_SENSE;
|
|
}
|
|
goto Handle_Errors;
|
|
}
|
|
|
|
/* Some devices claim to support larger sense but fail when
|
|
* trying to request it. When a transport failure happens
|
|
* using US_FS_SANE_SENSE, we always retry with a standard
|
|
* (small) sense request. This fixes some USB GSM modems
|
|
*/
|
|
if (temp_result == USB_STOR_TRANSPORT_FAILED &&
|
|
sense_size != US_SENSE_SIZE) {
|
|
US_DEBUGP("-- auto-sense failure, retry small sense\n");
|
|
sense_size = US_SENSE_SIZE;
|
|
us->fflags &= ~US_FL_SANE_SENSE;
|
|
us->fflags |= US_FL_BAD_SENSE;
|
|
goto Retry_Sense;
|
|
}
|
|
|
|
/* Other failures */
|
|
if (temp_result != USB_STOR_TRANSPORT_GOOD) {
|
|
US_DEBUGP("-- auto-sense failure\n");
|
|
|
|
/* we skip the reset if this happens to be a
|
|
* multi-target device, since failure of an
|
|
* auto-sense is perfectly valid
|
|
*/
|
|
srb->result = DID_ERROR << 16;
|
|
if (!(us->fflags & US_FL_SCM_MULT_TARG))
|
|
goto Handle_Errors;
|
|
return;
|
|
}
|
|
|
|
/* If the sense data returned is larger than 18-bytes then we
|
|
* assume this device supports requesting more in the future.
|
|
* The response code must be 70h through 73h inclusive.
|
|
*/
|
|
if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
|
|
!(us->fflags & US_FL_SANE_SENSE) &&
|
|
!(us->fflags & US_FL_BAD_SENSE) &&
|
|
(srb->sense_buffer[0] & 0x7C) == 0x70) {
|
|
US_DEBUGP("-- SANE_SENSE support enabled\n");
|
|
us->fflags |= US_FL_SANE_SENSE;
|
|
|
|
/* Indicate to the user that we truncated their sense
|
|
* because we didn't know it supported larger sense.
|
|
*/
|
|
US_DEBUGP("-- Sense data truncated to %i from %i\n",
|
|
US_SENSE_SIZE,
|
|
srb->sense_buffer[7] + 8);
|
|
srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
|
|
}
|
|
|
|
scsi_normalize_sense(srb->sense_buffer, SCSI_SENSE_BUFFERSIZE,
|
|
&sshdr);
|
|
|
|
US_DEBUGP("-- Result from auto-sense is %d\n", temp_result);
|
|
US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
|
|
sshdr.response_code, sshdr.sense_key,
|
|
sshdr.asc, sshdr.ascq);
|
|
#ifdef CONFIG_USB_STORAGE_DEBUG
|
|
usb_stor_show_sense(sshdr.sense_key, sshdr.asc, sshdr.ascq);
|
|
#endif
|
|
|
|
/* set the result so the higher layers expect this data */
|
|
srb->result = SAM_STAT_CHECK_CONDITION;
|
|
|
|
scdd = scsi_sense_desc_find(srb->sense_buffer,
|
|
SCSI_SENSE_BUFFERSIZE, 4);
|
|
fm_ili = (scdd ? scdd[3] : srb->sense_buffer[2]) & 0xA0;
|
|
|
|
/* We often get empty sense data. This could indicate that
|
|
* everything worked or that there was an unspecified
|
|
* problem. We have to decide which.
|
|
*/
|
|
if (sshdr.sense_key == 0 && sshdr.asc == 0 && sshdr.ascq == 0 &&
|
|
fm_ili == 0) {
|
|
/* If things are really okay, then let's show that.
|
|
* Zero out the sense buffer so the higher layers
|
|
* won't realize we did an unsolicited auto-sense.
|
|
*/
|
|
if (result == USB_STOR_TRANSPORT_GOOD) {
|
|
srb->result = SAM_STAT_GOOD;
|
|
srb->sense_buffer[0] = 0x0;
|
|
|
|
/* If there was a problem, report an unspecified
|
|
* hardware error to prevent the higher layers from
|
|
* entering an infinite retry loop.
|
|
*/
|
|
} else {
|
|
srb->result = DID_ERROR << 16;
|
|
if ((sshdr.response_code & 0x72) == 0x72)
|
|
srb->sense_buffer[1] = HARDWARE_ERROR;
|
|
else
|
|
srb->sense_buffer[2] = HARDWARE_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some devices don't work or return incorrect data the first
|
|
* time they get a READ(10) command, or for the first READ(10)
|
|
* after a media change. If the INITIAL_READ10 flag is set,
|
|
* keep track of whether READ(10) commands succeed. If the
|
|
* previous one succeeded and this one failed, set the REDO_READ10
|
|
* flag to force a retry.
|
|
*/
|
|
if (unlikely((us->fflags & US_FL_INITIAL_READ10) &&
|
|
srb->cmnd[0] == READ_10)) {
|
|
if (srb->result == SAM_STAT_GOOD) {
|
|
set_bit(US_FLIDX_READ10_WORKED, &us->dflags);
|
|
} else if (test_bit(US_FLIDX_READ10_WORKED, &us->dflags)) {
|
|
clear_bit(US_FLIDX_READ10_WORKED, &us->dflags);
|
|
set_bit(US_FLIDX_REDO_READ10, &us->dflags);
|
|
}
|
|
|
|
/*
|
|
* Next, if the REDO_READ10 flag is set, return a result
|
|
* code that will cause the SCSI core to retry the READ(10)
|
|
* command immediately.
|
|
*/
|
|
if (test_bit(US_FLIDX_REDO_READ10, &us->dflags)) {
|
|
clear_bit(US_FLIDX_REDO_READ10, &us->dflags);
|
|
srb->result = DID_IMM_RETRY << 16;
|
|
srb->sense_buffer[0] = 0;
|
|
}
|
|
}
|
|
|
|
/* Did we transfer less than the minimum amount required? */
|
|
if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
|
|
scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
|
|
srb->result = DID_ERROR << 16;
|
|
|
|
last_sector_hacks(us, srb);
|
|
return;
|
|
|
|
/* Error and abort processing: try to resynchronize with the device
|
|
* by issuing a port reset. If that fails, try a class-specific
|
|
* device reset. */
|
|
Handle_Errors:
|
|
|
|
/* Set the RESETTING bit, and clear the ABORTING bit so that
|
|
* the reset may proceed. */
|
|
scsi_lock(us_to_host(us));
|
|
set_bit(US_FLIDX_RESETTING, &us->dflags);
|
|
clear_bit(US_FLIDX_ABORTING, &us->dflags);
|
|
scsi_unlock(us_to_host(us));
|
|
|
|
/* We must release the device lock because the pre_reset routine
|
|
* will want to acquire it. */
|
|
mutex_unlock(&us->dev_mutex);
|
|
result = usb_stor_port_reset(us);
|
|
mutex_lock(&us->dev_mutex);
|
|
|
|
if (result < 0) {
|
|
scsi_lock(us_to_host(us));
|
|
usb_stor_report_device_reset(us);
|
|
scsi_unlock(us_to_host(us));
|
|
us->transport_reset(us);
|
|
}
|
|
clear_bit(US_FLIDX_RESETTING, &us->dflags);
|
|
last_sector_hacks(us, srb);
|
|
}
|
|
|
|
/* Stop the current URB transfer */
|
|
void usb_stor_stop_transport(struct us_data *us)
|
|
{
|
|
US_DEBUGP("%s called\n", __func__);
|
|
|
|
/* If the state machine is blocked waiting for an URB,
|
|
* let's wake it up. The test_and_clear_bit() call
|
|
* guarantees that if a URB has just been submitted,
|
|
* it won't be cancelled more than once. */
|
|
if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
|
|
US_DEBUGP("-- cancelling URB\n");
|
|
usb_unlink_urb(us->current_urb);
|
|
}
|
|
|
|
/* If we are waiting for a scatter-gather operation, cancel it. */
|
|
if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
|
|
US_DEBUGP("-- cancelling sg request\n");
|
|
usb_sg_cancel(&us->current_sg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Control/Bulk and Control/Bulk/Interrupt transport
|
|
*/
|
|
|
|
int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
|
|
{
|
|
unsigned int transfer_length = scsi_bufflen(srb);
|
|
unsigned int pipe = 0;
|
|
int result;
|
|
|
|
/* COMMAND STAGE */
|
|
/* let's send the command via the control pipe */
|
|
result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
|
|
US_CBI_ADSC,
|
|
USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
|
|
us->ifnum, srb->cmnd, srb->cmd_len);
|
|
|
|
/* check the return code for the command */
|
|
US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
|
|
|
|
/* if we stalled the command, it means command failed */
|
|
if (result == USB_STOR_XFER_STALLED) {
|
|
return USB_STOR_TRANSPORT_FAILED;
|
|
}
|
|
|
|
/* Uh oh... serious problem here */
|
|
if (result != USB_STOR_XFER_GOOD) {
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
}
|
|
|
|
/* DATA STAGE */
|
|
/* transfer the data payload for this command, if one exists*/
|
|
if (transfer_length) {
|
|
pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
|
|
us->recv_bulk_pipe : us->send_bulk_pipe;
|
|
result = usb_stor_bulk_srb(us, pipe, srb);
|
|
US_DEBUGP("CBI data stage result is 0x%x\n", result);
|
|
|
|
/* if we stalled the data transfer it means command failed */
|
|
if (result == USB_STOR_XFER_STALLED)
|
|
return USB_STOR_TRANSPORT_FAILED;
|
|
if (result > USB_STOR_XFER_STALLED)
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
}
|
|
|
|
/* STATUS STAGE */
|
|
|
|
/* NOTE: CB does not have a status stage. Silly, I know. So
|
|
* we have to catch this at a higher level.
|
|
*/
|
|
if (us->protocol != USB_PR_CBI)
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
|
|
result = usb_stor_intr_transfer(us, us->iobuf, 2);
|
|
US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
|
|
us->iobuf[0], us->iobuf[1]);
|
|
if (result != USB_STOR_XFER_GOOD)
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
|
|
/* UFI gives us ASC and ASCQ, like a request sense
|
|
*
|
|
* REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
|
|
* devices, so we ignore the information for those commands. Note
|
|
* that this means we could be ignoring a real error on these
|
|
* commands, but that can't be helped.
|
|
*/
|
|
if (us->subclass == USB_SC_UFI) {
|
|
if (srb->cmnd[0] == REQUEST_SENSE ||
|
|
srb->cmnd[0] == INQUIRY)
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
if (us->iobuf[0])
|
|
goto Failed;
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
}
|
|
|
|
/* If not UFI, we interpret the data as a result code
|
|
* The first byte should always be a 0x0.
|
|
*
|
|
* Some bogus devices don't follow that rule. They stuff the ASC
|
|
* into the first byte -- so if it's non-zero, call it a failure.
|
|
*/
|
|
if (us->iobuf[0]) {
|
|
US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
|
|
us->iobuf[0]);
|
|
goto Failed;
|
|
|
|
}
|
|
|
|
/* The second byte & 0x0F should be 0x0 for good, otherwise error */
|
|
switch (us->iobuf[1] & 0x0F) {
|
|
case 0x00:
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
case 0x01:
|
|
goto Failed;
|
|
}
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
|
|
/* the CBI spec requires that the bulk pipe must be cleared
|
|
* following any data-in/out command failure (section 2.4.3.1.3)
|
|
*/
|
|
Failed:
|
|
if (pipe)
|
|
usb_stor_clear_halt(us, pipe);
|
|
return USB_STOR_TRANSPORT_FAILED;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_CB_transport);
|
|
|
|
/*
|
|
* Bulk only transport
|
|
*/
|
|
|
|
/* Determine what the maximum LUN supported is */
|
|
int usb_stor_Bulk_max_lun(struct us_data *us)
|
|
{
|
|
int result;
|
|
|
|
/* issue the command */
|
|
us->iobuf[0] = 0;
|
|
result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
|
|
US_BULK_GET_MAX_LUN,
|
|
USB_DIR_IN | USB_TYPE_CLASS |
|
|
USB_RECIP_INTERFACE,
|
|
0, us->ifnum, us->iobuf, 1, 10*HZ);
|
|
|
|
US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
|
|
result, us->iobuf[0]);
|
|
|
|
/* if we have a successful request, return the result */
|
|
if (result > 0)
|
|
return us->iobuf[0];
|
|
|
|
/*
|
|
* Some devices don't like GetMaxLUN. They may STALL the control
|
|
* pipe, they may return a zero-length result, they may do nothing at
|
|
* all and timeout, or they may fail in even more bizarrely creative
|
|
* ways. In these cases the best approach is to use the default
|
|
* value: only one LUN.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
|
|
{
|
|
struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
|
|
struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
|
|
unsigned int transfer_length = scsi_bufflen(srb);
|
|
unsigned int residue;
|
|
int result;
|
|
int fake_sense = 0;
|
|
unsigned int cswlen;
|
|
unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
|
|
|
|
/* Take care of BULK32 devices; set extra byte to 0 */
|
|
if (unlikely(us->fflags & US_FL_BULK32)) {
|
|
cbwlen = 32;
|
|
us->iobuf[31] = 0;
|
|
}
|
|
|
|
/* set up the command wrapper */
|
|
bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
|
|
bcb->DataTransferLength = cpu_to_le32(transfer_length);
|
|
bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ?
|
|
US_BULK_FLAG_IN : 0;
|
|
bcb->Tag = ++us->tag;
|
|
bcb->Lun = srb->device->lun;
|
|
if (us->fflags & US_FL_SCM_MULT_TARG)
|
|
bcb->Lun |= srb->device->id << 4;
|
|
bcb->Length = srb->cmd_len;
|
|
|
|
/* copy the command payload */
|
|
memset(bcb->CDB, 0, sizeof(bcb->CDB));
|
|
memcpy(bcb->CDB, srb->cmnd, bcb->Length);
|
|
|
|
/* send it to out endpoint */
|
|
US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
|
|
le32_to_cpu(bcb->Signature), bcb->Tag,
|
|
le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
|
|
(bcb->Lun >> 4), (bcb->Lun & 0x0F),
|
|
bcb->Length);
|
|
result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
|
|
bcb, cbwlen, NULL);
|
|
US_DEBUGP("Bulk command transfer result=%d\n", result);
|
|
if (result != USB_STOR_XFER_GOOD)
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
|
|
/* DATA STAGE */
|
|
/* send/receive data payload, if there is any */
|
|
|
|
/* Some USB-IDE converter chips need a 100us delay between the
|
|
* command phase and the data phase. Some devices need a little
|
|
* more than that, probably because of clock rate inaccuracies. */
|
|
if (unlikely(us->fflags & US_FL_GO_SLOW))
|
|
udelay(125);
|
|
|
|
if (transfer_length) {
|
|
unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
|
|
us->recv_bulk_pipe : us->send_bulk_pipe;
|
|
result = usb_stor_bulk_srb(us, pipe, srb);
|
|
US_DEBUGP("Bulk data transfer result 0x%x\n", result);
|
|
if (result == USB_STOR_XFER_ERROR)
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
|
|
/* If the device tried to send back more data than the
|
|
* amount requested, the spec requires us to transfer
|
|
* the CSW anyway. Since there's no point retrying the
|
|
* the command, we'll return fake sense data indicating
|
|
* Illegal Request, Invalid Field in CDB.
|
|
*/
|
|
if (result == USB_STOR_XFER_LONG)
|
|
fake_sense = 1;
|
|
}
|
|
|
|
/* See flow chart on pg 15 of the Bulk Only Transport spec for
|
|
* an explanation of how this code works.
|
|
*/
|
|
|
|
/* get CSW for device status */
|
|
US_DEBUGP("Attempting to get CSW...\n");
|
|
result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
|
bcs, US_BULK_CS_WRAP_LEN, &cswlen);
|
|
|
|
/* Some broken devices add unnecessary zero-length packets to the
|
|
* end of their data transfers. Such packets show up as 0-length
|
|
* CSWs. If we encounter such a thing, try to read the CSW again.
|
|
*/
|
|
if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
|
|
US_DEBUGP("Received 0-length CSW; retrying...\n");
|
|
result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
|
bcs, US_BULK_CS_WRAP_LEN, &cswlen);
|
|
}
|
|
|
|
/* did the attempt to read the CSW fail? */
|
|
if (result == USB_STOR_XFER_STALLED) {
|
|
|
|
/* get the status again */
|
|
US_DEBUGP("Attempting to get CSW (2nd try)...\n");
|
|
result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
|
bcs, US_BULK_CS_WRAP_LEN, NULL);
|
|
}
|
|
|
|
/* if we still have a failure at this point, we're in trouble */
|
|
US_DEBUGP("Bulk status result = %d\n", result);
|
|
if (result != USB_STOR_XFER_GOOD)
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
|
|
/* check bulk status */
|
|
residue = le32_to_cpu(bcs->Residue);
|
|
US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
|
|
le32_to_cpu(bcs->Signature), bcs->Tag,
|
|
residue, bcs->Status);
|
|
if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
|
|
bcs->Status > US_BULK_STAT_PHASE) {
|
|
US_DEBUGP("Bulk logical error\n");
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
}
|
|
|
|
/* Some broken devices report odd signatures, so we do not check them
|
|
* for validity against the spec. We store the first one we see,
|
|
* and check subsequent transfers for validity against this signature.
|
|
*/
|
|
if (!us->bcs_signature) {
|
|
us->bcs_signature = bcs->Signature;
|
|
if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
|
|
US_DEBUGP("Learnt BCS signature 0x%08X\n",
|
|
le32_to_cpu(us->bcs_signature));
|
|
} else if (bcs->Signature != us->bcs_signature) {
|
|
US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
|
|
le32_to_cpu(bcs->Signature),
|
|
le32_to_cpu(us->bcs_signature));
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
}
|
|
|
|
/* try to compute the actual residue, based on how much data
|
|
* was really transferred and what the device tells us */
|
|
if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
|
|
|
|
/* Heuristically detect devices that generate bogus residues
|
|
* by seeing what happens with INQUIRY and READ CAPACITY
|
|
* commands.
|
|
*/
|
|
if (bcs->Status == US_BULK_STAT_OK &&
|
|
scsi_get_resid(srb) == 0 &&
|
|
((srb->cmnd[0] == INQUIRY &&
|
|
transfer_length == 36) ||
|
|
(srb->cmnd[0] == READ_CAPACITY &&
|
|
transfer_length == 8))) {
|
|
us->fflags |= US_FL_IGNORE_RESIDUE;
|
|
|
|
} else {
|
|
residue = min(residue, transfer_length);
|
|
scsi_set_resid(srb, max(scsi_get_resid(srb),
|
|
(int) residue));
|
|
}
|
|
}
|
|
|
|
/* based on the status code, we report good or bad */
|
|
switch (bcs->Status) {
|
|
case US_BULK_STAT_OK:
|
|
/* device babbled -- return fake sense data */
|
|
if (fake_sense) {
|
|
memcpy(srb->sense_buffer,
|
|
usb_stor_sense_invalidCDB,
|
|
sizeof(usb_stor_sense_invalidCDB));
|
|
return USB_STOR_TRANSPORT_NO_SENSE;
|
|
}
|
|
|
|
/* command good -- note that data could be short */
|
|
return USB_STOR_TRANSPORT_GOOD;
|
|
|
|
case US_BULK_STAT_FAIL:
|
|
/* command failed */
|
|
return USB_STOR_TRANSPORT_FAILED;
|
|
|
|
case US_BULK_STAT_PHASE:
|
|
/* phase error -- note that a transport reset will be
|
|
* invoked by the invoke_transport() function
|
|
*/
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
}
|
|
|
|
/* we should never get here, but if we do, we're in trouble */
|
|
return USB_STOR_TRANSPORT_ERROR;
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_Bulk_transport);
|
|
|
|
/***********************************************************************
|
|
* Reset routines
|
|
***********************************************************************/
|
|
|
|
/* This is the common part of the device reset code.
|
|
*
|
|
* It's handy that every transport mechanism uses the control endpoint for
|
|
* resets.
|
|
*
|
|
* Basically, we send a reset with a 5-second timeout, so we don't get
|
|
* jammed attempting to do the reset.
|
|
*/
|
|
static int usb_stor_reset_common(struct us_data *us,
|
|
u8 request, u8 requesttype,
|
|
u16 value, u16 index, void *data, u16 size)
|
|
{
|
|
int result;
|
|
int result2;
|
|
|
|
if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
|
|
US_DEBUGP("No reset during disconnect\n");
|
|
return -EIO;
|
|
}
|
|
|
|
result = usb_stor_control_msg(us, us->send_ctrl_pipe,
|
|
request, requesttype, value, index, data, size,
|
|
5*HZ);
|
|
if (result < 0) {
|
|
US_DEBUGP("Soft reset failed: %d\n", result);
|
|
return result;
|
|
}
|
|
|
|
/* Give the device some time to recover from the reset,
|
|
* but don't delay disconnect processing. */
|
|
wait_event_interruptible_timeout(us->delay_wait,
|
|
test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
|
|
HZ*6);
|
|
if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
|
|
US_DEBUGP("Reset interrupted by disconnect\n");
|
|
return -EIO;
|
|
}
|
|
|
|
US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
|
|
result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
|
|
|
|
US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
|
|
result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
|
|
|
|
/* return a result code based on the result of the clear-halts */
|
|
if (result >= 0)
|
|
result = result2;
|
|
if (result < 0)
|
|
US_DEBUGP("Soft reset failed\n");
|
|
else
|
|
US_DEBUGP("Soft reset done\n");
|
|
return result;
|
|
}
|
|
|
|
/* This issues a CB[I] Reset to the device in question
|
|
*/
|
|
#define CB_RESET_CMD_SIZE 12
|
|
|
|
int usb_stor_CB_reset(struct us_data *us)
|
|
{
|
|
US_DEBUGP("%s called\n", __func__);
|
|
|
|
memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
|
|
us->iobuf[0] = SEND_DIAGNOSTIC;
|
|
us->iobuf[1] = 4;
|
|
return usb_stor_reset_common(us, US_CBI_ADSC,
|
|
USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_CB_reset);
|
|
|
|
/* This issues a Bulk-only Reset to the device in question, including
|
|
* clearing the subsequent endpoint halts that may occur.
|
|
*/
|
|
int usb_stor_Bulk_reset(struct us_data *us)
|
|
{
|
|
US_DEBUGP("%s called\n", __func__);
|
|
|
|
return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
|
|
USB_TYPE_CLASS | USB_RECIP_INTERFACE,
|
|
0, us->ifnum, NULL, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_stor_Bulk_reset);
|
|
|
|
/* Issue a USB port reset to the device. The caller must not hold
|
|
* us->dev_mutex.
|
|
*/
|
|
int usb_stor_port_reset(struct us_data *us)
|
|
{
|
|
int result;
|
|
|
|
/*for these devices we must use the class specific method */
|
|
if (us->pusb_dev->quirks & USB_QUIRK_RESET)
|
|
return -EPERM;
|
|
|
|
result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
|
|
if (result < 0)
|
|
US_DEBUGP("unable to lock device for reset: %d\n", result);
|
|
else {
|
|
/* Were we disconnected while waiting for the lock? */
|
|
if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
|
|
result = -EIO;
|
|
US_DEBUGP("No reset during disconnect\n");
|
|
} else {
|
|
result = usb_reset_device(us->pusb_dev);
|
|
US_DEBUGP("usb_reset_device returns %d\n",
|
|
result);
|
|
}
|
|
usb_unlock_device(us->pusb_dev);
|
|
}
|
|
return result;
|
|
}
|