linux_dsm_epyc7002/drivers/crypto/qce/ablkcipher.c
Thomas Gleixner 97fb5e8d9b treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 284
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 and
  only version 2 as published by the free software foundation this
  program is distributed in the hope that it will be useful but
  without any warranty without even the implied warranty of
  merchantability or fitness for a particular purpose see the gnu
  general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 294 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141900.825281744@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:36:37 +02:00

442 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
*/
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/internal/skcipher.h>
#include "cipher.h"
static LIST_HEAD(ablkcipher_algs);
static void qce_ablkcipher_done(void *data)
{
struct crypto_async_request *async_req = data;
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
enum dma_data_direction dir_src, dir_dst;
u32 status;
int error;
bool diff_dst;
diff_dst = (req->src != req->dst) ? true : false;
dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL;
error = qce_dma_terminate_all(&qce->dma);
if (error)
dev_dbg(qce->dev, "ablkcipher dma termination error (%d)\n",
error);
if (diff_dst)
dma_unmap_sg(qce->dev, rctx->src_sg, rctx->src_nents, dir_src);
dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
sg_free_table(&rctx->dst_tbl);
error = qce_check_status(qce, &status);
if (error < 0)
dev_dbg(qce->dev, "ablkcipher operation error (%x)\n", status);
qce->async_req_done(tmpl->qce, error);
}
static int
qce_ablkcipher_async_req_handle(struct crypto_async_request *async_req)
{
struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
enum dma_data_direction dir_src, dir_dst;
struct scatterlist *sg;
bool diff_dst;
gfp_t gfp;
int ret;
rctx->iv = req->info;
rctx->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
rctx->cryptlen = req->nbytes;
diff_dst = (req->src != req->dst) ? true : false;
dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;
dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL;
rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
if (diff_dst)
rctx->dst_nents = sg_nents_for_len(req->dst, req->nbytes);
else
rctx->dst_nents = rctx->src_nents;
if (rctx->src_nents < 0) {
dev_err(qce->dev, "Invalid numbers of src SG.\n");
return rctx->src_nents;
}
if (rctx->dst_nents < 0) {
dev_err(qce->dev, "Invalid numbers of dst SG.\n");
return -rctx->dst_nents;
}
rctx->dst_nents += 1;
gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
ret = sg_alloc_table(&rctx->dst_tbl, rctx->dst_nents, gfp);
if (ret)
return ret;
sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
sg = qce_sgtable_add(&rctx->dst_tbl, req->dst);
if (IS_ERR(sg)) {
ret = PTR_ERR(sg);
goto error_free;
}
sg = qce_sgtable_add(&rctx->dst_tbl, &rctx->result_sg);
if (IS_ERR(sg)) {
ret = PTR_ERR(sg);
goto error_free;
}
sg_mark_end(sg);
rctx->dst_sg = rctx->dst_tbl.sgl;
ret = dma_map_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
if (ret < 0)
goto error_free;
if (diff_dst) {
ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, dir_src);
if (ret < 0)
goto error_unmap_dst;
rctx->src_sg = req->src;
} else {
rctx->src_sg = rctx->dst_sg;
}
ret = qce_dma_prep_sgs(&qce->dma, rctx->src_sg, rctx->src_nents,
rctx->dst_sg, rctx->dst_nents,
qce_ablkcipher_done, async_req);
if (ret)
goto error_unmap_src;
qce_dma_issue_pending(&qce->dma);
ret = qce_start(async_req, tmpl->crypto_alg_type, req->nbytes, 0);
if (ret)
goto error_terminate;
return 0;
error_terminate:
qce_dma_terminate_all(&qce->dma);
error_unmap_src:
if (diff_dst)
dma_unmap_sg(qce->dev, req->src, rctx->src_nents, dir_src);
error_unmap_dst:
dma_unmap_sg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst);
error_free:
sg_free_table(&rctx->dst_tbl);
return ret;
}
static int qce_ablkcipher_setkey(struct crypto_ablkcipher *ablk, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablk);
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
unsigned long flags = to_cipher_tmpl(tfm)->alg_flags;
int ret;
if (!key || !keylen)
return -EINVAL;
if (IS_AES(flags)) {
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_256:
break;
default:
goto fallback;
}
} else if (IS_DES(flags)) {
u32 tmp[DES_EXPKEY_WORDS];
ret = des_ekey(tmp, key);
if (!ret && (crypto_ablkcipher_get_flags(ablk) &
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS))
goto weakkey;
}
ctx->enc_keylen = keylen;
memcpy(ctx->enc_key, key, keylen);
return 0;
fallback:
ret = crypto_sync_skcipher_setkey(ctx->fallback, key, keylen);
if (!ret)
ctx->enc_keylen = keylen;
return ret;
weakkey:
crypto_ablkcipher_set_flags(ablk, CRYPTO_TFM_RES_WEAK_KEY);
return -EINVAL;
}
static int qce_des3_setkey(struct crypto_ablkcipher *ablk, const u8 *key,
unsigned int keylen)
{
struct qce_cipher_ctx *ctx = crypto_ablkcipher_ctx(ablk);
u32 flags;
int err;
flags = crypto_ablkcipher_get_flags(ablk);
err = __des3_verify_key(&flags, key);
if (unlikely(err)) {
crypto_ablkcipher_set_flags(ablk, flags);
return err;
}
ctx->enc_keylen = keylen;
memcpy(ctx->enc_key, key, keylen);
return 0;
}
static int qce_ablkcipher_crypt(struct ablkcipher_request *req, int encrypt)
{
struct crypto_tfm *tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
struct qce_alg_template *tmpl = to_cipher_tmpl(tfm);
int ret;
rctx->flags = tmpl->alg_flags;
rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT;
if (IS_AES(rctx->flags) && ctx->enc_keylen != AES_KEYSIZE_128 &&
ctx->enc_keylen != AES_KEYSIZE_256) {
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
skcipher_request_set_sync_tfm(subreq, ctx->fallback);
skcipher_request_set_callback(subreq, req->base.flags,
NULL, NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->nbytes, req->info);
ret = encrypt ? crypto_skcipher_encrypt(subreq) :
crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
return ret;
}
return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base);
}
static int qce_ablkcipher_encrypt(struct ablkcipher_request *req)
{
return qce_ablkcipher_crypt(req, 1);
}
static int qce_ablkcipher_decrypt(struct ablkcipher_request *req)
{
return qce_ablkcipher_crypt(req, 0);
}
static int qce_ablkcipher_init(struct crypto_tfm *tfm)
{
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
memset(ctx, 0, sizeof(*ctx));
tfm->crt_ablkcipher.reqsize = sizeof(struct qce_cipher_reqctx);
ctx->fallback = crypto_alloc_sync_skcipher(crypto_tfm_alg_name(tfm),
0, CRYPTO_ALG_NEED_FALLBACK);
return PTR_ERR_OR_ZERO(ctx->fallback);
}
static void qce_ablkcipher_exit(struct crypto_tfm *tfm)
{
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_sync_skcipher(ctx->fallback);
}
struct qce_ablkcipher_def {
unsigned long flags;
const char *name;
const char *drv_name;
unsigned int blocksize;
unsigned int ivsize;
unsigned int min_keysize;
unsigned int max_keysize;
};
static const struct qce_ablkcipher_def ablkcipher_def[] = {
{
.flags = QCE_ALG_AES | QCE_MODE_ECB,
.name = "ecb(aes)",
.drv_name = "ecb-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_CBC,
.name = "cbc(aes)",
.drv_name = "cbc-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_CTR,
.name = "ctr(aes)",
.drv_name = "ctr-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_AES | QCE_MODE_XTS,
.name = "xts(aes)",
.drv_name = "xts-aes-qce",
.blocksize = AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
{
.flags = QCE_ALG_DES | QCE_MODE_ECB,
.name = "ecb(des)",
.drv_name = "ecb-des-qce",
.blocksize = DES_BLOCK_SIZE,
.ivsize = 0,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
{
.flags = QCE_ALG_DES | QCE_MODE_CBC,
.name = "cbc(des)",
.drv_name = "cbc-des-qce",
.blocksize = DES_BLOCK_SIZE,
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
{
.flags = QCE_ALG_3DES | QCE_MODE_ECB,
.name = "ecb(des3_ede)",
.drv_name = "ecb-3des-qce",
.blocksize = DES3_EDE_BLOCK_SIZE,
.ivsize = 0,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
},
{
.flags = QCE_ALG_3DES | QCE_MODE_CBC,
.name = "cbc(des3_ede)",
.drv_name = "cbc-3des-qce",
.blocksize = DES3_EDE_BLOCK_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
},
};
static int qce_ablkcipher_register_one(const struct qce_ablkcipher_def *def,
struct qce_device *qce)
{
struct qce_alg_template *tmpl;
struct crypto_alg *alg;
int ret;
tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
if (!tmpl)
return -ENOMEM;
alg = &tmpl->alg.crypto;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->drv_name);
alg->cra_blocksize = def->blocksize;
alg->cra_ablkcipher.ivsize = def->ivsize;
alg->cra_ablkcipher.min_keysize = def->min_keysize;
alg->cra_ablkcipher.max_keysize = def->max_keysize;
alg->cra_ablkcipher.setkey = IS_3DES(def->flags) ?
qce_des3_setkey : qce_ablkcipher_setkey;
alg->cra_ablkcipher.encrypt = qce_ablkcipher_encrypt;
alg->cra_ablkcipher.decrypt = qce_ablkcipher_decrypt;
alg->cra_priority = 300;
alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK;
alg->cra_ctxsize = sizeof(struct qce_cipher_ctx);
alg->cra_alignmask = 0;
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_module = THIS_MODULE;
alg->cra_init = qce_ablkcipher_init;
alg->cra_exit = qce_ablkcipher_exit;
INIT_LIST_HEAD(&tmpl->entry);
tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_ABLKCIPHER;
tmpl->alg_flags = def->flags;
tmpl->qce = qce;
ret = crypto_register_alg(alg);
if (ret) {
kfree(tmpl);
dev_err(qce->dev, "%s registration failed\n", alg->cra_name);
return ret;
}
list_add_tail(&tmpl->entry, &ablkcipher_algs);
dev_dbg(qce->dev, "%s is registered\n", alg->cra_name);
return 0;
}
static void qce_ablkcipher_unregister(struct qce_device *qce)
{
struct qce_alg_template *tmpl, *n;
list_for_each_entry_safe(tmpl, n, &ablkcipher_algs, entry) {
crypto_unregister_alg(&tmpl->alg.crypto);
list_del(&tmpl->entry);
kfree(tmpl);
}
}
static int qce_ablkcipher_register(struct qce_device *qce)
{
int ret, i;
for (i = 0; i < ARRAY_SIZE(ablkcipher_def); i++) {
ret = qce_ablkcipher_register_one(&ablkcipher_def[i], qce);
if (ret)
goto err;
}
return 0;
err:
qce_ablkcipher_unregister(qce);
return ret;
}
const struct qce_algo_ops ablkcipher_ops = {
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.register_algs = qce_ablkcipher_register,
.unregister_algs = qce_ablkcipher_unregister,
.async_req_handle = qce_ablkcipher_async_req_handle,
};