mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 06:16:25 +07:00
a3d8a25736
Currently, for zoned disks, since blk_revalidate_disk_zones() requires the disk capacity to be set already to operate correctly, zones revalidation can only be done on the second revalidate scan once the gendisk capacity is set at the end of the first scan. As a result, if zone revalidation fails, there is no second chance to recover from the failure and the disk capacity is changed to 0, with the disk left unusable. This can be improved by shuffling around code, specifically, by moving the call to sd_zbc_revalidate_zones() from sd_zbc_read_zones() to the end of sd_revalidate_disk(), after set_capacity_revalidate_and_notify() is called to set the gendisk capacity. With this change, if sd_zbc_revalidate_zones() fails on the first scan, the second scan will call it again to recover, if possible. Using the new struct scsi_disk fields rev_nr_zones and rev_zone_blocks, sd_zbc_revalidate_zones() does actual work only if it detects a change with the disk zone configuration. This means that for a successful zones revalidation on the first scan, the second scan will not cause another heavy full check. While at it, remove the unecesary "extern" declaration of sd_zbc_read_zones(). Link: https://lore.kernel.org/r/20200731054928.668547-1-damien.lemoal@wdc.com Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
3781 lines
99 KiB
C
3781 lines
99 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* sd.c Copyright (C) 1992 Drew Eckhardt
|
|
* Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
|
|
*
|
|
* Linux scsi disk driver
|
|
* Initial versions: Drew Eckhardt
|
|
* Subsequent revisions: Eric Youngdale
|
|
* Modification history:
|
|
* - Drew Eckhardt <drew@colorado.edu> original
|
|
* - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
|
|
* outstanding request, and other enhancements.
|
|
* Support loadable low-level scsi drivers.
|
|
* - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
|
|
* eight major numbers.
|
|
* - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
|
|
* - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
|
|
* sd_init and cleanups.
|
|
* - Alex Davis <letmein@erols.com> Fix problem where partition info
|
|
* not being read in sd_open. Fix problem where removable media
|
|
* could be ejected after sd_open.
|
|
* - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
|
|
* - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
|
|
* <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
|
|
* Support 32k/1M disks.
|
|
*
|
|
* Logging policy (needs CONFIG_SCSI_LOGGING defined):
|
|
* - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
|
|
* - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
|
|
* - entering sd_ioctl: SCSI_LOG_IOCTL level 1
|
|
* - entering other commands: SCSI_LOG_HLQUEUE level 3
|
|
* Note: when the logging level is set by the user, it must be greater
|
|
* than the level indicated above to trigger output.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/blk-pm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/string_helpers.h>
|
|
#include <linux/async.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sed-opal.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/pr.h>
|
|
#include <linux/t10-pi.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_dbg.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_driver.h>
|
|
#include <scsi/scsi_eh.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_ioctl.h>
|
|
#include <scsi/scsicam.h>
|
|
|
|
#include "sd.h"
|
|
#include "scsi_priv.h"
|
|
#include "scsi_logging.h"
|
|
|
|
MODULE_AUTHOR("Eric Youngdale");
|
|
MODULE_DESCRIPTION("SCSI disk (sd) driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
|
|
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
|
|
MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
|
|
|
|
#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
|
|
#define SD_MINORS 16
|
|
#else
|
|
#define SD_MINORS 0
|
|
#endif
|
|
|
|
static void sd_config_discard(struct scsi_disk *, unsigned int);
|
|
static void sd_config_write_same(struct scsi_disk *);
|
|
static int sd_revalidate_disk(struct gendisk *);
|
|
static void sd_unlock_native_capacity(struct gendisk *disk);
|
|
static int sd_probe(struct device *);
|
|
static int sd_remove(struct device *);
|
|
static void sd_shutdown(struct device *);
|
|
static int sd_suspend_system(struct device *);
|
|
static int sd_suspend_runtime(struct device *);
|
|
static int sd_resume(struct device *);
|
|
static void sd_rescan(struct device *);
|
|
static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
|
|
static void sd_uninit_command(struct scsi_cmnd *SCpnt);
|
|
static int sd_done(struct scsi_cmnd *);
|
|
static void sd_eh_reset(struct scsi_cmnd *);
|
|
static int sd_eh_action(struct scsi_cmnd *, int);
|
|
static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
|
|
static void scsi_disk_release(struct device *cdev);
|
|
|
|
static DEFINE_IDA(sd_index_ida);
|
|
|
|
/* This semaphore is used to mediate the 0->1 reference get in the
|
|
* face of object destruction (i.e. we can't allow a get on an
|
|
* object after last put) */
|
|
static DEFINE_MUTEX(sd_ref_mutex);
|
|
|
|
static struct kmem_cache *sd_cdb_cache;
|
|
static mempool_t *sd_cdb_pool;
|
|
static mempool_t *sd_page_pool;
|
|
|
|
static const char *sd_cache_types[] = {
|
|
"write through", "none", "write back",
|
|
"write back, no read (daft)"
|
|
};
|
|
|
|
static void sd_set_flush_flag(struct scsi_disk *sdkp)
|
|
{
|
|
bool wc = false, fua = false;
|
|
|
|
if (sdkp->WCE) {
|
|
wc = true;
|
|
if (sdkp->DPOFUA)
|
|
fua = true;
|
|
}
|
|
|
|
blk_queue_write_cache(sdkp->disk->queue, wc, fua);
|
|
}
|
|
|
|
static ssize_t
|
|
cache_type_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ct, rcd, wce, sp;
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
char buffer[64];
|
|
char *buffer_data;
|
|
struct scsi_mode_data data;
|
|
struct scsi_sense_hdr sshdr;
|
|
static const char temp[] = "temporary ";
|
|
int len;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
/* no cache control on RBC devices; theoretically they
|
|
* can do it, but there's probably so many exceptions
|
|
* it's not worth the risk */
|
|
return -EINVAL;
|
|
|
|
if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
|
|
buf += sizeof(temp) - 1;
|
|
sdkp->cache_override = 1;
|
|
} else {
|
|
sdkp->cache_override = 0;
|
|
}
|
|
|
|
ct = sysfs_match_string(sd_cache_types, buf);
|
|
if (ct < 0)
|
|
return -EINVAL;
|
|
|
|
rcd = ct & 0x01 ? 1 : 0;
|
|
wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
|
|
|
|
if (sdkp->cache_override) {
|
|
sdkp->WCE = wce;
|
|
sdkp->RCD = rcd;
|
|
sd_set_flush_flag(sdkp);
|
|
return count;
|
|
}
|
|
|
|
if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
|
|
SD_MAX_RETRIES, &data, NULL))
|
|
return -EINVAL;
|
|
len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
|
|
data.block_descriptor_length);
|
|
buffer_data = buffer + data.header_length +
|
|
data.block_descriptor_length;
|
|
buffer_data[2] &= ~0x05;
|
|
buffer_data[2] |= wce << 2 | rcd;
|
|
sp = buffer_data[0] & 0x80 ? 1 : 0;
|
|
buffer_data[0] &= ~0x80;
|
|
|
|
/*
|
|
* Ensure WP, DPOFUA, and RESERVED fields are cleared in
|
|
* received mode parameter buffer before doing MODE SELECT.
|
|
*/
|
|
data.device_specific = 0;
|
|
|
|
if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
|
|
SD_MAX_RETRIES, &data, &sshdr)) {
|
|
if (scsi_sense_valid(&sshdr))
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
return -EINVAL;
|
|
}
|
|
revalidate_disk(sdkp->disk);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t
|
|
manage_start_stop_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
return sprintf(buf, "%u\n", sdp->manage_start_stop);
|
|
}
|
|
|
|
static ssize_t
|
|
manage_start_stop_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
bool v;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (kstrtobool(buf, &v))
|
|
return -EINVAL;
|
|
|
|
sdp->manage_start_stop = v;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(manage_start_stop);
|
|
|
|
static ssize_t
|
|
allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->device->allow_restart);
|
|
}
|
|
|
|
static ssize_t
|
|
allow_restart_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
bool v;
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
return -EINVAL;
|
|
|
|
if (kstrtobool(buf, &v))
|
|
return -EINVAL;
|
|
|
|
sdp->allow_restart = v;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(allow_restart);
|
|
|
|
static ssize_t
|
|
cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
int ct = sdkp->RCD + 2*sdkp->WCE;
|
|
|
|
return sprintf(buf, "%s\n", sd_cache_types[ct]);
|
|
}
|
|
static DEVICE_ATTR_RW(cache_type);
|
|
|
|
static ssize_t
|
|
FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->DPOFUA);
|
|
}
|
|
static DEVICE_ATTR_RO(FUA);
|
|
|
|
static ssize_t
|
|
protection_type_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->protection_type);
|
|
}
|
|
|
|
static ssize_t
|
|
protection_type_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
unsigned int val;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
err = kstrtouint(buf, 10, &val);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (val <= T10_PI_TYPE3_PROTECTION)
|
|
sdkp->protection_type = val;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(protection_type);
|
|
|
|
static ssize_t
|
|
protection_mode_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
unsigned int dif, dix;
|
|
|
|
dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
|
|
dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
|
|
|
|
if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
|
|
dif = 0;
|
|
dix = 1;
|
|
}
|
|
|
|
if (!dif && !dix)
|
|
return sprintf(buf, "none\n");
|
|
|
|
return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
|
|
}
|
|
static DEVICE_ATTR_RO(protection_mode);
|
|
|
|
static ssize_t
|
|
app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->ATO);
|
|
}
|
|
static DEVICE_ATTR_RO(app_tag_own);
|
|
|
|
static ssize_t
|
|
thin_provisioning_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->lbpme);
|
|
}
|
|
static DEVICE_ATTR_RO(thin_provisioning);
|
|
|
|
/* sysfs_match_string() requires dense arrays */
|
|
static const char *lbp_mode[] = {
|
|
[SD_LBP_FULL] = "full",
|
|
[SD_LBP_UNMAP] = "unmap",
|
|
[SD_LBP_WS16] = "writesame_16",
|
|
[SD_LBP_WS10] = "writesame_10",
|
|
[SD_LBP_ZERO] = "writesame_zero",
|
|
[SD_LBP_DISABLE] = "disabled",
|
|
};
|
|
|
|
static ssize_t
|
|
provisioning_mode_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
|
|
}
|
|
|
|
static ssize_t
|
|
provisioning_mode_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
int mode;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (sd_is_zoned(sdkp)) {
|
|
sd_config_discard(sdkp, SD_LBP_DISABLE);
|
|
return count;
|
|
}
|
|
|
|
if (sdp->type != TYPE_DISK)
|
|
return -EINVAL;
|
|
|
|
mode = sysfs_match_string(lbp_mode, buf);
|
|
if (mode < 0)
|
|
return -EINVAL;
|
|
|
|
sd_config_discard(sdkp, mode);
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(provisioning_mode);
|
|
|
|
/* sysfs_match_string() requires dense arrays */
|
|
static const char *zeroing_mode[] = {
|
|
[SD_ZERO_WRITE] = "write",
|
|
[SD_ZERO_WS] = "writesame",
|
|
[SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
|
|
[SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
|
|
};
|
|
|
|
static ssize_t
|
|
zeroing_mode_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
|
|
}
|
|
|
|
static ssize_t
|
|
zeroing_mode_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
int mode;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
mode = sysfs_match_string(zeroing_mode, buf);
|
|
if (mode < 0)
|
|
return -EINVAL;
|
|
|
|
sdkp->zeroing_mode = mode;
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(zeroing_mode);
|
|
|
|
static ssize_t
|
|
max_medium_access_timeouts_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
|
|
}
|
|
|
|
static ssize_t
|
|
max_medium_access_timeouts_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
|
|
|
|
return err ? err : count;
|
|
}
|
|
static DEVICE_ATTR_RW(max_medium_access_timeouts);
|
|
|
|
static ssize_t
|
|
max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
|
|
}
|
|
|
|
static ssize_t
|
|
max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
unsigned long max;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
return -EINVAL;
|
|
|
|
err = kstrtoul(buf, 10, &max);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (max == 0)
|
|
sdp->no_write_same = 1;
|
|
else if (max <= SD_MAX_WS16_BLOCKS) {
|
|
sdp->no_write_same = 0;
|
|
sdkp->max_ws_blocks = max;
|
|
}
|
|
|
|
sd_config_write_same(sdkp);
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR_RW(max_write_same_blocks);
|
|
|
|
static ssize_t
|
|
zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
|
|
if (sdkp->device->type == TYPE_ZBC)
|
|
return sprintf(buf, "host-managed\n");
|
|
if (sdkp->zoned == 1)
|
|
return sprintf(buf, "host-aware\n");
|
|
if (sdkp->zoned == 2)
|
|
return sprintf(buf, "drive-managed\n");
|
|
return sprintf(buf, "none\n");
|
|
}
|
|
static DEVICE_ATTR_RO(zoned_cap);
|
|
|
|
static struct attribute *sd_disk_attrs[] = {
|
|
&dev_attr_cache_type.attr,
|
|
&dev_attr_FUA.attr,
|
|
&dev_attr_allow_restart.attr,
|
|
&dev_attr_manage_start_stop.attr,
|
|
&dev_attr_protection_type.attr,
|
|
&dev_attr_protection_mode.attr,
|
|
&dev_attr_app_tag_own.attr,
|
|
&dev_attr_thin_provisioning.attr,
|
|
&dev_attr_provisioning_mode.attr,
|
|
&dev_attr_zeroing_mode.attr,
|
|
&dev_attr_max_write_same_blocks.attr,
|
|
&dev_attr_max_medium_access_timeouts.attr,
|
|
&dev_attr_zoned_cap.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(sd_disk);
|
|
|
|
static struct class sd_disk_class = {
|
|
.name = "scsi_disk",
|
|
.owner = THIS_MODULE,
|
|
.dev_release = scsi_disk_release,
|
|
.dev_groups = sd_disk_groups,
|
|
};
|
|
|
|
static const struct dev_pm_ops sd_pm_ops = {
|
|
.suspend = sd_suspend_system,
|
|
.resume = sd_resume,
|
|
.poweroff = sd_suspend_system,
|
|
.restore = sd_resume,
|
|
.runtime_suspend = sd_suspend_runtime,
|
|
.runtime_resume = sd_resume,
|
|
};
|
|
|
|
static struct scsi_driver sd_template = {
|
|
.gendrv = {
|
|
.name = "sd",
|
|
.owner = THIS_MODULE,
|
|
.probe = sd_probe,
|
|
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
|
|
.remove = sd_remove,
|
|
.shutdown = sd_shutdown,
|
|
.pm = &sd_pm_ops,
|
|
},
|
|
.rescan = sd_rescan,
|
|
.init_command = sd_init_command,
|
|
.uninit_command = sd_uninit_command,
|
|
.done = sd_done,
|
|
.eh_action = sd_eh_action,
|
|
.eh_reset = sd_eh_reset,
|
|
};
|
|
|
|
/*
|
|
* Dummy kobj_map->probe function.
|
|
* The default ->probe function will call modprobe, which is
|
|
* pointless as this module is already loaded.
|
|
*/
|
|
static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Device no to disk mapping:
|
|
*
|
|
* major disc2 disc p1
|
|
* |............|.............|....|....| <- dev_t
|
|
* 31 20 19 8 7 4 3 0
|
|
*
|
|
* Inside a major, we have 16k disks, however mapped non-
|
|
* contiguously. The first 16 disks are for major0, the next
|
|
* ones with major1, ... Disk 256 is for major0 again, disk 272
|
|
* for major1, ...
|
|
* As we stay compatible with our numbering scheme, we can reuse
|
|
* the well-know SCSI majors 8, 65--71, 136--143.
|
|
*/
|
|
static int sd_major(int major_idx)
|
|
{
|
|
switch (major_idx) {
|
|
case 0:
|
|
return SCSI_DISK0_MAJOR;
|
|
case 1 ... 7:
|
|
return SCSI_DISK1_MAJOR + major_idx - 1;
|
|
case 8 ... 15:
|
|
return SCSI_DISK8_MAJOR + major_idx - 8;
|
|
default:
|
|
BUG();
|
|
return 0; /* shut up gcc */
|
|
}
|
|
}
|
|
|
|
static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
|
|
{
|
|
struct scsi_disk *sdkp = NULL;
|
|
|
|
mutex_lock(&sd_ref_mutex);
|
|
|
|
if (disk->private_data) {
|
|
sdkp = scsi_disk(disk);
|
|
if (scsi_device_get(sdkp->device) == 0)
|
|
get_device(&sdkp->dev);
|
|
else
|
|
sdkp = NULL;
|
|
}
|
|
mutex_unlock(&sd_ref_mutex);
|
|
return sdkp;
|
|
}
|
|
|
|
static void scsi_disk_put(struct scsi_disk *sdkp)
|
|
{
|
|
struct scsi_device *sdev = sdkp->device;
|
|
|
|
mutex_lock(&sd_ref_mutex);
|
|
put_device(&sdkp->dev);
|
|
scsi_device_put(sdev);
|
|
mutex_unlock(&sd_ref_mutex);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_SED_OPAL
|
|
static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
|
|
size_t len, bool send)
|
|
{
|
|
struct scsi_device *sdev = data;
|
|
u8 cdb[12] = { 0, };
|
|
int ret;
|
|
|
|
cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
|
|
cdb[1] = secp;
|
|
put_unaligned_be16(spsp, &cdb[2]);
|
|
put_unaligned_be32(len, &cdb[6]);
|
|
|
|
ret = scsi_execute_req(sdev, cdb,
|
|
send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
|
|
buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
|
|
return ret <= 0 ? ret : -EIO;
|
|
}
|
|
#endif /* CONFIG_BLK_SED_OPAL */
|
|
|
|
/*
|
|
* Look up the DIX operation based on whether the command is read or
|
|
* write and whether dix and dif are enabled.
|
|
*/
|
|
static unsigned int sd_prot_op(bool write, bool dix, bool dif)
|
|
{
|
|
/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
|
|
static const unsigned int ops[] = { /* wrt dix dif */
|
|
SCSI_PROT_NORMAL, /* 0 0 0 */
|
|
SCSI_PROT_READ_STRIP, /* 0 0 1 */
|
|
SCSI_PROT_READ_INSERT, /* 0 1 0 */
|
|
SCSI_PROT_READ_PASS, /* 0 1 1 */
|
|
SCSI_PROT_NORMAL, /* 1 0 0 */
|
|
SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
|
|
SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
|
|
SCSI_PROT_WRITE_PASS, /* 1 1 1 */
|
|
};
|
|
|
|
return ops[write << 2 | dix << 1 | dif];
|
|
}
|
|
|
|
/*
|
|
* Returns a mask of the protection flags that are valid for a given DIX
|
|
* operation.
|
|
*/
|
|
static unsigned int sd_prot_flag_mask(unsigned int prot_op)
|
|
{
|
|
static const unsigned int flag_mask[] = {
|
|
[SCSI_PROT_NORMAL] = 0,
|
|
|
|
[SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT,
|
|
|
|
[SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
|
|
[SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
|
|
[SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_REF_INCREMENT,
|
|
|
|
[SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
|
|
[SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
|
|
SCSI_PROT_GUARD_CHECK |
|
|
SCSI_PROT_REF_CHECK |
|
|
SCSI_PROT_REF_INCREMENT |
|
|
SCSI_PROT_IP_CHECKSUM,
|
|
};
|
|
|
|
return flag_mask[prot_op];
|
|
}
|
|
|
|
static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
|
|
unsigned int dix, unsigned int dif)
|
|
{
|
|
struct bio *bio = scmd->request->bio;
|
|
unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
|
|
unsigned int protect = 0;
|
|
|
|
if (dix) { /* DIX Type 0, 1, 2, 3 */
|
|
if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
|
|
scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
|
|
|
|
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
|
|
scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
|
|
}
|
|
|
|
if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
|
|
scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
|
|
|
|
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
|
|
scmd->prot_flags |= SCSI_PROT_REF_CHECK;
|
|
}
|
|
|
|
if (dif) { /* DIX/DIF Type 1, 2, 3 */
|
|
scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
|
|
|
|
if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
|
|
protect = 3 << 5; /* Disable target PI checking */
|
|
else
|
|
protect = 1 << 5; /* Enable target PI checking */
|
|
}
|
|
|
|
scsi_set_prot_op(scmd, prot_op);
|
|
scsi_set_prot_type(scmd, dif);
|
|
scmd->prot_flags &= sd_prot_flag_mask(prot_op);
|
|
|
|
return protect;
|
|
}
|
|
|
|
static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
|
|
{
|
|
struct request_queue *q = sdkp->disk->queue;
|
|
unsigned int logical_block_size = sdkp->device->sector_size;
|
|
unsigned int max_blocks = 0;
|
|
|
|
q->limits.discard_alignment =
|
|
sdkp->unmap_alignment * logical_block_size;
|
|
q->limits.discard_granularity =
|
|
max(sdkp->physical_block_size,
|
|
sdkp->unmap_granularity * logical_block_size);
|
|
sdkp->provisioning_mode = mode;
|
|
|
|
switch (mode) {
|
|
|
|
case SD_LBP_FULL:
|
|
case SD_LBP_DISABLE:
|
|
blk_queue_max_discard_sectors(q, 0);
|
|
blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
|
|
return;
|
|
|
|
case SD_LBP_UNMAP:
|
|
max_blocks = min_not_zero(sdkp->max_unmap_blocks,
|
|
(u32)SD_MAX_WS16_BLOCKS);
|
|
break;
|
|
|
|
case SD_LBP_WS16:
|
|
if (sdkp->device->unmap_limit_for_ws)
|
|
max_blocks = sdkp->max_unmap_blocks;
|
|
else
|
|
max_blocks = sdkp->max_ws_blocks;
|
|
|
|
max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
|
|
break;
|
|
|
|
case SD_LBP_WS10:
|
|
if (sdkp->device->unmap_limit_for_ws)
|
|
max_blocks = sdkp->max_unmap_blocks;
|
|
else
|
|
max_blocks = sdkp->max_ws_blocks;
|
|
|
|
max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
|
|
break;
|
|
|
|
case SD_LBP_ZERO:
|
|
max_blocks = min_not_zero(sdkp->max_ws_blocks,
|
|
(u32)SD_MAX_WS10_BLOCKS);
|
|
break;
|
|
}
|
|
|
|
blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
|
|
}
|
|
|
|
static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct request *rq = cmd->request;
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
unsigned int data_len = 24;
|
|
char *buf;
|
|
|
|
rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
|
|
if (!rq->special_vec.bv_page)
|
|
return BLK_STS_RESOURCE;
|
|
clear_highpage(rq->special_vec.bv_page);
|
|
rq->special_vec.bv_offset = 0;
|
|
rq->special_vec.bv_len = data_len;
|
|
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
|
|
|
|
cmd->cmd_len = 10;
|
|
cmd->cmnd[0] = UNMAP;
|
|
cmd->cmnd[8] = 24;
|
|
|
|
buf = page_address(rq->special_vec.bv_page);
|
|
put_unaligned_be16(6 + 16, &buf[0]);
|
|
put_unaligned_be16(16, &buf[2]);
|
|
put_unaligned_be64(lba, &buf[8]);
|
|
put_unaligned_be32(nr_blocks, &buf[16]);
|
|
|
|
cmd->allowed = SD_MAX_RETRIES;
|
|
cmd->transfersize = data_len;
|
|
rq->timeout = SD_TIMEOUT;
|
|
|
|
return scsi_init_io(cmd);
|
|
}
|
|
|
|
static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
|
|
bool unmap)
|
|
{
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct request *rq = cmd->request;
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
u32 data_len = sdp->sector_size;
|
|
|
|
rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
|
|
if (!rq->special_vec.bv_page)
|
|
return BLK_STS_RESOURCE;
|
|
clear_highpage(rq->special_vec.bv_page);
|
|
rq->special_vec.bv_offset = 0;
|
|
rq->special_vec.bv_len = data_len;
|
|
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
|
|
|
|
cmd->cmd_len = 16;
|
|
cmd->cmnd[0] = WRITE_SAME_16;
|
|
if (unmap)
|
|
cmd->cmnd[1] = 0x8; /* UNMAP */
|
|
put_unaligned_be64(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
|
|
|
|
cmd->allowed = SD_MAX_RETRIES;
|
|
cmd->transfersize = data_len;
|
|
rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
|
|
|
|
return scsi_init_io(cmd);
|
|
}
|
|
|
|
static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
|
|
bool unmap)
|
|
{
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct request *rq = cmd->request;
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
u32 data_len = sdp->sector_size;
|
|
|
|
rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
|
|
if (!rq->special_vec.bv_page)
|
|
return BLK_STS_RESOURCE;
|
|
clear_highpage(rq->special_vec.bv_page);
|
|
rq->special_vec.bv_offset = 0;
|
|
rq->special_vec.bv_len = data_len;
|
|
rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
|
|
|
|
cmd->cmd_len = 10;
|
|
cmd->cmnd[0] = WRITE_SAME;
|
|
if (unmap)
|
|
cmd->cmnd[1] = 0x8; /* UNMAP */
|
|
put_unaligned_be32(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
|
|
|
|
cmd->allowed = SD_MAX_RETRIES;
|
|
cmd->transfersize = data_len;
|
|
rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
|
|
|
|
return scsi_init_io(cmd);
|
|
}
|
|
|
|
static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = cmd->request;
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
|
|
if (!(rq->cmd_flags & REQ_NOUNMAP)) {
|
|
switch (sdkp->zeroing_mode) {
|
|
case SD_ZERO_WS16_UNMAP:
|
|
return sd_setup_write_same16_cmnd(cmd, true);
|
|
case SD_ZERO_WS10_UNMAP:
|
|
return sd_setup_write_same10_cmnd(cmd, true);
|
|
}
|
|
}
|
|
|
|
if (sdp->no_write_same)
|
|
return BLK_STS_TARGET;
|
|
|
|
if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
|
|
return sd_setup_write_same16_cmnd(cmd, false);
|
|
|
|
return sd_setup_write_same10_cmnd(cmd, false);
|
|
}
|
|
|
|
static void sd_config_write_same(struct scsi_disk *sdkp)
|
|
{
|
|
struct request_queue *q = sdkp->disk->queue;
|
|
unsigned int logical_block_size = sdkp->device->sector_size;
|
|
|
|
if (sdkp->device->no_write_same) {
|
|
sdkp->max_ws_blocks = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Some devices can not handle block counts above 0xffff despite
|
|
* supporting WRITE SAME(16). Consequently we default to 64k
|
|
* blocks per I/O unless the device explicitly advertises a
|
|
* bigger limit.
|
|
*/
|
|
if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
|
|
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
|
|
(u32)SD_MAX_WS16_BLOCKS);
|
|
else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
|
|
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
|
|
(u32)SD_MAX_WS10_BLOCKS);
|
|
else {
|
|
sdkp->device->no_write_same = 1;
|
|
sdkp->max_ws_blocks = 0;
|
|
}
|
|
|
|
if (sdkp->lbprz && sdkp->lbpws)
|
|
sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
|
|
else if (sdkp->lbprz && sdkp->lbpws10)
|
|
sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
|
|
else if (sdkp->max_ws_blocks)
|
|
sdkp->zeroing_mode = SD_ZERO_WS;
|
|
else
|
|
sdkp->zeroing_mode = SD_ZERO_WRITE;
|
|
|
|
if (sdkp->max_ws_blocks &&
|
|
sdkp->physical_block_size > logical_block_size) {
|
|
/*
|
|
* Reporting a maximum number of blocks that is not aligned
|
|
* on the device physical size would cause a large write same
|
|
* request to be split into physically unaligned chunks by
|
|
* __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
|
|
* even if the caller of these functions took care to align the
|
|
* large request. So make sure the maximum reported is aligned
|
|
* to the device physical block size. This is only an optional
|
|
* optimization for regular disks, but this is mandatory to
|
|
* avoid failure of large write same requests directed at
|
|
* sequential write required zones of host-managed ZBC disks.
|
|
*/
|
|
sdkp->max_ws_blocks =
|
|
round_down(sdkp->max_ws_blocks,
|
|
bytes_to_logical(sdkp->device,
|
|
sdkp->physical_block_size));
|
|
}
|
|
|
|
out:
|
|
blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
|
|
(logical_block_size >> 9));
|
|
blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
|
|
(logical_block_size >> 9));
|
|
}
|
|
|
|
/**
|
|
* sd_setup_write_same_cmnd - write the same data to multiple blocks
|
|
* @cmd: command to prepare
|
|
*
|
|
* Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
|
|
* the preference indicated by the target device.
|
|
**/
|
|
static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = cmd->request;
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
|
|
struct bio *bio = rq->bio;
|
|
u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
blk_status_t ret;
|
|
|
|
if (sdkp->device->no_write_same)
|
|
return BLK_STS_TARGET;
|
|
|
|
BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
|
|
|
|
rq->timeout = SD_WRITE_SAME_TIMEOUT;
|
|
|
|
if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
|
|
cmd->cmd_len = 16;
|
|
cmd->cmnd[0] = WRITE_SAME_16;
|
|
put_unaligned_be64(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
|
|
} else {
|
|
cmd->cmd_len = 10;
|
|
cmd->cmnd[0] = WRITE_SAME;
|
|
put_unaligned_be32(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
|
|
}
|
|
|
|
cmd->transfersize = sdp->sector_size;
|
|
cmd->allowed = SD_MAX_RETRIES;
|
|
|
|
/*
|
|
* For WRITE SAME the data transferred via the DATA OUT buffer is
|
|
* different from the amount of data actually written to the target.
|
|
*
|
|
* We set up __data_len to the amount of data transferred via the
|
|
* DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
|
|
* to transfer a single sector of data first, but then reset it to
|
|
* the amount of data to be written right after so that the I/O path
|
|
* knows how much to actually write.
|
|
*/
|
|
rq->__data_len = sdp->sector_size;
|
|
ret = scsi_init_io(cmd);
|
|
rq->__data_len = blk_rq_bytes(rq);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = cmd->request;
|
|
|
|
/* flush requests don't perform I/O, zero the S/G table */
|
|
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
|
|
|
|
cmd->cmnd[0] = SYNCHRONIZE_CACHE;
|
|
cmd->cmd_len = 10;
|
|
cmd->transfersize = 0;
|
|
cmd->allowed = SD_MAX_RETRIES;
|
|
|
|
rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags)
|
|
{
|
|
cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
|
|
if (unlikely(cmd->cmnd == NULL))
|
|
return BLK_STS_RESOURCE;
|
|
|
|
cmd->cmd_len = SD_EXT_CDB_SIZE;
|
|
memset(cmd->cmnd, 0, cmd->cmd_len);
|
|
|
|
cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
|
|
cmd->cmnd[7] = 0x18; /* Additional CDB len */
|
|
cmd->cmnd[9] = write ? WRITE_32 : READ_32;
|
|
cmd->cmnd[10] = flags;
|
|
put_unaligned_be64(lba, &cmd->cmnd[12]);
|
|
put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
|
|
put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags)
|
|
{
|
|
cmd->cmd_len = 16;
|
|
cmd->cmnd[0] = write ? WRITE_16 : READ_16;
|
|
cmd->cmnd[1] = flags;
|
|
cmd->cmnd[14] = 0;
|
|
cmd->cmnd[15] = 0;
|
|
put_unaligned_be64(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags)
|
|
{
|
|
cmd->cmd_len = 10;
|
|
cmd->cmnd[0] = write ? WRITE_10 : READ_10;
|
|
cmd->cmnd[1] = flags;
|
|
cmd->cmnd[6] = 0;
|
|
cmd->cmnd[9] = 0;
|
|
put_unaligned_be32(lba, &cmd->cmnd[2]);
|
|
put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
|
|
sector_t lba, unsigned int nr_blocks,
|
|
unsigned char flags)
|
|
{
|
|
/* Avoid that 0 blocks gets translated into 256 blocks. */
|
|
if (WARN_ON_ONCE(nr_blocks == 0))
|
|
return BLK_STS_IOERR;
|
|
|
|
if (unlikely(flags & 0x8)) {
|
|
/*
|
|
* This happens only if this drive failed 10byte rw
|
|
* command with ILLEGAL_REQUEST during operation and
|
|
* thus turned off use_10_for_rw.
|
|
*/
|
|
scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
cmd->cmd_len = 6;
|
|
cmd->cmnd[0] = write ? WRITE_6 : READ_6;
|
|
cmd->cmnd[1] = (lba >> 16) & 0x1f;
|
|
cmd->cmnd[2] = (lba >> 8) & 0xff;
|
|
cmd->cmnd[3] = lba & 0xff;
|
|
cmd->cmnd[4] = nr_blocks;
|
|
cmd->cmnd[5] = 0;
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = cmd->request;
|
|
struct scsi_device *sdp = cmd->device;
|
|
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
|
|
sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
|
|
sector_t threshold;
|
|
unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
|
|
unsigned int mask = logical_to_sectors(sdp, 1) - 1;
|
|
bool write = rq_data_dir(rq) == WRITE;
|
|
unsigned char protect, fua;
|
|
blk_status_t ret;
|
|
unsigned int dif;
|
|
bool dix;
|
|
|
|
ret = scsi_init_io(cmd);
|
|
if (ret != BLK_STS_OK)
|
|
return ret;
|
|
|
|
if (!scsi_device_online(sdp) || sdp->changed) {
|
|
scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
|
|
scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
|
|
scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
|
|
return BLK_STS_IOERR;
|
|
}
|
|
|
|
/*
|
|
* Some SD card readers can't handle accesses which touch the
|
|
* last one or two logical blocks. Split accesses as needed.
|
|
*/
|
|
threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
|
|
|
|
if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
|
|
if (lba < threshold) {
|
|
/* Access up to the threshold but not beyond */
|
|
nr_blocks = threshold - lba;
|
|
} else {
|
|
/* Access only a single logical block */
|
|
nr_blocks = 1;
|
|
}
|
|
}
|
|
|
|
if (req_op(rq) == REQ_OP_ZONE_APPEND) {
|
|
ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
|
|
dix = scsi_prot_sg_count(cmd);
|
|
dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
|
|
|
|
if (dif || dix)
|
|
protect = sd_setup_protect_cmnd(cmd, dix, dif);
|
|
else
|
|
protect = 0;
|
|
|
|
if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
|
|
ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua);
|
|
} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
|
|
ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua);
|
|
} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
|
|
sdp->use_10_for_rw || protect) {
|
|
ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua);
|
|
} else {
|
|
ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
|
|
protect | fua);
|
|
}
|
|
|
|
if (unlikely(ret != BLK_STS_OK))
|
|
return ret;
|
|
|
|
/*
|
|
* We shouldn't disconnect in the middle of a sector, so with a dumb
|
|
* host adapter, it's safe to assume that we can at least transfer
|
|
* this many bytes between each connect / disconnect.
|
|
*/
|
|
cmd->transfersize = sdp->sector_size;
|
|
cmd->underflow = nr_blocks << 9;
|
|
cmd->allowed = SD_MAX_RETRIES;
|
|
cmd->sdb.length = nr_blocks * sdp->sector_size;
|
|
|
|
SCSI_LOG_HLQUEUE(1,
|
|
scmd_printk(KERN_INFO, cmd,
|
|
"%s: block=%llu, count=%d\n", __func__,
|
|
(unsigned long long)blk_rq_pos(rq),
|
|
blk_rq_sectors(rq)));
|
|
SCSI_LOG_HLQUEUE(2,
|
|
scmd_printk(KERN_INFO, cmd,
|
|
"%s %d/%u 512 byte blocks.\n",
|
|
write ? "writing" : "reading", nr_blocks,
|
|
blk_rq_sectors(rq)));
|
|
|
|
/*
|
|
* This indicates that the command is ready from our end to be
|
|
* queued.
|
|
*/
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
|
|
{
|
|
struct request *rq = cmd->request;
|
|
|
|
switch (req_op(rq)) {
|
|
case REQ_OP_DISCARD:
|
|
switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
|
|
case SD_LBP_UNMAP:
|
|
return sd_setup_unmap_cmnd(cmd);
|
|
case SD_LBP_WS16:
|
|
return sd_setup_write_same16_cmnd(cmd, true);
|
|
case SD_LBP_WS10:
|
|
return sd_setup_write_same10_cmnd(cmd, true);
|
|
case SD_LBP_ZERO:
|
|
return sd_setup_write_same10_cmnd(cmd, false);
|
|
default:
|
|
return BLK_STS_TARGET;
|
|
}
|
|
case REQ_OP_WRITE_ZEROES:
|
|
return sd_setup_write_zeroes_cmnd(cmd);
|
|
case REQ_OP_WRITE_SAME:
|
|
return sd_setup_write_same_cmnd(cmd);
|
|
case REQ_OP_FLUSH:
|
|
return sd_setup_flush_cmnd(cmd);
|
|
case REQ_OP_READ:
|
|
case REQ_OP_WRITE:
|
|
case REQ_OP_ZONE_APPEND:
|
|
return sd_setup_read_write_cmnd(cmd);
|
|
case REQ_OP_ZONE_RESET:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
|
|
false);
|
|
case REQ_OP_ZONE_RESET_ALL:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
|
|
true);
|
|
case REQ_OP_ZONE_OPEN:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
|
|
case REQ_OP_ZONE_CLOSE:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
|
|
case REQ_OP_ZONE_FINISH:
|
|
return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
return BLK_STS_NOTSUPP;
|
|
}
|
|
}
|
|
|
|
static void sd_uninit_command(struct scsi_cmnd *SCpnt)
|
|
{
|
|
struct request *rq = SCpnt->request;
|
|
u8 *cmnd;
|
|
|
|
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
|
|
mempool_free(rq->special_vec.bv_page, sd_page_pool);
|
|
|
|
if (SCpnt->cmnd != scsi_req(rq)->cmd) {
|
|
cmnd = SCpnt->cmnd;
|
|
SCpnt->cmnd = NULL;
|
|
SCpnt->cmd_len = 0;
|
|
mempool_free(cmnd, sd_cdb_pool);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sd_open - open a scsi disk device
|
|
* @bdev: Block device of the scsi disk to open
|
|
* @mode: FMODE_* mask
|
|
*
|
|
* Returns 0 if successful. Returns a negated errno value in case
|
|
* of error.
|
|
*
|
|
* Note: This can be called from a user context (e.g. fsck(1) )
|
|
* or from within the kernel (e.g. as a result of a mount(1) ).
|
|
* In the latter case @inode and @filp carry an abridged amount
|
|
* of information as noted above.
|
|
*
|
|
* Locking: called with bdev->bd_mutex held.
|
|
**/
|
|
static int sd_open(struct block_device *bdev, fmode_t mode)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
|
|
struct scsi_device *sdev;
|
|
int retval;
|
|
|
|
if (!sdkp)
|
|
return -ENXIO;
|
|
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
|
|
|
|
sdev = sdkp->device;
|
|
|
|
/*
|
|
* If the device is in error recovery, wait until it is done.
|
|
* If the device is offline, then disallow any access to it.
|
|
*/
|
|
retval = -ENXIO;
|
|
if (!scsi_block_when_processing_errors(sdev))
|
|
goto error_out;
|
|
|
|
if (sdev->removable || sdkp->write_prot)
|
|
check_disk_change(bdev);
|
|
|
|
/*
|
|
* If the drive is empty, just let the open fail.
|
|
*/
|
|
retval = -ENOMEDIUM;
|
|
if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
|
|
goto error_out;
|
|
|
|
/*
|
|
* If the device has the write protect tab set, have the open fail
|
|
* if the user expects to be able to write to the thing.
|
|
*/
|
|
retval = -EROFS;
|
|
if (sdkp->write_prot && (mode & FMODE_WRITE))
|
|
goto error_out;
|
|
|
|
/*
|
|
* It is possible that the disk changing stuff resulted in
|
|
* the device being taken offline. If this is the case,
|
|
* report this to the user, and don't pretend that the
|
|
* open actually succeeded.
|
|
*/
|
|
retval = -ENXIO;
|
|
if (!scsi_device_online(sdev))
|
|
goto error_out;
|
|
|
|
if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
|
|
if (scsi_block_when_processing_errors(sdev))
|
|
scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
|
|
}
|
|
|
|
return 0;
|
|
|
|
error_out:
|
|
scsi_disk_put(sdkp);
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* sd_release - invoked when the (last) close(2) is called on this
|
|
* scsi disk.
|
|
* @disk: disk to release
|
|
* @mode: FMODE_* mask
|
|
*
|
|
* Returns 0.
|
|
*
|
|
* Note: may block (uninterruptible) if error recovery is underway
|
|
* on this disk.
|
|
*
|
|
* Locking: called with bdev->bd_mutex held.
|
|
**/
|
|
static void sd_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
struct scsi_device *sdev = sdkp->device;
|
|
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
|
|
|
|
if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
|
|
if (scsi_block_when_processing_errors(sdev))
|
|
scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
|
|
}
|
|
|
|
scsi_disk_put(sdkp);
|
|
}
|
|
|
|
static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct Scsi_Host *host = sdp->host;
|
|
sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
|
|
int diskinfo[4];
|
|
|
|
/* default to most commonly used values */
|
|
diskinfo[0] = 0x40; /* 1 << 6 */
|
|
diskinfo[1] = 0x20; /* 1 << 5 */
|
|
diskinfo[2] = capacity >> 11;
|
|
|
|
/* override with calculated, extended default, or driver values */
|
|
if (host->hostt->bios_param)
|
|
host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
|
|
else
|
|
scsicam_bios_param(bdev, capacity, diskinfo);
|
|
|
|
geo->heads = diskinfo[0];
|
|
geo->sectors = diskinfo[1];
|
|
geo->cylinders = diskinfo[2];
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_ioctl - process an ioctl
|
|
* @bdev: target block device
|
|
* @mode: FMODE_* mask
|
|
* @cmd: ioctl command number
|
|
* @p: this is third argument given to ioctl(2) system call.
|
|
* Often contains a pointer.
|
|
*
|
|
* Returns 0 if successful (some ioctls return positive numbers on
|
|
* success as well). Returns a negated errno value in case of error.
|
|
*
|
|
* Note: most ioctls are forward onto the block subsystem or further
|
|
* down in the scsi subsystem.
|
|
**/
|
|
static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, void __user *p)
|
|
{
|
|
struct gendisk *disk = bdev->bd_disk;
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
int error;
|
|
|
|
SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
|
|
"cmd=0x%x\n", disk->disk_name, cmd));
|
|
|
|
error = scsi_verify_blk_ioctl(bdev, cmd);
|
|
if (error < 0)
|
|
return error;
|
|
|
|
/*
|
|
* If we are in the middle of error recovery, don't let anyone
|
|
* else try and use this device. Also, if error recovery fails, it
|
|
* may try and take the device offline, in which case all further
|
|
* access to the device is prohibited.
|
|
*/
|
|
error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
|
|
(mode & FMODE_NDELAY) != 0);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (is_sed_ioctl(cmd))
|
|
return sed_ioctl(sdkp->opal_dev, cmd, p);
|
|
|
|
/*
|
|
* Send SCSI addressing ioctls directly to mid level, send other
|
|
* ioctls to block level and then onto mid level if they can't be
|
|
* resolved.
|
|
*/
|
|
switch (cmd) {
|
|
case SCSI_IOCTL_GET_IDLUN:
|
|
case SCSI_IOCTL_GET_BUS_NUMBER:
|
|
error = scsi_ioctl(sdp, cmd, p);
|
|
break;
|
|
default:
|
|
error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
|
|
break;
|
|
}
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
static void set_media_not_present(struct scsi_disk *sdkp)
|
|
{
|
|
if (sdkp->media_present)
|
|
sdkp->device->changed = 1;
|
|
|
|
if (sdkp->device->removable) {
|
|
sdkp->media_present = 0;
|
|
sdkp->capacity = 0;
|
|
}
|
|
}
|
|
|
|
static int media_not_present(struct scsi_disk *sdkp,
|
|
struct scsi_sense_hdr *sshdr)
|
|
{
|
|
if (!scsi_sense_valid(sshdr))
|
|
return 0;
|
|
|
|
/* not invoked for commands that could return deferred errors */
|
|
switch (sshdr->sense_key) {
|
|
case UNIT_ATTENTION:
|
|
case NOT_READY:
|
|
/* medium not present */
|
|
if (sshdr->asc == 0x3A) {
|
|
set_media_not_present(sdkp);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_check_events - check media events
|
|
* @disk: kernel device descriptor
|
|
* @clearing: disk events currently being cleared
|
|
*
|
|
* Returns mask of DISK_EVENT_*.
|
|
*
|
|
* Note: this function is invoked from the block subsystem.
|
|
**/
|
|
static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk_get(disk);
|
|
struct scsi_device *sdp;
|
|
int retval;
|
|
|
|
if (!sdkp)
|
|
return 0;
|
|
|
|
sdp = sdkp->device;
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
|
|
|
|
/*
|
|
* If the device is offline, don't send any commands - just pretend as
|
|
* if the command failed. If the device ever comes back online, we
|
|
* can deal with it then. It is only because of unrecoverable errors
|
|
* that we would ever take a device offline in the first place.
|
|
*/
|
|
if (!scsi_device_online(sdp)) {
|
|
set_media_not_present(sdkp);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Using TEST_UNIT_READY enables differentiation between drive with
|
|
* no cartridge loaded - NOT READY, drive with changed cartridge -
|
|
* UNIT ATTENTION, or with same cartridge - GOOD STATUS.
|
|
*
|
|
* Drives that auto spin down. eg iomega jaz 1G, will be started
|
|
* by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
|
|
* sd_revalidate() is called.
|
|
*/
|
|
if (scsi_block_when_processing_errors(sdp)) {
|
|
struct scsi_sense_hdr sshdr = { 0, };
|
|
|
|
retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
|
|
&sshdr);
|
|
|
|
/* failed to execute TUR, assume media not present */
|
|
if (host_byte(retval)) {
|
|
set_media_not_present(sdkp);
|
|
goto out;
|
|
}
|
|
|
|
if (media_not_present(sdkp, &sshdr))
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* For removable scsi disk we have to recognise the presence
|
|
* of a disk in the drive.
|
|
*/
|
|
if (!sdkp->media_present)
|
|
sdp->changed = 1;
|
|
sdkp->media_present = 1;
|
|
out:
|
|
/*
|
|
* sdp->changed is set under the following conditions:
|
|
*
|
|
* Medium present state has changed in either direction.
|
|
* Device has indicated UNIT_ATTENTION.
|
|
*/
|
|
retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
|
|
sdp->changed = 0;
|
|
scsi_disk_put(sdkp);
|
|
return retval;
|
|
}
|
|
|
|
static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
|
|
{
|
|
int retries, res;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
const int timeout = sdp->request_queue->rq_timeout
|
|
* SD_FLUSH_TIMEOUT_MULTIPLIER;
|
|
struct scsi_sense_hdr my_sshdr;
|
|
|
|
if (!scsi_device_online(sdp))
|
|
return -ENODEV;
|
|
|
|
/* caller might not be interested in sense, but we need it */
|
|
if (!sshdr)
|
|
sshdr = &my_sshdr;
|
|
|
|
for (retries = 3; retries > 0; --retries) {
|
|
unsigned char cmd[10] = { 0 };
|
|
|
|
cmd[0] = SYNCHRONIZE_CACHE;
|
|
/*
|
|
* Leave the rest of the command zero to indicate
|
|
* flush everything.
|
|
*/
|
|
res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
|
|
timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
|
|
if (res == 0)
|
|
break;
|
|
}
|
|
|
|
if (res) {
|
|
sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
|
|
|
|
if (driver_byte(res) == DRIVER_SENSE)
|
|
sd_print_sense_hdr(sdkp, sshdr);
|
|
|
|
/* we need to evaluate the error return */
|
|
if (scsi_sense_valid(sshdr) &&
|
|
(sshdr->asc == 0x3a || /* medium not present */
|
|
sshdr->asc == 0x20 || /* invalid command */
|
|
(sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */
|
|
/* this is no error here */
|
|
return 0;
|
|
|
|
switch (host_byte(res)) {
|
|
/* ignore errors due to racing a disconnection */
|
|
case DID_BAD_TARGET:
|
|
case DID_NO_CONNECT:
|
|
return 0;
|
|
/* signal the upper layer it might try again */
|
|
case DID_BUS_BUSY:
|
|
case DID_IMM_RETRY:
|
|
case DID_REQUEUE:
|
|
case DID_SOFT_ERROR:
|
|
return -EBUSY;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void sd_rescan(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
|
|
revalidate_disk(sdkp->disk);
|
|
}
|
|
|
|
static int sd_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
void __user *p = (void __user *)arg;
|
|
int ret;
|
|
|
|
ret = sd_ioctl_common(bdev, mode, cmd, p);
|
|
if (ret != -ENOTTY)
|
|
return ret;
|
|
|
|
return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
void __user *p = compat_ptr(arg);
|
|
int ret;
|
|
|
|
ret = sd_ioctl_common(bdev, mode, cmd, p);
|
|
if (ret != -ENOTTY)
|
|
return ret;
|
|
|
|
return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
|
|
}
|
|
#endif
|
|
|
|
static char sd_pr_type(enum pr_type type)
|
|
{
|
|
switch (type) {
|
|
case PR_WRITE_EXCLUSIVE:
|
|
return 0x01;
|
|
case PR_EXCLUSIVE_ACCESS:
|
|
return 0x03;
|
|
case PR_WRITE_EXCLUSIVE_REG_ONLY:
|
|
return 0x05;
|
|
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
|
|
return 0x06;
|
|
case PR_WRITE_EXCLUSIVE_ALL_REGS:
|
|
return 0x07;
|
|
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
|
|
return 0x08;
|
|
default:
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
static int sd_pr_command(struct block_device *bdev, u8 sa,
|
|
u64 key, u64 sa_key, u8 type, u8 flags)
|
|
{
|
|
struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
|
|
struct scsi_sense_hdr sshdr;
|
|
int result;
|
|
u8 cmd[16] = { 0, };
|
|
u8 data[24] = { 0, };
|
|
|
|
cmd[0] = PERSISTENT_RESERVE_OUT;
|
|
cmd[1] = sa;
|
|
cmd[2] = type;
|
|
put_unaligned_be32(sizeof(data), &cmd[5]);
|
|
|
|
put_unaligned_be64(key, &data[0]);
|
|
put_unaligned_be64(sa_key, &data[8]);
|
|
data[20] = flags;
|
|
|
|
result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
|
|
&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
|
|
|
|
if (driver_byte(result) == DRIVER_SENSE &&
|
|
scsi_sense_valid(&sshdr)) {
|
|
sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
|
|
scsi_print_sense_hdr(sdev, NULL, &sshdr);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
|
|
u32 flags)
|
|
{
|
|
if (flags & ~PR_FL_IGNORE_KEY)
|
|
return -EOPNOTSUPP;
|
|
return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
|
|
old_key, new_key, 0,
|
|
(1 << 0) /* APTPL */);
|
|
}
|
|
|
|
static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
|
|
u32 flags)
|
|
{
|
|
if (flags)
|
|
return -EOPNOTSUPP;
|
|
return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
|
|
}
|
|
|
|
static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
|
|
{
|
|
return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
|
|
}
|
|
|
|
static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
|
|
enum pr_type type, bool abort)
|
|
{
|
|
return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
|
|
sd_pr_type(type), 0);
|
|
}
|
|
|
|
static int sd_pr_clear(struct block_device *bdev, u64 key)
|
|
{
|
|
return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
|
|
}
|
|
|
|
static const struct pr_ops sd_pr_ops = {
|
|
.pr_register = sd_pr_register,
|
|
.pr_reserve = sd_pr_reserve,
|
|
.pr_release = sd_pr_release,
|
|
.pr_preempt = sd_pr_preempt,
|
|
.pr_clear = sd_pr_clear,
|
|
};
|
|
|
|
static const struct block_device_operations sd_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = sd_open,
|
|
.release = sd_release,
|
|
.ioctl = sd_ioctl,
|
|
.getgeo = sd_getgeo,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = sd_compat_ioctl,
|
|
#endif
|
|
.check_events = sd_check_events,
|
|
.revalidate_disk = sd_revalidate_disk,
|
|
.unlock_native_capacity = sd_unlock_native_capacity,
|
|
.report_zones = sd_zbc_report_zones,
|
|
.pr_ops = &sd_pr_ops,
|
|
};
|
|
|
|
/**
|
|
* sd_eh_reset - reset error handling callback
|
|
* @scmd: sd-issued command that has failed
|
|
*
|
|
* This function is called by the SCSI midlayer before starting
|
|
* SCSI EH. When counting medium access failures we have to be
|
|
* careful to register it only only once per device and SCSI EH run;
|
|
* there might be several timed out commands which will cause the
|
|
* 'max_medium_access_timeouts' counter to trigger after the first
|
|
* SCSI EH run already and set the device to offline.
|
|
* So this function resets the internal counter before starting SCSI EH.
|
|
**/
|
|
static void sd_eh_reset(struct scsi_cmnd *scmd)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
|
|
|
|
/* New SCSI EH run, reset gate variable */
|
|
sdkp->ignore_medium_access_errors = false;
|
|
}
|
|
|
|
/**
|
|
* sd_eh_action - error handling callback
|
|
* @scmd: sd-issued command that has failed
|
|
* @eh_disp: The recovery disposition suggested by the midlayer
|
|
*
|
|
* This function is called by the SCSI midlayer upon completion of an
|
|
* error test command (currently TEST UNIT READY). The result of sending
|
|
* the eh command is passed in eh_disp. We're looking for devices that
|
|
* fail medium access commands but are OK with non access commands like
|
|
* test unit ready (so wrongly see the device as having a successful
|
|
* recovery)
|
|
**/
|
|
static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
|
|
struct scsi_device *sdev = scmd->device;
|
|
|
|
if (!scsi_device_online(sdev) ||
|
|
!scsi_medium_access_command(scmd) ||
|
|
host_byte(scmd->result) != DID_TIME_OUT ||
|
|
eh_disp != SUCCESS)
|
|
return eh_disp;
|
|
|
|
/*
|
|
* The device has timed out executing a medium access command.
|
|
* However, the TEST UNIT READY command sent during error
|
|
* handling completed successfully. Either the device is in the
|
|
* process of recovering or has it suffered an internal failure
|
|
* that prevents access to the storage medium.
|
|
*/
|
|
if (!sdkp->ignore_medium_access_errors) {
|
|
sdkp->medium_access_timed_out++;
|
|
sdkp->ignore_medium_access_errors = true;
|
|
}
|
|
|
|
/*
|
|
* If the device keeps failing read/write commands but TEST UNIT
|
|
* READY always completes successfully we assume that medium
|
|
* access is no longer possible and take the device offline.
|
|
*/
|
|
if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
|
|
scmd_printk(KERN_ERR, scmd,
|
|
"Medium access timeout failure. Offlining disk!\n");
|
|
mutex_lock(&sdev->state_mutex);
|
|
scsi_device_set_state(sdev, SDEV_OFFLINE);
|
|
mutex_unlock(&sdev->state_mutex);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
return eh_disp;
|
|
}
|
|
|
|
static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
|
|
{
|
|
struct request *req = scmd->request;
|
|
struct scsi_device *sdev = scmd->device;
|
|
unsigned int transferred, good_bytes;
|
|
u64 start_lba, end_lba, bad_lba;
|
|
|
|
/*
|
|
* Some commands have a payload smaller than the device logical
|
|
* block size (e.g. INQUIRY on a 4K disk).
|
|
*/
|
|
if (scsi_bufflen(scmd) <= sdev->sector_size)
|
|
return 0;
|
|
|
|
/* Check if we have a 'bad_lba' information */
|
|
if (!scsi_get_sense_info_fld(scmd->sense_buffer,
|
|
SCSI_SENSE_BUFFERSIZE,
|
|
&bad_lba))
|
|
return 0;
|
|
|
|
/*
|
|
* If the bad lba was reported incorrectly, we have no idea where
|
|
* the error is.
|
|
*/
|
|
start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
|
|
end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
|
|
if (bad_lba < start_lba || bad_lba >= end_lba)
|
|
return 0;
|
|
|
|
/*
|
|
* resid is optional but mostly filled in. When it's unused,
|
|
* its value is zero, so we assume the whole buffer transferred
|
|
*/
|
|
transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
|
|
|
|
/* This computation should always be done in terms of the
|
|
* resolution of the device's medium.
|
|
*/
|
|
good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
|
|
|
|
return min(good_bytes, transferred);
|
|
}
|
|
|
|
/**
|
|
* sd_done - bottom half handler: called when the lower level
|
|
* driver has completed (successfully or otherwise) a scsi command.
|
|
* @SCpnt: mid-level's per command structure.
|
|
*
|
|
* Note: potentially run from within an ISR. Must not block.
|
|
**/
|
|
static int sd_done(struct scsi_cmnd *SCpnt)
|
|
{
|
|
int result = SCpnt->result;
|
|
unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
|
|
unsigned int sector_size = SCpnt->device->sector_size;
|
|
unsigned int resid;
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
|
|
struct request *req = SCpnt->request;
|
|
int sense_valid = 0;
|
|
int sense_deferred = 0;
|
|
|
|
switch (req_op(req)) {
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_WRITE_ZEROES:
|
|
case REQ_OP_WRITE_SAME:
|
|
case REQ_OP_ZONE_RESET:
|
|
case REQ_OP_ZONE_RESET_ALL:
|
|
case REQ_OP_ZONE_OPEN:
|
|
case REQ_OP_ZONE_CLOSE:
|
|
case REQ_OP_ZONE_FINISH:
|
|
if (!result) {
|
|
good_bytes = blk_rq_bytes(req);
|
|
scsi_set_resid(SCpnt, 0);
|
|
} else {
|
|
good_bytes = 0;
|
|
scsi_set_resid(SCpnt, blk_rq_bytes(req));
|
|
}
|
|
break;
|
|
default:
|
|
/*
|
|
* In case of bogus fw or device, we could end up having
|
|
* an unaligned partial completion. Check this here and force
|
|
* alignment.
|
|
*/
|
|
resid = scsi_get_resid(SCpnt);
|
|
if (resid & (sector_size - 1)) {
|
|
sd_printk(KERN_INFO, sdkp,
|
|
"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
|
|
resid, sector_size);
|
|
scsi_print_command(SCpnt);
|
|
resid = min(scsi_bufflen(SCpnt),
|
|
round_up(resid, sector_size));
|
|
scsi_set_resid(SCpnt, resid);
|
|
}
|
|
}
|
|
|
|
if (result) {
|
|
sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
|
|
if (sense_valid)
|
|
sense_deferred = scsi_sense_is_deferred(&sshdr);
|
|
}
|
|
sdkp->medium_access_timed_out = 0;
|
|
|
|
if (driver_byte(result) != DRIVER_SENSE &&
|
|
(!sense_valid || sense_deferred))
|
|
goto out;
|
|
|
|
switch (sshdr.sense_key) {
|
|
case HARDWARE_ERROR:
|
|
case MEDIUM_ERROR:
|
|
good_bytes = sd_completed_bytes(SCpnt);
|
|
break;
|
|
case RECOVERED_ERROR:
|
|
good_bytes = scsi_bufflen(SCpnt);
|
|
break;
|
|
case NO_SENSE:
|
|
/* This indicates a false check condition, so ignore it. An
|
|
* unknown amount of data was transferred so treat it as an
|
|
* error.
|
|
*/
|
|
SCpnt->result = 0;
|
|
memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
|
|
break;
|
|
case ABORTED_COMMAND:
|
|
if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
|
|
good_bytes = sd_completed_bytes(SCpnt);
|
|
break;
|
|
case ILLEGAL_REQUEST:
|
|
switch (sshdr.asc) {
|
|
case 0x10: /* DIX: Host detected corruption */
|
|
good_bytes = sd_completed_bytes(SCpnt);
|
|
break;
|
|
case 0x20: /* INVALID COMMAND OPCODE */
|
|
case 0x24: /* INVALID FIELD IN CDB */
|
|
switch (SCpnt->cmnd[0]) {
|
|
case UNMAP:
|
|
sd_config_discard(sdkp, SD_LBP_DISABLE);
|
|
break;
|
|
case WRITE_SAME_16:
|
|
case WRITE_SAME:
|
|
if (SCpnt->cmnd[1] & 8) { /* UNMAP */
|
|
sd_config_discard(sdkp, SD_LBP_DISABLE);
|
|
} else {
|
|
sdkp->device->no_write_same = 1;
|
|
sd_config_write_same(sdkp);
|
|
req->rq_flags |= RQF_QUIET;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if (sd_is_zoned(sdkp))
|
|
good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
|
|
|
|
SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
|
|
"sd_done: completed %d of %d bytes\n",
|
|
good_bytes, scsi_bufflen(SCpnt)));
|
|
|
|
return good_bytes;
|
|
}
|
|
|
|
/*
|
|
* spinup disk - called only in sd_revalidate_disk()
|
|
*/
|
|
static void
|
|
sd_spinup_disk(struct scsi_disk *sdkp)
|
|
{
|
|
unsigned char cmd[10];
|
|
unsigned long spintime_expire = 0;
|
|
int retries, spintime;
|
|
unsigned int the_result;
|
|
struct scsi_sense_hdr sshdr;
|
|
int sense_valid = 0;
|
|
|
|
spintime = 0;
|
|
|
|
/* Spin up drives, as required. Only do this at boot time */
|
|
/* Spinup needs to be done for module loads too. */
|
|
do {
|
|
retries = 0;
|
|
|
|
do {
|
|
cmd[0] = TEST_UNIT_READY;
|
|
memset((void *) &cmd[1], 0, 9);
|
|
|
|
the_result = scsi_execute_req(sdkp->device, cmd,
|
|
DMA_NONE, NULL, 0,
|
|
&sshdr, SD_TIMEOUT,
|
|
SD_MAX_RETRIES, NULL);
|
|
|
|
/*
|
|
* If the drive has indicated to us that it
|
|
* doesn't have any media in it, don't bother
|
|
* with any more polling.
|
|
*/
|
|
if (media_not_present(sdkp, &sshdr))
|
|
return;
|
|
|
|
if (the_result)
|
|
sense_valid = scsi_sense_valid(&sshdr);
|
|
retries++;
|
|
} while (retries < 3 &&
|
|
(!scsi_status_is_good(the_result) ||
|
|
((driver_byte(the_result) == DRIVER_SENSE) &&
|
|
sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
|
|
|
|
if (driver_byte(the_result) != DRIVER_SENSE) {
|
|
/* no sense, TUR either succeeded or failed
|
|
* with a status error */
|
|
if(!spintime && !scsi_status_is_good(the_result)) {
|
|
sd_print_result(sdkp, "Test Unit Ready failed",
|
|
the_result);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The device does not want the automatic start to be issued.
|
|
*/
|
|
if (sdkp->device->no_start_on_add)
|
|
break;
|
|
|
|
if (sense_valid && sshdr.sense_key == NOT_READY) {
|
|
if (sshdr.asc == 4 && sshdr.ascq == 3)
|
|
break; /* manual intervention required */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0xb)
|
|
break; /* standby */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0xc)
|
|
break; /* unavailable */
|
|
if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
|
|
break; /* sanitize in progress */
|
|
/*
|
|
* Issue command to spin up drive when not ready
|
|
*/
|
|
if (!spintime) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
|
|
cmd[0] = START_STOP;
|
|
cmd[1] = 1; /* Return immediately */
|
|
memset((void *) &cmd[2], 0, 8);
|
|
cmd[4] = 1; /* Start spin cycle */
|
|
if (sdkp->device->start_stop_pwr_cond)
|
|
cmd[4] |= 1 << 4;
|
|
scsi_execute_req(sdkp->device, cmd, DMA_NONE,
|
|
NULL, 0, &sshdr,
|
|
SD_TIMEOUT, SD_MAX_RETRIES,
|
|
NULL);
|
|
spintime_expire = jiffies + 100 * HZ;
|
|
spintime = 1;
|
|
}
|
|
/* Wait 1 second for next try */
|
|
msleep(1000);
|
|
printk(KERN_CONT ".");
|
|
|
|
/*
|
|
* Wait for USB flash devices with slow firmware.
|
|
* Yes, this sense key/ASC combination shouldn't
|
|
* occur here. It's characteristic of these devices.
|
|
*/
|
|
} else if (sense_valid &&
|
|
sshdr.sense_key == UNIT_ATTENTION &&
|
|
sshdr.asc == 0x28) {
|
|
if (!spintime) {
|
|
spintime_expire = jiffies + 5 * HZ;
|
|
spintime = 1;
|
|
}
|
|
/* Wait 1 second for next try */
|
|
msleep(1000);
|
|
} else {
|
|
/* we don't understand the sense code, so it's
|
|
* probably pointless to loop */
|
|
if(!spintime) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
}
|
|
break;
|
|
}
|
|
|
|
} while (spintime && time_before_eq(jiffies, spintime_expire));
|
|
|
|
if (spintime) {
|
|
if (scsi_status_is_good(the_result))
|
|
printk(KERN_CONT "ready\n");
|
|
else
|
|
printk(KERN_CONT "not responding...\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine whether disk supports Data Integrity Field.
|
|
*/
|
|
static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
u8 type;
|
|
int ret = 0;
|
|
|
|
if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
|
|
sdkp->protection_type = 0;
|
|
return ret;
|
|
}
|
|
|
|
type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
|
|
|
|
if (type > T10_PI_TYPE3_PROTECTION)
|
|
ret = -ENODEV;
|
|
else if (scsi_host_dif_capable(sdp->host, type))
|
|
ret = 1;
|
|
|
|
if (sdkp->first_scan || type != sdkp->protection_type)
|
|
switch (ret) {
|
|
case -ENODEV:
|
|
sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
|
|
" protection type %u. Disabling disk!\n",
|
|
type);
|
|
break;
|
|
case 1:
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Enabling DIF Type %u protection\n", type);
|
|
break;
|
|
case 0:
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Disabling DIF Type %u protection\n", type);
|
|
break;
|
|
}
|
|
|
|
sdkp->protection_type = type;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
|
|
struct scsi_sense_hdr *sshdr, int sense_valid,
|
|
int the_result)
|
|
{
|
|
if (driver_byte(the_result) == DRIVER_SENSE)
|
|
sd_print_sense_hdr(sdkp, sshdr);
|
|
else
|
|
sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
|
|
|
|
/*
|
|
* Set dirty bit for removable devices if not ready -
|
|
* sometimes drives will not report this properly.
|
|
*/
|
|
if (sdp->removable &&
|
|
sense_valid && sshdr->sense_key == NOT_READY)
|
|
set_media_not_present(sdkp);
|
|
|
|
/*
|
|
* We used to set media_present to 0 here to indicate no media
|
|
* in the drive, but some drives fail read capacity even with
|
|
* media present, so we can't do that.
|
|
*/
|
|
sdkp->capacity = 0; /* unknown mapped to zero - as usual */
|
|
}
|
|
|
|
#define RC16_LEN 32
|
|
#if RC16_LEN > SD_BUF_SIZE
|
|
#error RC16_LEN must not be more than SD_BUF_SIZE
|
|
#endif
|
|
|
|
#define READ_CAPACITY_RETRIES_ON_RESET 10
|
|
|
|
static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
|
|
unsigned char *buffer)
|
|
{
|
|
unsigned char cmd[16];
|
|
struct scsi_sense_hdr sshdr;
|
|
int sense_valid = 0;
|
|
int the_result;
|
|
int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
|
|
unsigned int alignment;
|
|
unsigned long long lba;
|
|
unsigned sector_size;
|
|
|
|
if (sdp->no_read_capacity_16)
|
|
return -EINVAL;
|
|
|
|
do {
|
|
memset(cmd, 0, 16);
|
|
cmd[0] = SERVICE_ACTION_IN_16;
|
|
cmd[1] = SAI_READ_CAPACITY_16;
|
|
cmd[13] = RC16_LEN;
|
|
memset(buffer, 0, RC16_LEN);
|
|
|
|
the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
|
|
buffer, RC16_LEN, &sshdr,
|
|
SD_TIMEOUT, SD_MAX_RETRIES, NULL);
|
|
|
|
if (media_not_present(sdkp, &sshdr))
|
|
return -ENODEV;
|
|
|
|
if (the_result) {
|
|
sense_valid = scsi_sense_valid(&sshdr);
|
|
if (sense_valid &&
|
|
sshdr.sense_key == ILLEGAL_REQUEST &&
|
|
(sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
|
|
sshdr.ascq == 0x00)
|
|
/* Invalid Command Operation Code or
|
|
* Invalid Field in CDB, just retry
|
|
* silently with RC10 */
|
|
return -EINVAL;
|
|
if (sense_valid &&
|
|
sshdr.sense_key == UNIT_ATTENTION &&
|
|
sshdr.asc == 0x29 && sshdr.ascq == 0x00)
|
|
/* Device reset might occur several times,
|
|
* give it one more chance */
|
|
if (--reset_retries > 0)
|
|
continue;
|
|
}
|
|
retries--;
|
|
|
|
} while (the_result && retries);
|
|
|
|
if (the_result) {
|
|
sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
|
|
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sector_size = get_unaligned_be32(&buffer[8]);
|
|
lba = get_unaligned_be64(&buffer[0]);
|
|
|
|
if (sd_read_protection_type(sdkp, buffer) < 0) {
|
|
sdkp->capacity = 0;
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Logical blocks per physical block exponent */
|
|
sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
|
|
|
|
/* RC basis */
|
|
sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
|
|
|
|
/* Lowest aligned logical block */
|
|
alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
|
|
blk_queue_alignment_offset(sdp->request_queue, alignment);
|
|
if (alignment && sdkp->first_scan)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"physical block alignment offset: %u\n", alignment);
|
|
|
|
if (buffer[14] & 0x80) { /* LBPME */
|
|
sdkp->lbpme = 1;
|
|
|
|
if (buffer[14] & 0x40) /* LBPRZ */
|
|
sdkp->lbprz = 1;
|
|
|
|
sd_config_discard(sdkp, SD_LBP_WS16);
|
|
}
|
|
|
|
sdkp->capacity = lba + 1;
|
|
return sector_size;
|
|
}
|
|
|
|
static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
|
|
unsigned char *buffer)
|
|
{
|
|
unsigned char cmd[16];
|
|
struct scsi_sense_hdr sshdr;
|
|
int sense_valid = 0;
|
|
int the_result;
|
|
int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
|
|
sector_t lba;
|
|
unsigned sector_size;
|
|
|
|
do {
|
|
cmd[0] = READ_CAPACITY;
|
|
memset(&cmd[1], 0, 9);
|
|
memset(buffer, 0, 8);
|
|
|
|
the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
|
|
buffer, 8, &sshdr,
|
|
SD_TIMEOUT, SD_MAX_RETRIES, NULL);
|
|
|
|
if (media_not_present(sdkp, &sshdr))
|
|
return -ENODEV;
|
|
|
|
if (the_result) {
|
|
sense_valid = scsi_sense_valid(&sshdr);
|
|
if (sense_valid &&
|
|
sshdr.sense_key == UNIT_ATTENTION &&
|
|
sshdr.asc == 0x29 && sshdr.ascq == 0x00)
|
|
/* Device reset might occur several times,
|
|
* give it one more chance */
|
|
if (--reset_retries > 0)
|
|
continue;
|
|
}
|
|
retries--;
|
|
|
|
} while (the_result && retries);
|
|
|
|
if (the_result) {
|
|
sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
|
|
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sector_size = get_unaligned_be32(&buffer[4]);
|
|
lba = get_unaligned_be32(&buffer[0]);
|
|
|
|
if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
|
|
/* Some buggy (usb cardreader) devices return an lba of
|
|
0xffffffff when the want to report a size of 0 (with
|
|
which they really mean no media is present) */
|
|
sdkp->capacity = 0;
|
|
sdkp->physical_block_size = sector_size;
|
|
return sector_size;
|
|
}
|
|
|
|
sdkp->capacity = lba + 1;
|
|
sdkp->physical_block_size = sector_size;
|
|
return sector_size;
|
|
}
|
|
|
|
static int sd_try_rc16_first(struct scsi_device *sdp)
|
|
{
|
|
if (sdp->host->max_cmd_len < 16)
|
|
return 0;
|
|
if (sdp->try_rc_10_first)
|
|
return 0;
|
|
if (sdp->scsi_level > SCSI_SPC_2)
|
|
return 1;
|
|
if (scsi_device_protection(sdp))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* read disk capacity
|
|
*/
|
|
static void
|
|
sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
int sector_size;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
if (sd_try_rc16_first(sdp)) {
|
|
sector_size = read_capacity_16(sdkp, sdp, buffer);
|
|
if (sector_size == -EOVERFLOW)
|
|
goto got_data;
|
|
if (sector_size == -ENODEV)
|
|
return;
|
|
if (sector_size < 0)
|
|
sector_size = read_capacity_10(sdkp, sdp, buffer);
|
|
if (sector_size < 0)
|
|
return;
|
|
} else {
|
|
sector_size = read_capacity_10(sdkp, sdp, buffer);
|
|
if (sector_size == -EOVERFLOW)
|
|
goto got_data;
|
|
if (sector_size < 0)
|
|
return;
|
|
if ((sizeof(sdkp->capacity) > 4) &&
|
|
(sdkp->capacity > 0xffffffffULL)) {
|
|
int old_sector_size = sector_size;
|
|
sd_printk(KERN_NOTICE, sdkp, "Very big device. "
|
|
"Trying to use READ CAPACITY(16).\n");
|
|
sector_size = read_capacity_16(sdkp, sdp, buffer);
|
|
if (sector_size < 0) {
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Using 0xffffffff as device size\n");
|
|
sdkp->capacity = 1 + (sector_t) 0xffffffff;
|
|
sector_size = old_sector_size;
|
|
goto got_data;
|
|
}
|
|
/* Remember that READ CAPACITY(16) succeeded */
|
|
sdp->try_rc_10_first = 0;
|
|
}
|
|
}
|
|
|
|
/* Some devices are known to return the total number of blocks,
|
|
* not the highest block number. Some devices have versions
|
|
* which do this and others which do not. Some devices we might
|
|
* suspect of doing this but we don't know for certain.
|
|
*
|
|
* If we know the reported capacity is wrong, decrement it. If
|
|
* we can only guess, then assume the number of blocks is even
|
|
* (usually true but not always) and err on the side of lowering
|
|
* the capacity.
|
|
*/
|
|
if (sdp->fix_capacity ||
|
|
(sdp->guess_capacity && (sdkp->capacity & 0x01))) {
|
|
sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
|
|
"from its reported value: %llu\n",
|
|
(unsigned long long) sdkp->capacity);
|
|
--sdkp->capacity;
|
|
}
|
|
|
|
got_data:
|
|
if (sector_size == 0) {
|
|
sector_size = 512;
|
|
sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
|
|
"assuming 512.\n");
|
|
}
|
|
|
|
if (sector_size != 512 &&
|
|
sector_size != 1024 &&
|
|
sector_size != 2048 &&
|
|
sector_size != 4096) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
|
|
sector_size);
|
|
/*
|
|
* The user might want to re-format the drive with
|
|
* a supported sectorsize. Once this happens, it
|
|
* would be relatively trivial to set the thing up.
|
|
* For this reason, we leave the thing in the table.
|
|
*/
|
|
sdkp->capacity = 0;
|
|
/*
|
|
* set a bogus sector size so the normal read/write
|
|
* logic in the block layer will eventually refuse any
|
|
* request on this device without tripping over power
|
|
* of two sector size assumptions
|
|
*/
|
|
sector_size = 512;
|
|
}
|
|
blk_queue_logical_block_size(sdp->request_queue, sector_size);
|
|
blk_queue_physical_block_size(sdp->request_queue,
|
|
sdkp->physical_block_size);
|
|
sdkp->device->sector_size = sector_size;
|
|
|
|
if (sdkp->capacity > 0xffffffff)
|
|
sdp->use_16_for_rw = 1;
|
|
|
|
}
|
|
|
|
/*
|
|
* Print disk capacity
|
|
*/
|
|
static void
|
|
sd_print_capacity(struct scsi_disk *sdkp,
|
|
sector_t old_capacity)
|
|
{
|
|
int sector_size = sdkp->device->sector_size;
|
|
char cap_str_2[10], cap_str_10[10];
|
|
|
|
if (!sdkp->first_scan && old_capacity == sdkp->capacity)
|
|
return;
|
|
|
|
string_get_size(sdkp->capacity, sector_size,
|
|
STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
|
|
string_get_size(sdkp->capacity, sector_size,
|
|
STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
|
|
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"%llu %d-byte logical blocks: (%s/%s)\n",
|
|
(unsigned long long)sdkp->capacity,
|
|
sector_size, cap_str_10, cap_str_2);
|
|
|
|
if (sdkp->physical_block_size != sector_size)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"%u-byte physical blocks\n",
|
|
sdkp->physical_block_size);
|
|
}
|
|
|
|
/* called with buffer of length 512 */
|
|
static inline int
|
|
sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
|
|
unsigned char *buffer, int len, struct scsi_mode_data *data,
|
|
struct scsi_sense_hdr *sshdr)
|
|
{
|
|
return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
|
|
SD_TIMEOUT, SD_MAX_RETRIES, data,
|
|
sshdr);
|
|
}
|
|
|
|
/*
|
|
* read write protect setting, if possible - called only in sd_revalidate_disk()
|
|
* called with buffer of length SD_BUF_SIZE
|
|
*/
|
|
static void
|
|
sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
int res;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct scsi_mode_data data;
|
|
int old_wp = sdkp->write_prot;
|
|
|
|
set_disk_ro(sdkp->disk, 0);
|
|
if (sdp->skip_ms_page_3f) {
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
|
|
return;
|
|
}
|
|
|
|
if (sdp->use_192_bytes_for_3f) {
|
|
res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
|
|
} else {
|
|
/*
|
|
* First attempt: ask for all pages (0x3F), but only 4 bytes.
|
|
* We have to start carefully: some devices hang if we ask
|
|
* for more than is available.
|
|
*/
|
|
res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
|
|
|
|
/*
|
|
* Second attempt: ask for page 0 When only page 0 is
|
|
* implemented, a request for page 3F may return Sense Key
|
|
* 5: Illegal Request, Sense Code 24: Invalid field in
|
|
* CDB.
|
|
*/
|
|
if (!scsi_status_is_good(res))
|
|
res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
|
|
|
|
/*
|
|
* Third attempt: ask 255 bytes, as we did earlier.
|
|
*/
|
|
if (!scsi_status_is_good(res))
|
|
res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
|
|
&data, NULL);
|
|
}
|
|
|
|
if (!scsi_status_is_good(res)) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Test WP failed, assume Write Enabled\n");
|
|
} else {
|
|
sdkp->write_prot = ((data.device_specific & 0x80) != 0);
|
|
set_disk_ro(sdkp->disk, sdkp->write_prot);
|
|
if (sdkp->first_scan || old_wp != sdkp->write_prot) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
|
|
sdkp->write_prot ? "on" : "off");
|
|
sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sd_read_cache_type - called only from sd_revalidate_disk()
|
|
* called with buffer of length SD_BUF_SIZE
|
|
*/
|
|
static void
|
|
sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
int len = 0, res;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
|
|
int dbd;
|
|
int modepage;
|
|
int first_len;
|
|
struct scsi_mode_data data;
|
|
struct scsi_sense_hdr sshdr;
|
|
int old_wce = sdkp->WCE;
|
|
int old_rcd = sdkp->RCD;
|
|
int old_dpofua = sdkp->DPOFUA;
|
|
|
|
|
|
if (sdkp->cache_override)
|
|
return;
|
|
|
|
first_len = 4;
|
|
if (sdp->skip_ms_page_8) {
|
|
if (sdp->type == TYPE_RBC)
|
|
goto defaults;
|
|
else {
|
|
if (sdp->skip_ms_page_3f)
|
|
goto defaults;
|
|
modepage = 0x3F;
|
|
if (sdp->use_192_bytes_for_3f)
|
|
first_len = 192;
|
|
dbd = 0;
|
|
}
|
|
} else if (sdp->type == TYPE_RBC) {
|
|
modepage = 6;
|
|
dbd = 8;
|
|
} else {
|
|
modepage = 8;
|
|
dbd = 0;
|
|
}
|
|
|
|
/* cautiously ask */
|
|
res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
|
|
&data, &sshdr);
|
|
|
|
if (!scsi_status_is_good(res))
|
|
goto bad_sense;
|
|
|
|
if (!data.header_length) {
|
|
modepage = 6;
|
|
first_len = 0;
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Missing header in MODE_SENSE response\n");
|
|
}
|
|
|
|
/* that went OK, now ask for the proper length */
|
|
len = data.length;
|
|
|
|
/*
|
|
* We're only interested in the first three bytes, actually.
|
|
* But the data cache page is defined for the first 20.
|
|
*/
|
|
if (len < 3)
|
|
goto bad_sense;
|
|
else if (len > SD_BUF_SIZE) {
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
|
|
"data from %d to %d bytes\n", len, SD_BUF_SIZE);
|
|
len = SD_BUF_SIZE;
|
|
}
|
|
if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
|
|
len = 192;
|
|
|
|
/* Get the data */
|
|
if (len > first_len)
|
|
res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
|
|
&data, &sshdr);
|
|
|
|
if (scsi_status_is_good(res)) {
|
|
int offset = data.header_length + data.block_descriptor_length;
|
|
|
|
while (offset < len) {
|
|
u8 page_code = buffer[offset] & 0x3F;
|
|
u8 spf = buffer[offset] & 0x40;
|
|
|
|
if (page_code == 8 || page_code == 6) {
|
|
/* We're interested only in the first 3 bytes.
|
|
*/
|
|
if (len - offset <= 2) {
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Incomplete mode parameter "
|
|
"data\n");
|
|
goto defaults;
|
|
} else {
|
|
modepage = page_code;
|
|
goto Page_found;
|
|
}
|
|
} else {
|
|
/* Go to the next page */
|
|
if (spf && len - offset > 3)
|
|
offset += 4 + (buffer[offset+2] << 8) +
|
|
buffer[offset+3];
|
|
else if (!spf && len - offset > 1)
|
|
offset += 2 + buffer[offset+1];
|
|
else {
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Incomplete mode "
|
|
"parameter data\n");
|
|
goto defaults;
|
|
}
|
|
}
|
|
}
|
|
|
|
sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
|
|
goto defaults;
|
|
|
|
Page_found:
|
|
if (modepage == 8) {
|
|
sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
|
|
sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
|
|
} else {
|
|
sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
|
|
sdkp->RCD = 0;
|
|
}
|
|
|
|
sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
|
|
if (sdp->broken_fua) {
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
|
|
sdkp->DPOFUA = 0;
|
|
} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
|
|
!sdkp->device->use_16_for_rw) {
|
|
sd_first_printk(KERN_NOTICE, sdkp,
|
|
"Uses READ/WRITE(6), disabling FUA\n");
|
|
sdkp->DPOFUA = 0;
|
|
}
|
|
|
|
/* No cache flush allowed for write protected devices */
|
|
if (sdkp->WCE && sdkp->write_prot)
|
|
sdkp->WCE = 0;
|
|
|
|
if (sdkp->first_scan || old_wce != sdkp->WCE ||
|
|
old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Write cache: %s, read cache: %s, %s\n",
|
|
sdkp->WCE ? "enabled" : "disabled",
|
|
sdkp->RCD ? "disabled" : "enabled",
|
|
sdkp->DPOFUA ? "supports DPO and FUA"
|
|
: "doesn't support DPO or FUA");
|
|
|
|
return;
|
|
}
|
|
|
|
bad_sense:
|
|
if (scsi_sense_valid(&sshdr) &&
|
|
sshdr.sense_key == ILLEGAL_REQUEST &&
|
|
sshdr.asc == 0x24 && sshdr.ascq == 0x0)
|
|
/* Invalid field in CDB */
|
|
sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
|
|
else
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Asking for cache data failed\n");
|
|
|
|
defaults:
|
|
if (sdp->wce_default_on) {
|
|
sd_first_printk(KERN_NOTICE, sdkp,
|
|
"Assuming drive cache: write back\n");
|
|
sdkp->WCE = 1;
|
|
} else {
|
|
sd_first_printk(KERN_ERR, sdkp,
|
|
"Assuming drive cache: write through\n");
|
|
sdkp->WCE = 0;
|
|
}
|
|
sdkp->RCD = 0;
|
|
sdkp->DPOFUA = 0;
|
|
}
|
|
|
|
/*
|
|
* The ATO bit indicates whether the DIF application tag is available
|
|
* for use by the operating system.
|
|
*/
|
|
static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
int res, offset;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct scsi_mode_data data;
|
|
struct scsi_sense_hdr sshdr;
|
|
|
|
if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
|
|
return;
|
|
|
|
if (sdkp->protection_type == 0)
|
|
return;
|
|
|
|
res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
|
|
SD_MAX_RETRIES, &data, &sshdr);
|
|
|
|
if (!scsi_status_is_good(res) || !data.header_length ||
|
|
data.length < 6) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"getting Control mode page failed, assume no ATO\n");
|
|
|
|
if (scsi_sense_valid(&sshdr))
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
|
|
return;
|
|
}
|
|
|
|
offset = data.header_length + data.block_descriptor_length;
|
|
|
|
if ((buffer[offset] & 0x3f) != 0x0a) {
|
|
sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
|
|
return;
|
|
}
|
|
|
|
if ((buffer[offset + 5] & 0x80) == 0)
|
|
return;
|
|
|
|
sdkp->ATO = 1;
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* sd_read_block_limits - Query disk device for preferred I/O sizes.
|
|
* @sdkp: disk to query
|
|
*/
|
|
static void sd_read_block_limits(struct scsi_disk *sdkp)
|
|
{
|
|
unsigned int sector_sz = sdkp->device->sector_size;
|
|
const int vpd_len = 64;
|
|
unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
|
|
|
|
if (!buffer ||
|
|
/* Block Limits VPD */
|
|
scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
|
|
goto out;
|
|
|
|
blk_queue_io_min(sdkp->disk->queue,
|
|
get_unaligned_be16(&buffer[6]) * sector_sz);
|
|
|
|
sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
|
|
sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
|
|
|
|
if (buffer[3] == 0x3c) {
|
|
unsigned int lba_count, desc_count;
|
|
|
|
sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
|
|
|
|
if (!sdkp->lbpme)
|
|
goto out;
|
|
|
|
lba_count = get_unaligned_be32(&buffer[20]);
|
|
desc_count = get_unaligned_be32(&buffer[24]);
|
|
|
|
if (lba_count && desc_count)
|
|
sdkp->max_unmap_blocks = lba_count;
|
|
|
|
sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
|
|
|
|
if (buffer[32] & 0x80)
|
|
sdkp->unmap_alignment =
|
|
get_unaligned_be32(&buffer[32]) & ~(1 << 31);
|
|
|
|
if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
|
|
|
|
if (sdkp->max_unmap_blocks)
|
|
sd_config_discard(sdkp, SD_LBP_UNMAP);
|
|
else
|
|
sd_config_discard(sdkp, SD_LBP_WS16);
|
|
|
|
} else { /* LBP VPD page tells us what to use */
|
|
if (sdkp->lbpu && sdkp->max_unmap_blocks)
|
|
sd_config_discard(sdkp, SD_LBP_UNMAP);
|
|
else if (sdkp->lbpws)
|
|
sd_config_discard(sdkp, SD_LBP_WS16);
|
|
else if (sdkp->lbpws10)
|
|
sd_config_discard(sdkp, SD_LBP_WS10);
|
|
else
|
|
sd_config_discard(sdkp, SD_LBP_DISABLE);
|
|
}
|
|
}
|
|
|
|
out:
|
|
kfree(buffer);
|
|
}
|
|
|
|
/**
|
|
* sd_read_block_characteristics - Query block dev. characteristics
|
|
* @sdkp: disk to query
|
|
*/
|
|
static void sd_read_block_characteristics(struct scsi_disk *sdkp)
|
|
{
|
|
struct request_queue *q = sdkp->disk->queue;
|
|
unsigned char *buffer;
|
|
u16 rot;
|
|
const int vpd_len = 64;
|
|
|
|
buffer = kmalloc(vpd_len, GFP_KERNEL);
|
|
|
|
if (!buffer ||
|
|
/* Block Device Characteristics VPD */
|
|
scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
|
|
goto out;
|
|
|
|
rot = get_unaligned_be16(&buffer[4]);
|
|
|
|
if (rot == 1) {
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
|
|
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
|
|
}
|
|
|
|
if (sdkp->device->type == TYPE_ZBC) {
|
|
/* Host-managed */
|
|
q->limits.zoned = BLK_ZONED_HM;
|
|
} else {
|
|
sdkp->zoned = (buffer[8] >> 4) & 3;
|
|
if (sdkp->zoned == 1 && !disk_has_partitions(sdkp->disk)) {
|
|
/* Host-aware */
|
|
q->limits.zoned = BLK_ZONED_HA;
|
|
} else {
|
|
/*
|
|
* Treat drive-managed devices and host-aware devices
|
|
* with partitions as regular block devices.
|
|
*/
|
|
q->limits.zoned = BLK_ZONED_NONE;
|
|
if (sdkp->zoned == 2 && sdkp->first_scan)
|
|
sd_printk(KERN_NOTICE, sdkp,
|
|
"Drive-managed SMR disk\n");
|
|
}
|
|
}
|
|
if (blk_queue_is_zoned(q) && sdkp->first_scan)
|
|
sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
|
|
q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
|
|
|
|
out:
|
|
kfree(buffer);
|
|
}
|
|
|
|
/**
|
|
* sd_read_block_provisioning - Query provisioning VPD page
|
|
* @sdkp: disk to query
|
|
*/
|
|
static void sd_read_block_provisioning(struct scsi_disk *sdkp)
|
|
{
|
|
unsigned char *buffer;
|
|
const int vpd_len = 8;
|
|
|
|
if (sdkp->lbpme == 0)
|
|
return;
|
|
|
|
buffer = kmalloc(vpd_len, GFP_KERNEL);
|
|
|
|
if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
|
|
goto out;
|
|
|
|
sdkp->lbpvpd = 1;
|
|
sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
|
|
sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
|
|
sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
|
|
|
|
out:
|
|
kfree(buffer);
|
|
}
|
|
|
|
static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
struct scsi_device *sdev = sdkp->device;
|
|
|
|
if (sdev->host->no_write_same) {
|
|
sdev->no_write_same = 1;
|
|
|
|
return;
|
|
}
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
|
|
/* too large values might cause issues with arcmsr */
|
|
int vpd_buf_len = 64;
|
|
|
|
sdev->no_report_opcodes = 1;
|
|
|
|
/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
|
|
* CODES is unsupported and the device has an ATA
|
|
* Information VPD page (SAT).
|
|
*/
|
|
if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
|
|
sdev->no_write_same = 1;
|
|
}
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
|
|
sdkp->ws16 = 1;
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
|
|
sdkp->ws10 = 1;
|
|
}
|
|
|
|
static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
|
|
{
|
|
struct scsi_device *sdev = sdkp->device;
|
|
|
|
if (!sdev->security_supported)
|
|
return;
|
|
|
|
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
|
|
SECURITY_PROTOCOL_IN) == 1 &&
|
|
scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
|
|
SECURITY_PROTOCOL_OUT) == 1)
|
|
sdkp->security = 1;
|
|
}
|
|
|
|
/*
|
|
* Determine the device's preferred I/O size for reads and writes
|
|
* unless the reported value is unreasonably small, large, not a
|
|
* multiple of the physical block size, or simply garbage.
|
|
*/
|
|
static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
|
|
unsigned int dev_max)
|
|
{
|
|
struct scsi_device *sdp = sdkp->device;
|
|
unsigned int opt_xfer_bytes =
|
|
logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
|
|
|
|
if (sdkp->opt_xfer_blocks == 0)
|
|
return false;
|
|
|
|
if (sdkp->opt_xfer_blocks > dev_max) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u logical blocks " \
|
|
"> dev_max (%u logical blocks)\n",
|
|
sdkp->opt_xfer_blocks, dev_max);
|
|
return false;
|
|
}
|
|
|
|
if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u logical blocks " \
|
|
"> sd driver limit (%u logical blocks)\n",
|
|
sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
|
|
return false;
|
|
}
|
|
|
|
if (opt_xfer_bytes < PAGE_SIZE) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u bytes < " \
|
|
"PAGE_SIZE (%u bytes)\n",
|
|
opt_xfer_bytes, (unsigned int)PAGE_SIZE);
|
|
return false;
|
|
}
|
|
|
|
if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
|
|
sd_first_printk(KERN_WARNING, sdkp,
|
|
"Optimal transfer size %u bytes not a " \
|
|
"multiple of physical block size (%u bytes)\n",
|
|
opt_xfer_bytes, sdkp->physical_block_size);
|
|
return false;
|
|
}
|
|
|
|
sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
|
|
opt_xfer_bytes);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* sd_revalidate_disk - called the first time a new disk is seen,
|
|
* performs disk spin up, read_capacity, etc.
|
|
* @disk: struct gendisk we care about
|
|
**/
|
|
static int sd_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
struct scsi_disk *sdkp = scsi_disk(disk);
|
|
struct scsi_device *sdp = sdkp->device;
|
|
struct request_queue *q = sdkp->disk->queue;
|
|
sector_t old_capacity = sdkp->capacity;
|
|
unsigned char *buffer;
|
|
unsigned int dev_max, rw_max;
|
|
|
|
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
|
|
"sd_revalidate_disk\n"));
|
|
|
|
/*
|
|
* If the device is offline, don't try and read capacity or any
|
|
* of the other niceties.
|
|
*/
|
|
if (!scsi_device_online(sdp))
|
|
goto out;
|
|
|
|
buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
|
|
if (!buffer) {
|
|
sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
|
|
"allocation failure.\n");
|
|
goto out;
|
|
}
|
|
|
|
sd_spinup_disk(sdkp);
|
|
|
|
/*
|
|
* Without media there is no reason to ask; moreover, some devices
|
|
* react badly if we do.
|
|
*/
|
|
if (sdkp->media_present) {
|
|
sd_read_capacity(sdkp, buffer);
|
|
|
|
/*
|
|
* set the default to rotational. All non-rotational devices
|
|
* support the block characteristics VPD page, which will
|
|
* cause this to be updated correctly and any device which
|
|
* doesn't support it should be treated as rotational.
|
|
*/
|
|
blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
|
|
blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
|
|
|
|
if (scsi_device_supports_vpd(sdp)) {
|
|
sd_read_block_provisioning(sdkp);
|
|
sd_read_block_limits(sdkp);
|
|
sd_read_block_characteristics(sdkp);
|
|
sd_zbc_read_zones(sdkp, buffer);
|
|
}
|
|
|
|
sd_print_capacity(sdkp, old_capacity);
|
|
|
|
sd_read_write_protect_flag(sdkp, buffer);
|
|
sd_read_cache_type(sdkp, buffer);
|
|
sd_read_app_tag_own(sdkp, buffer);
|
|
sd_read_write_same(sdkp, buffer);
|
|
sd_read_security(sdkp, buffer);
|
|
}
|
|
|
|
/*
|
|
* We now have all cache related info, determine how we deal
|
|
* with flush requests.
|
|
*/
|
|
sd_set_flush_flag(sdkp);
|
|
|
|
/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
|
|
dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
|
|
|
|
/* Some devices report a maximum block count for READ/WRITE requests. */
|
|
dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
|
|
q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
|
|
|
|
if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
|
|
q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
|
|
rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
|
|
} else {
|
|
q->limits.io_opt = 0;
|
|
rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
|
|
(sector_t)BLK_DEF_MAX_SECTORS);
|
|
}
|
|
|
|
/* Do not exceed controller limit */
|
|
rw_max = min(rw_max, queue_max_hw_sectors(q));
|
|
|
|
/*
|
|
* Only update max_sectors if previously unset or if the current value
|
|
* exceeds the capabilities of the hardware.
|
|
*/
|
|
if (sdkp->first_scan ||
|
|
q->limits.max_sectors > q->limits.max_dev_sectors ||
|
|
q->limits.max_sectors > q->limits.max_hw_sectors)
|
|
q->limits.max_sectors = rw_max;
|
|
|
|
sdkp->first_scan = 0;
|
|
|
|
set_capacity_revalidate_and_notify(disk,
|
|
logical_to_sectors(sdp, sdkp->capacity), false);
|
|
sd_config_write_same(sdkp);
|
|
kfree(buffer);
|
|
|
|
/*
|
|
* For a zoned drive, revalidating the zones can be done only once
|
|
* the gendisk capacity is set. So if this fails, set back the gendisk
|
|
* capacity to 0.
|
|
*/
|
|
if (sd_zbc_revalidate_zones(sdkp))
|
|
set_capacity_revalidate_and_notify(disk, 0, false);
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_unlock_native_capacity - unlock native capacity
|
|
* @disk: struct gendisk to set capacity for
|
|
*
|
|
* Block layer calls this function if it detects that partitions
|
|
* on @disk reach beyond the end of the device. If the SCSI host
|
|
* implements ->unlock_native_capacity() method, it's invoked to
|
|
* give it a chance to adjust the device capacity.
|
|
*
|
|
* CONTEXT:
|
|
* Defined by block layer. Might sleep.
|
|
*/
|
|
static void sd_unlock_native_capacity(struct gendisk *disk)
|
|
{
|
|
struct scsi_device *sdev = scsi_disk(disk)->device;
|
|
|
|
if (sdev->host->hostt->unlock_native_capacity)
|
|
sdev->host->hostt->unlock_native_capacity(sdev);
|
|
}
|
|
|
|
/**
|
|
* sd_format_disk_name - format disk name
|
|
* @prefix: name prefix - ie. "sd" for SCSI disks
|
|
* @index: index of the disk to format name for
|
|
* @buf: output buffer
|
|
* @buflen: length of the output buffer
|
|
*
|
|
* SCSI disk names starts at sda. The 26th device is sdz and the
|
|
* 27th is sdaa. The last one for two lettered suffix is sdzz
|
|
* which is followed by sdaaa.
|
|
*
|
|
* This is basically 26 base counting with one extra 'nil' entry
|
|
* at the beginning from the second digit on and can be
|
|
* determined using similar method as 26 base conversion with the
|
|
* index shifted -1 after each digit is computed.
|
|
*
|
|
* CONTEXT:
|
|
* Don't care.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
|
|
{
|
|
const int base = 'z' - 'a' + 1;
|
|
char *begin = buf + strlen(prefix);
|
|
char *end = buf + buflen;
|
|
char *p;
|
|
int unit;
|
|
|
|
p = end - 1;
|
|
*p = '\0';
|
|
unit = base;
|
|
do {
|
|
if (p == begin)
|
|
return -EINVAL;
|
|
*--p = 'a' + (index % unit);
|
|
index = (index / unit) - 1;
|
|
} while (index >= 0);
|
|
|
|
memmove(begin, p, end - p);
|
|
memcpy(buf, prefix, strlen(prefix));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sd_probe - called during driver initialization and whenever a
|
|
* new scsi device is attached to the system. It is called once
|
|
* for each scsi device (not just disks) present.
|
|
* @dev: pointer to device object
|
|
*
|
|
* Returns 0 if successful (or not interested in this scsi device
|
|
* (e.g. scanner)); 1 when there is an error.
|
|
*
|
|
* Note: this function is invoked from the scsi mid-level.
|
|
* This function sets up the mapping between a given
|
|
* <host,channel,id,lun> (found in sdp) and new device name
|
|
* (e.g. /dev/sda). More precisely it is the block device major
|
|
* and minor number that is chosen here.
|
|
*
|
|
* Assume sd_probe is not re-entrant (for time being)
|
|
* Also think about sd_probe() and sd_remove() running coincidentally.
|
|
**/
|
|
static int sd_probe(struct device *dev)
|
|
{
|
|
struct scsi_device *sdp = to_scsi_device(dev);
|
|
struct scsi_disk *sdkp;
|
|
struct gendisk *gd;
|
|
int index;
|
|
int error;
|
|
|
|
scsi_autopm_get_device(sdp);
|
|
error = -ENODEV;
|
|
if (sdp->type != TYPE_DISK &&
|
|
sdp->type != TYPE_ZBC &&
|
|
sdp->type != TYPE_MOD &&
|
|
sdp->type != TYPE_RBC)
|
|
goto out;
|
|
|
|
#ifndef CONFIG_BLK_DEV_ZONED
|
|
if (sdp->type == TYPE_ZBC)
|
|
goto out;
|
|
#endif
|
|
SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
|
|
"sd_probe\n"));
|
|
|
|
error = -ENOMEM;
|
|
sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
|
|
if (!sdkp)
|
|
goto out;
|
|
|
|
gd = alloc_disk(SD_MINORS);
|
|
if (!gd)
|
|
goto out_free;
|
|
|
|
index = ida_alloc(&sd_index_ida, GFP_KERNEL);
|
|
if (index < 0) {
|
|
sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
|
|
goto out_put;
|
|
}
|
|
|
|
error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
|
|
if (error) {
|
|
sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
|
|
goto out_free_index;
|
|
}
|
|
|
|
sdkp->device = sdp;
|
|
sdkp->driver = &sd_template;
|
|
sdkp->disk = gd;
|
|
sdkp->index = index;
|
|
atomic_set(&sdkp->openers, 0);
|
|
atomic_set(&sdkp->device->ioerr_cnt, 0);
|
|
|
|
if (!sdp->request_queue->rq_timeout) {
|
|
if (sdp->type != TYPE_MOD)
|
|
blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
|
|
else
|
|
blk_queue_rq_timeout(sdp->request_queue,
|
|
SD_MOD_TIMEOUT);
|
|
}
|
|
|
|
device_initialize(&sdkp->dev);
|
|
sdkp->dev.parent = dev;
|
|
sdkp->dev.class = &sd_disk_class;
|
|
dev_set_name(&sdkp->dev, "%s", dev_name(dev));
|
|
|
|
error = device_add(&sdkp->dev);
|
|
if (error)
|
|
goto out_free_index;
|
|
|
|
get_device(dev);
|
|
dev_set_drvdata(dev, sdkp);
|
|
|
|
gd->major = sd_major((index & 0xf0) >> 4);
|
|
gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
|
|
|
|
gd->fops = &sd_fops;
|
|
gd->private_data = &sdkp->driver;
|
|
gd->queue = sdkp->device->request_queue;
|
|
|
|
/* defaults, until the device tells us otherwise */
|
|
sdp->sector_size = 512;
|
|
sdkp->capacity = 0;
|
|
sdkp->media_present = 1;
|
|
sdkp->write_prot = 0;
|
|
sdkp->cache_override = 0;
|
|
sdkp->WCE = 0;
|
|
sdkp->RCD = 0;
|
|
sdkp->ATO = 0;
|
|
sdkp->first_scan = 1;
|
|
sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
|
|
|
|
error = sd_zbc_init_disk(sdkp);
|
|
if (error)
|
|
goto out_free_index;
|
|
|
|
sd_revalidate_disk(gd);
|
|
|
|
gd->flags = GENHD_FL_EXT_DEVT;
|
|
if (sdp->removable) {
|
|
gd->flags |= GENHD_FL_REMOVABLE;
|
|
gd->events |= DISK_EVENT_MEDIA_CHANGE;
|
|
gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
|
|
}
|
|
|
|
blk_pm_runtime_init(sdp->request_queue, dev);
|
|
if (sdp->rpm_autosuspend) {
|
|
pm_runtime_set_autosuspend_delay(dev,
|
|
sdp->host->hostt->rpm_autosuspend_delay);
|
|
}
|
|
device_add_disk(dev, gd, NULL);
|
|
if (sdkp->capacity)
|
|
sd_dif_config_host(sdkp);
|
|
|
|
sd_revalidate_disk(gd);
|
|
|
|
if (sdkp->security) {
|
|
sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
|
|
if (sdkp->opal_dev)
|
|
sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
|
|
}
|
|
|
|
sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
|
|
sdp->removable ? "removable " : "");
|
|
scsi_autopm_put_device(sdp);
|
|
|
|
return 0;
|
|
|
|
out_free_index:
|
|
ida_free(&sd_index_ida, index);
|
|
out_put:
|
|
put_disk(gd);
|
|
out_free:
|
|
sd_zbc_release_disk(sdkp);
|
|
kfree(sdkp);
|
|
out:
|
|
scsi_autopm_put_device(sdp);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* sd_remove - called whenever a scsi disk (previously recognized by
|
|
* sd_probe) is detached from the system. It is called (potentially
|
|
* multiple times) during sd module unload.
|
|
* @dev: pointer to device object
|
|
*
|
|
* Note: this function is invoked from the scsi mid-level.
|
|
* This function potentially frees up a device name (e.g. /dev/sdc)
|
|
* that could be re-used by a subsequent sd_probe().
|
|
* This function is not called when the built-in sd driver is "exit-ed".
|
|
**/
|
|
static int sd_remove(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp;
|
|
dev_t devt;
|
|
|
|
sdkp = dev_get_drvdata(dev);
|
|
devt = disk_devt(sdkp->disk);
|
|
scsi_autopm_get_device(sdkp->device);
|
|
|
|
async_synchronize_full_domain(&scsi_sd_pm_domain);
|
|
device_del(&sdkp->dev);
|
|
del_gendisk(sdkp->disk);
|
|
sd_shutdown(dev);
|
|
|
|
free_opal_dev(sdkp->opal_dev);
|
|
|
|
blk_register_region(devt, SD_MINORS, NULL,
|
|
sd_default_probe, NULL, NULL);
|
|
|
|
mutex_lock(&sd_ref_mutex);
|
|
dev_set_drvdata(dev, NULL);
|
|
put_device(&sdkp->dev);
|
|
mutex_unlock(&sd_ref_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* scsi_disk_release - Called to free the scsi_disk structure
|
|
* @dev: pointer to embedded class device
|
|
*
|
|
* sd_ref_mutex must be held entering this routine. Because it is
|
|
* called on last put, you should always use the scsi_disk_get()
|
|
* scsi_disk_put() helpers which manipulate the semaphore directly
|
|
* and never do a direct put_device.
|
|
**/
|
|
static void scsi_disk_release(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = to_scsi_disk(dev);
|
|
struct gendisk *disk = sdkp->disk;
|
|
struct request_queue *q = disk->queue;
|
|
|
|
ida_free(&sd_index_ida, sdkp->index);
|
|
|
|
/*
|
|
* Wait until all requests that are in progress have completed.
|
|
* This is necessary to avoid that e.g. scsi_end_request() crashes
|
|
* due to clearing the disk->private_data pointer. Wait from inside
|
|
* scsi_disk_release() instead of from sd_release() to avoid that
|
|
* freezing and unfreezing the request queue affects user space I/O
|
|
* in case multiple processes open a /dev/sd... node concurrently.
|
|
*/
|
|
blk_mq_freeze_queue(q);
|
|
blk_mq_unfreeze_queue(q);
|
|
|
|
disk->private_data = NULL;
|
|
put_disk(disk);
|
|
put_device(&sdkp->device->sdev_gendev);
|
|
|
|
sd_zbc_release_disk(sdkp);
|
|
|
|
kfree(sdkp);
|
|
}
|
|
|
|
static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
|
|
{
|
|
unsigned char cmd[6] = { START_STOP }; /* START_VALID */
|
|
struct scsi_sense_hdr sshdr;
|
|
struct scsi_device *sdp = sdkp->device;
|
|
int res;
|
|
|
|
if (start)
|
|
cmd[4] |= 1; /* START */
|
|
|
|
if (sdp->start_stop_pwr_cond)
|
|
cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
|
|
|
|
if (!scsi_device_online(sdp))
|
|
return -ENODEV;
|
|
|
|
res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
|
|
SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
|
|
if (res) {
|
|
sd_print_result(sdkp, "Start/Stop Unit failed", res);
|
|
if (driver_byte(res) == DRIVER_SENSE)
|
|
sd_print_sense_hdr(sdkp, &sshdr);
|
|
if (scsi_sense_valid(&sshdr) &&
|
|
/* 0x3a is medium not present */
|
|
sshdr.asc == 0x3a)
|
|
res = 0;
|
|
}
|
|
|
|
/* SCSI error codes must not go to the generic layer */
|
|
if (res)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send a SYNCHRONIZE CACHE instruction down to the device through
|
|
* the normal SCSI command structure. Wait for the command to
|
|
* complete.
|
|
*/
|
|
static void sd_shutdown(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
|
|
if (!sdkp)
|
|
return; /* this can happen */
|
|
|
|
if (pm_runtime_suspended(dev))
|
|
return;
|
|
|
|
if (sdkp->WCE && sdkp->media_present) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
|
|
sd_sync_cache(sdkp, NULL);
|
|
}
|
|
|
|
if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
|
|
sd_start_stop_device(sdkp, 0);
|
|
}
|
|
}
|
|
|
|
static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
struct scsi_sense_hdr sshdr;
|
|
int ret = 0;
|
|
|
|
if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
|
|
return 0;
|
|
|
|
if (sdkp->WCE && sdkp->media_present) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
|
|
ret = sd_sync_cache(sdkp, &sshdr);
|
|
|
|
if (ret) {
|
|
/* ignore OFFLINE device */
|
|
if (ret == -ENODEV)
|
|
return 0;
|
|
|
|
if (!scsi_sense_valid(&sshdr) ||
|
|
sshdr.sense_key != ILLEGAL_REQUEST)
|
|
return ret;
|
|
|
|
/*
|
|
* sshdr.sense_key == ILLEGAL_REQUEST means this drive
|
|
* doesn't support sync. There's not much to do and
|
|
* suspend shouldn't fail.
|
|
*/
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
if (sdkp->device->manage_start_stop) {
|
|
sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
|
|
/* an error is not worth aborting a system sleep */
|
|
ret = sd_start_stop_device(sdkp, 0);
|
|
if (ignore_stop_errors)
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sd_suspend_system(struct device *dev)
|
|
{
|
|
return sd_suspend_common(dev, true);
|
|
}
|
|
|
|
static int sd_suspend_runtime(struct device *dev)
|
|
{
|
|
return sd_suspend_common(dev, false);
|
|
}
|
|
|
|
static int sd_resume(struct device *dev)
|
|
{
|
|
struct scsi_disk *sdkp = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
|
|
return 0;
|
|
|
|
if (!sdkp->device->manage_start_stop)
|
|
return 0;
|
|
|
|
sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
|
|
ret = sd_start_stop_device(sdkp, 1);
|
|
if (!ret)
|
|
opal_unlock_from_suspend(sdkp->opal_dev);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* init_sd - entry point for this driver (both when built in or when
|
|
* a module).
|
|
*
|
|
* Note: this function registers this driver with the scsi mid-level.
|
|
**/
|
|
static int __init init_sd(void)
|
|
{
|
|
int majors = 0, i, err;
|
|
|
|
SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
|
|
|
|
for (i = 0; i < SD_MAJORS; i++) {
|
|
if (register_blkdev(sd_major(i), "sd") != 0)
|
|
continue;
|
|
majors++;
|
|
blk_register_region(sd_major(i), SD_MINORS, NULL,
|
|
sd_default_probe, NULL, NULL);
|
|
}
|
|
|
|
if (!majors)
|
|
return -ENODEV;
|
|
|
|
err = class_register(&sd_disk_class);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
|
|
0, 0, NULL);
|
|
if (!sd_cdb_cache) {
|
|
printk(KERN_ERR "sd: can't init extended cdb cache\n");
|
|
err = -ENOMEM;
|
|
goto err_out_class;
|
|
}
|
|
|
|
sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
|
|
if (!sd_cdb_pool) {
|
|
printk(KERN_ERR "sd: can't init extended cdb pool\n");
|
|
err = -ENOMEM;
|
|
goto err_out_cache;
|
|
}
|
|
|
|
sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
|
|
if (!sd_page_pool) {
|
|
printk(KERN_ERR "sd: can't init discard page pool\n");
|
|
err = -ENOMEM;
|
|
goto err_out_ppool;
|
|
}
|
|
|
|
err = scsi_register_driver(&sd_template.gendrv);
|
|
if (err)
|
|
goto err_out_driver;
|
|
|
|
return 0;
|
|
|
|
err_out_driver:
|
|
mempool_destroy(sd_page_pool);
|
|
|
|
err_out_ppool:
|
|
mempool_destroy(sd_cdb_pool);
|
|
|
|
err_out_cache:
|
|
kmem_cache_destroy(sd_cdb_cache);
|
|
|
|
err_out_class:
|
|
class_unregister(&sd_disk_class);
|
|
err_out:
|
|
for (i = 0; i < SD_MAJORS; i++)
|
|
unregister_blkdev(sd_major(i), "sd");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* exit_sd - exit point for this driver (when it is a module).
|
|
*
|
|
* Note: this function unregisters this driver from the scsi mid-level.
|
|
**/
|
|
static void __exit exit_sd(void)
|
|
{
|
|
int i;
|
|
|
|
SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
|
|
|
|
scsi_unregister_driver(&sd_template.gendrv);
|
|
mempool_destroy(sd_cdb_pool);
|
|
mempool_destroy(sd_page_pool);
|
|
kmem_cache_destroy(sd_cdb_cache);
|
|
|
|
class_unregister(&sd_disk_class);
|
|
|
|
for (i = 0; i < SD_MAJORS; i++) {
|
|
blk_unregister_region(sd_major(i), SD_MINORS);
|
|
unregister_blkdev(sd_major(i), "sd");
|
|
}
|
|
}
|
|
|
|
module_init(init_sd);
|
|
module_exit(exit_sd);
|
|
|
|
void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
|
|
{
|
|
scsi_print_sense_hdr(sdkp->device,
|
|
sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
|
|
}
|
|
|
|
void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
|
|
{
|
|
const char *hb_string = scsi_hostbyte_string(result);
|
|
const char *db_string = scsi_driverbyte_string(result);
|
|
|
|
if (hb_string || db_string)
|
|
sd_printk(KERN_INFO, sdkp,
|
|
"%s: Result: hostbyte=%s driverbyte=%s\n", msg,
|
|
hb_string ? hb_string : "invalid",
|
|
db_string ? db_string : "invalid");
|
|
else
|
|
sd_printk(KERN_INFO, sdkp,
|
|
"%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
|
|
msg, host_byte(result), driver_byte(result));
|
|
}
|