mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 10:13:16 +07:00
6a97c775ff
When exiting from the guest, store the values of the CP0_BadInstr and CP0_BadInstrP registers if they exist, which contain the encodings of the instructions which caused the last synchronous exception. When the instruction is needed for emulation, kvm_get_badinstr() and kvm_get_badinstrp() are used instead of calling kvm_get_inst() directly, to decide whether to read the saved CP0_BadInstr/CP0_BadInstrP registers (if they exist), or read the instruction from memory (if not). The use of these registers should be more robust than using kvm_get_inst(), as it actually gives the instruction encoding seen by the hardware rather than relying on user accessors after the fact, which can be fooled by incoherent icache or a racing code modification. It will also work with VZ, where the guest virtual memory isn't directly accessible by the host with user accessors. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: kvm@vger.kernel.org
830 lines
23 KiB
C
830 lines
23 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Generation of main entry point for the guest, exception handling.
|
|
*
|
|
* Copyright (C) 2012 MIPS Technologies, Inc.
|
|
* Authors: Sanjay Lal <sanjayl@kymasys.com>
|
|
*
|
|
* Copyright (C) 2016 Imagination Technologies Ltd.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/log2.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/msa.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbex.h>
|
|
#include <asm/uasm.h>
|
|
|
|
/* Register names */
|
|
#define ZERO 0
|
|
#define AT 1
|
|
#define V0 2
|
|
#define V1 3
|
|
#define A0 4
|
|
#define A1 5
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_ABI32
|
|
#define T0 8
|
|
#define T1 9
|
|
#define T2 10
|
|
#define T3 11
|
|
#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
|
|
|
|
#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
|
|
#define T0 12
|
|
#define T1 13
|
|
#define T2 14
|
|
#define T3 15
|
|
#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
|
|
|
|
#define S0 16
|
|
#define S1 17
|
|
#define T9 25
|
|
#define K0 26
|
|
#define K1 27
|
|
#define GP 28
|
|
#define SP 29
|
|
#define RA 31
|
|
|
|
/* Some CP0 registers */
|
|
#define C0_HWRENA 7, 0
|
|
#define C0_BADVADDR 8, 0
|
|
#define C0_BADINSTR 8, 1
|
|
#define C0_BADINSTRP 8, 2
|
|
#define C0_ENTRYHI 10, 0
|
|
#define C0_STATUS 12, 0
|
|
#define C0_CAUSE 13, 0
|
|
#define C0_EPC 14, 0
|
|
#define C0_EBASE 15, 1
|
|
#define C0_CONFIG5 16, 5
|
|
#define C0_DDATA_LO 28, 3
|
|
#define C0_ERROREPC 30, 0
|
|
|
|
#define CALLFRAME_SIZ 32
|
|
|
|
#ifdef CONFIG_64BIT
|
|
#define ST0_KX_IF_64 ST0_KX
|
|
#else
|
|
#define ST0_KX_IF_64 0
|
|
#endif
|
|
|
|
static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
|
|
static unsigned int scratch_tmp[2] = { C0_ERROREPC };
|
|
|
|
enum label_id {
|
|
label_fpu_1 = 1,
|
|
label_msa_1,
|
|
label_return_to_host,
|
|
label_kernel_asid,
|
|
label_exit_common,
|
|
};
|
|
|
|
UASM_L_LA(_fpu_1)
|
|
UASM_L_LA(_msa_1)
|
|
UASM_L_LA(_return_to_host)
|
|
UASM_L_LA(_kernel_asid)
|
|
UASM_L_LA(_exit_common)
|
|
|
|
static void *kvm_mips_build_enter_guest(void *addr);
|
|
static void *kvm_mips_build_ret_from_exit(void *addr);
|
|
static void *kvm_mips_build_ret_to_guest(void *addr);
|
|
static void *kvm_mips_build_ret_to_host(void *addr);
|
|
|
|
/*
|
|
* The version of this function in tlbex.c uses current_cpu_type(), but for KVM
|
|
* we assume symmetry.
|
|
*/
|
|
static int c0_kscratch(void)
|
|
{
|
|
switch (boot_cpu_type()) {
|
|
case CPU_XLP:
|
|
case CPU_XLR:
|
|
return 22;
|
|
default:
|
|
return 31;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_entry_setup() - Perform global setup for entry code.
|
|
*
|
|
* Perform global setup for entry code, such as choosing a scratch register.
|
|
*
|
|
* Returns: 0 on success.
|
|
* -errno on failure.
|
|
*/
|
|
int kvm_mips_entry_setup(void)
|
|
{
|
|
/*
|
|
* We prefer to use KScratchN registers if they are available over the
|
|
* defaults above, which may not work on all cores.
|
|
*/
|
|
unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
|
|
|
|
if (pgd_reg != -1)
|
|
kscratch_mask &= ~BIT(pgd_reg);
|
|
|
|
/* Pick a scratch register for storing VCPU */
|
|
if (kscratch_mask) {
|
|
scratch_vcpu[0] = c0_kscratch();
|
|
scratch_vcpu[1] = ffs(kscratch_mask) - 1;
|
|
kscratch_mask &= ~BIT(scratch_vcpu[1]);
|
|
}
|
|
|
|
/* Pick a scratch register to use as a temp for saving state */
|
|
if (kscratch_mask) {
|
|
scratch_tmp[0] = c0_kscratch();
|
|
scratch_tmp[1] = ffs(kscratch_mask) - 1;
|
|
kscratch_mask &= ~BIT(scratch_tmp[1]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
|
|
unsigned int frame)
|
|
{
|
|
/* Save the VCPU scratch register value in cp0_epc of the stack frame */
|
|
UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
|
|
UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
|
|
|
|
/* Save the temp scratch register value in cp0_cause of stack frame */
|
|
if (scratch_tmp[0] == c0_kscratch()) {
|
|
UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
|
|
UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
|
|
}
|
|
}
|
|
|
|
static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
|
|
unsigned int frame)
|
|
{
|
|
/*
|
|
* Restore host scratch register values saved by
|
|
* kvm_mips_build_save_scratch().
|
|
*/
|
|
UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
|
|
UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
|
|
|
|
if (scratch_tmp[0] == c0_kscratch()) {
|
|
UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
|
|
UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* build_set_exc_base() - Assemble code to write exception base address.
|
|
* @p: Code buffer pointer.
|
|
* @reg: Source register (generated code may set WG bit in @reg).
|
|
*
|
|
* Assemble code to modify the exception base address in the EBase register,
|
|
* using the appropriately sized access and setting the WG bit if necessary.
|
|
*/
|
|
static inline void build_set_exc_base(u32 **p, unsigned int reg)
|
|
{
|
|
if (cpu_has_ebase_wg) {
|
|
/* Set WG so that all the bits get written */
|
|
uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
|
|
UASM_i_MTC0(p, reg, C0_EBASE);
|
|
} else {
|
|
uasm_i_mtc0(p, reg, C0_EBASE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
|
|
* @addr: Address to start writing code.
|
|
*
|
|
* Assemble the start of the vcpu_run function to run a guest VCPU. The function
|
|
* conforms to the following prototype:
|
|
*
|
|
* int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
|
|
*
|
|
* The exit from the guest and return to the caller is handled by the code
|
|
* generated by kvm_mips_build_ret_to_host().
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
void *kvm_mips_build_vcpu_run(void *addr)
|
|
{
|
|
u32 *p = addr;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* A0: run
|
|
* A1: vcpu
|
|
*/
|
|
|
|
/* k0/k1 not being used in host kernel context */
|
|
UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
|
|
for (i = 16; i < 32; ++i) {
|
|
if (i == 24)
|
|
i = 28;
|
|
UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
|
|
}
|
|
|
|
/* Save host status */
|
|
uasm_i_mfc0(&p, V0, C0_STATUS);
|
|
UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
|
|
|
|
/* Save scratch registers, will be used to store pointer to vcpu etc */
|
|
kvm_mips_build_save_scratch(&p, V1, K1);
|
|
|
|
/* VCPU scratch register has pointer to vcpu */
|
|
UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
|
|
|
|
/* Offset into vcpu->arch */
|
|
UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
|
|
|
|
/*
|
|
* Save the host stack to VCPU, used for exception processing
|
|
* when we exit from the Guest
|
|
*/
|
|
UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
|
|
|
|
/* Save the kernel gp as well */
|
|
UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
|
|
|
|
/*
|
|
* Setup status register for running the guest in UM, interrupts
|
|
* are disabled
|
|
*/
|
|
UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
|
|
uasm_i_mtc0(&p, K0, C0_STATUS);
|
|
uasm_i_ehb(&p);
|
|
|
|
/* load up the new EBASE */
|
|
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
|
|
build_set_exc_base(&p, K0);
|
|
|
|
/*
|
|
* Now that the new EBASE has been loaded, unset BEV, set
|
|
* interrupt mask as it was but make sure that timer interrupts
|
|
* are enabled
|
|
*/
|
|
uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
|
|
uasm_i_andi(&p, V0, V0, ST0_IM);
|
|
uasm_i_or(&p, K0, K0, V0);
|
|
uasm_i_mtc0(&p, K0, C0_STATUS);
|
|
uasm_i_ehb(&p);
|
|
|
|
p = kvm_mips_build_enter_guest(p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
|
|
* @addr: Address to start writing code.
|
|
*
|
|
* Assemble the code to resume guest execution. This code is common between the
|
|
* initial entry into the guest from the host, and returning from the exit
|
|
* handler back to the guest.
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
static void *kvm_mips_build_enter_guest(void *addr)
|
|
{
|
|
u32 *p = addr;
|
|
unsigned int i;
|
|
struct uasm_label labels[2];
|
|
struct uasm_reloc relocs[2];
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
/* Set Guest EPC */
|
|
UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
|
|
UASM_i_MTC0(&p, T0, C0_EPC);
|
|
|
|
/* Set the ASID for the Guest Kernel */
|
|
UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
|
|
UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
|
|
T0);
|
|
uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
|
|
uasm_i_xori(&p, T0, T0, KSU_USER);
|
|
uasm_il_bnez(&p, &r, T0, label_kernel_asid);
|
|
UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
|
|
guest_kernel_mm.context.asid));
|
|
/* else user */
|
|
UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
|
|
guest_user_mm.context.asid));
|
|
uasm_l_kernel_asid(&l, p);
|
|
|
|
/* t1: contains the base of the ASID array, need to get the cpu id */
|
|
/* smp_processor_id */
|
|
uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
|
|
/* index the ASID array */
|
|
uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
|
|
UASM_i_ADDU(&p, T3, T1, T2);
|
|
UASM_i_LW(&p, K0, 0, T3);
|
|
#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
|
|
/*
|
|
* reuse ASID array offset
|
|
* cpuinfo_mips is a multiple of sizeof(long)
|
|
*/
|
|
uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
|
|
uasm_i_mul(&p, T2, T2, T3);
|
|
|
|
UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
|
|
UASM_i_ADDU(&p, AT, AT, T2);
|
|
UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
|
|
uasm_i_and(&p, K0, K0, T2);
|
|
#else
|
|
uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
|
|
#endif
|
|
|
|
/*
|
|
* Set up KVM T&E GVA pgd.
|
|
* This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
|
|
* - call tlbmiss_handler_setup_pgd(mm->pgd)
|
|
* - but skips write into CP0_PWBase for now
|
|
*/
|
|
UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
|
|
(int)offsetof(struct mm_struct, context.asid), T1);
|
|
|
|
UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
|
|
uasm_i_jalr(&p, RA, T9);
|
|
uasm_i_mtc0(&p, K0, C0_ENTRYHI);
|
|
|
|
uasm_i_ehb(&p);
|
|
|
|
/* Disable RDHWR access */
|
|
uasm_i_mtc0(&p, ZERO, C0_HWRENA);
|
|
|
|
/* load the guest context from VCPU and return */
|
|
for (i = 1; i < 32; ++i) {
|
|
/* Guest k0/k1 loaded later */
|
|
if (i == K0 || i == K1)
|
|
continue;
|
|
UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
/* Restore hi/lo */
|
|
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
|
|
uasm_i_mthi(&p, K0);
|
|
|
|
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
|
|
uasm_i_mtlo(&p, K0);
|
|
#endif
|
|
|
|
/* Restore the guest's k0/k1 registers */
|
|
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
|
|
UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
|
|
|
|
/* Jump to guest */
|
|
uasm_i_eret(&p);
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
|
|
* @addr: Address to start writing code.
|
|
* @handler: Address of common handler (within range of @addr).
|
|
*
|
|
* Assemble TLB refill exception fast path handler for guest execution.
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
|
|
{
|
|
u32 *p = addr;
|
|
struct uasm_label labels[2];
|
|
struct uasm_reloc relocs[2];
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
/* Save guest k1 into scratch register */
|
|
UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
|
|
|
|
/* Get the VCPU pointer from the VCPU scratch register */
|
|
UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
|
|
|
|
/* Save guest k0 into VCPU structure */
|
|
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
|
|
|
|
/*
|
|
* Some of the common tlbex code uses current_cpu_type(). For KVM we
|
|
* assume symmetry and just disable preemption to silence the warning.
|
|
*/
|
|
preempt_disable();
|
|
|
|
/*
|
|
* Now for the actual refill bit. A lot of this can be common with the
|
|
* Linux TLB refill handler, however we don't need to handle so many
|
|
* cases. We only need to handle user mode refills, and user mode runs
|
|
* with 32-bit addressing.
|
|
*
|
|
* Therefore the branch to label_vmalloc generated by build_get_pmde64()
|
|
* that isn't resolved should never actually get taken and is harmless
|
|
* to leave in place for now.
|
|
*/
|
|
|
|
#ifdef CONFIG_64BIT
|
|
build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
|
|
#else
|
|
build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
|
|
#endif
|
|
|
|
/* we don't support huge pages yet */
|
|
|
|
build_get_ptep(&p, K0, K1);
|
|
build_update_entries(&p, K0, K1);
|
|
build_tlb_write_entry(&p, &l, &r, tlb_random);
|
|
|
|
preempt_enable();
|
|
|
|
/* Get the VCPU pointer from the VCPU scratch register again */
|
|
UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
|
|
|
|
/* Restore the guest's k0/k1 registers */
|
|
UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
|
|
uasm_i_ehb(&p);
|
|
UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
|
|
|
|
/* Jump to guest */
|
|
uasm_i_eret(&p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_exception() - Assemble first level guest exception handler.
|
|
* @addr: Address to start writing code.
|
|
* @handler: Address of common handler (within range of @addr).
|
|
*
|
|
* Assemble exception vector code for guest execution. The generated vector will
|
|
* branch to the common exception handler generated by kvm_mips_build_exit().
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
void *kvm_mips_build_exception(void *addr, void *handler)
|
|
{
|
|
u32 *p = addr;
|
|
struct uasm_label labels[2];
|
|
struct uasm_reloc relocs[2];
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
/* Save guest k1 into scratch register */
|
|
UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
|
|
|
|
/* Get the VCPU pointer from the VCPU scratch register */
|
|
UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
|
|
UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
|
|
|
|
/* Save guest k0 into VCPU structure */
|
|
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
|
|
|
|
/* Branch to the common handler */
|
|
uasm_il_b(&p, &r, label_exit_common);
|
|
uasm_i_nop(&p);
|
|
|
|
uasm_l_exit_common(&l, handler);
|
|
uasm_resolve_relocs(relocs, labels);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_exit() - Assemble common guest exit handler.
|
|
* @addr: Address to start writing code.
|
|
*
|
|
* Assemble the generic guest exit handling code. This is called by the
|
|
* exception vectors (generated by kvm_mips_build_exception()), and calls
|
|
* kvm_mips_handle_exit(), then either resumes the guest or returns to the host
|
|
* depending on the return value.
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
void *kvm_mips_build_exit(void *addr)
|
|
{
|
|
u32 *p = addr;
|
|
unsigned int i;
|
|
struct uasm_label labels[3];
|
|
struct uasm_reloc relocs[3];
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
/*
|
|
* Generic Guest exception handler. We end up here when the guest
|
|
* does something that causes a trap to kernel mode.
|
|
*
|
|
* Both k0/k1 registers will have already been saved (k0 into the vcpu
|
|
* structure, and k1 into the scratch_tmp register).
|
|
*
|
|
* The k1 register will already contain the kvm_vcpu_arch pointer.
|
|
*/
|
|
|
|
/* Start saving Guest context to VCPU */
|
|
for (i = 0; i < 32; ++i) {
|
|
/* Guest k0/k1 saved later */
|
|
if (i == K0 || i == K1)
|
|
continue;
|
|
UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_MIPSR6
|
|
/* We need to save hi/lo and restore them on the way out */
|
|
uasm_i_mfhi(&p, T0);
|
|
UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
|
|
|
|
uasm_i_mflo(&p, T0);
|
|
UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
|
|
#endif
|
|
|
|
/* Finally save guest k1 to VCPU */
|
|
uasm_i_ehb(&p);
|
|
UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
|
|
UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
|
|
|
|
/* Now that context has been saved, we can use other registers */
|
|
|
|
/* Restore vcpu */
|
|
UASM_i_MFC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
|
|
uasm_i_move(&p, S1, A1);
|
|
|
|
/* Restore run (vcpu->run) */
|
|
UASM_i_LW(&p, A0, offsetof(struct kvm_vcpu, run), A1);
|
|
/* Save pointer to run in s0, will be saved by the compiler */
|
|
uasm_i_move(&p, S0, A0);
|
|
|
|
/*
|
|
* Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
|
|
* the exception
|
|
*/
|
|
UASM_i_MFC0(&p, K0, C0_EPC);
|
|
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
|
|
|
|
UASM_i_MFC0(&p, K0, C0_BADVADDR);
|
|
UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
|
|
K1);
|
|
|
|
uasm_i_mfc0(&p, K0, C0_CAUSE);
|
|
uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
|
|
|
|
if (cpu_has_badinstr) {
|
|
uasm_i_mfc0(&p, K0, C0_BADINSTR);
|
|
uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
|
|
host_cp0_badinstr), K1);
|
|
}
|
|
|
|
if (cpu_has_badinstrp) {
|
|
uasm_i_mfc0(&p, K0, C0_BADINSTRP);
|
|
uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
|
|
host_cp0_badinstrp), K1);
|
|
}
|
|
|
|
/* Now restore the host state just enough to run the handlers */
|
|
|
|
/* Switch EBASE to the one used by Linux */
|
|
/* load up the host EBASE */
|
|
uasm_i_mfc0(&p, V0, C0_STATUS);
|
|
|
|
uasm_i_lui(&p, AT, ST0_BEV >> 16);
|
|
uasm_i_or(&p, K0, V0, AT);
|
|
|
|
uasm_i_mtc0(&p, K0, C0_STATUS);
|
|
uasm_i_ehb(&p);
|
|
|
|
UASM_i_LA_mostly(&p, K0, (long)&ebase);
|
|
UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
|
|
build_set_exc_base(&p, K0);
|
|
|
|
if (raw_cpu_has_fpu) {
|
|
/*
|
|
* If FPU is enabled, save FCR31 and clear it so that later
|
|
* ctc1's don't trigger FPE for pending exceptions.
|
|
*/
|
|
uasm_i_lui(&p, AT, ST0_CU1 >> 16);
|
|
uasm_i_and(&p, V1, V0, AT);
|
|
uasm_il_beqz(&p, &r, V1, label_fpu_1);
|
|
uasm_i_nop(&p);
|
|
uasm_i_cfc1(&p, T0, 31);
|
|
uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
|
|
K1);
|
|
uasm_i_ctc1(&p, ZERO, 31);
|
|
uasm_l_fpu_1(&l, p);
|
|
}
|
|
|
|
if (cpu_has_msa) {
|
|
/*
|
|
* If MSA is enabled, save MSACSR and clear it so that later
|
|
* instructions don't trigger MSAFPE for pending exceptions.
|
|
*/
|
|
uasm_i_mfc0(&p, T0, C0_CONFIG5);
|
|
uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
|
|
uasm_il_beqz(&p, &r, T0, label_msa_1);
|
|
uasm_i_nop(&p);
|
|
uasm_i_cfcmsa(&p, T0, MSA_CSR);
|
|
uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
|
|
K1);
|
|
uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
|
|
uasm_l_msa_1(&l, p);
|
|
}
|
|
|
|
/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
|
|
uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
|
|
uasm_i_and(&p, V0, V0, AT);
|
|
uasm_i_lui(&p, AT, ST0_CU0 >> 16);
|
|
uasm_i_or(&p, V0, V0, AT);
|
|
#ifdef CONFIG_64BIT
|
|
uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
|
|
#endif
|
|
uasm_i_mtc0(&p, V0, C0_STATUS);
|
|
uasm_i_ehb(&p);
|
|
|
|
/* Load up host GP */
|
|
UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
|
|
|
|
/* Need a stack before we can jump to "C" */
|
|
UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
|
|
|
|
/* Saved host state */
|
|
UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
|
|
|
|
/*
|
|
* XXXKYMA do we need to load the host ASID, maybe not because the
|
|
* kernel entries are marked GLOBAL, need to verify
|
|
*/
|
|
|
|
/* Restore host scratch registers, as we'll have clobbered them */
|
|
kvm_mips_build_restore_scratch(&p, K0, SP);
|
|
|
|
/* Restore RDHWR access */
|
|
UASM_i_LA_mostly(&p, K0, (long)&hwrena);
|
|
uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
|
|
uasm_i_mtc0(&p, K0, C0_HWRENA);
|
|
|
|
/* Jump to handler */
|
|
/*
|
|
* XXXKYMA: not sure if this is safe, how large is the stack??
|
|
* Now jump to the kvm_mips_handle_exit() to see if we can deal
|
|
* with this in the kernel
|
|
*/
|
|
UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
|
|
uasm_i_jalr(&p, RA, T9);
|
|
UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
|
|
p = kvm_mips_build_ret_from_exit(p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
|
|
* @addr: Address to start writing code.
|
|
*
|
|
* Assemble the code to handle the return from kvm_mips_handle_exit(), either
|
|
* resuming the guest or returning to the host depending on the return value.
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
static void *kvm_mips_build_ret_from_exit(void *addr)
|
|
{
|
|
u32 *p = addr;
|
|
struct uasm_label labels[2];
|
|
struct uasm_reloc relocs[2];
|
|
struct uasm_label *l = labels;
|
|
struct uasm_reloc *r = relocs;
|
|
|
|
memset(labels, 0, sizeof(labels));
|
|
memset(relocs, 0, sizeof(relocs));
|
|
|
|
/* Return from handler Make sure interrupts are disabled */
|
|
uasm_i_di(&p, ZERO);
|
|
uasm_i_ehb(&p);
|
|
|
|
/*
|
|
* XXXKYMA: k0/k1 could have been blown away if we processed
|
|
* an exception while we were handling the exception from the
|
|
* guest, reload k1
|
|
*/
|
|
|
|
uasm_i_move(&p, K1, S1);
|
|
UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
|
|
|
|
/*
|
|
* Check return value, should tell us if we are returning to the
|
|
* host (handle I/O etc)or resuming the guest
|
|
*/
|
|
uasm_i_andi(&p, T0, V0, RESUME_HOST);
|
|
uasm_il_bnez(&p, &r, T0, label_return_to_host);
|
|
uasm_i_nop(&p);
|
|
|
|
p = kvm_mips_build_ret_to_guest(p);
|
|
|
|
uasm_l_return_to_host(&l, p);
|
|
p = kvm_mips_build_ret_to_host(p);
|
|
|
|
uasm_resolve_relocs(relocs, labels);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
|
|
* @addr: Address to start writing code.
|
|
*
|
|
* Assemble the code to handle return from the guest exit handler
|
|
* (kvm_mips_handle_exit()) back to the guest.
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
static void *kvm_mips_build_ret_to_guest(void *addr)
|
|
{
|
|
u32 *p = addr;
|
|
|
|
/* Put the saved pointer to vcpu (s1) back into the scratch register */
|
|
UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
|
|
|
|
/* Load up the Guest EBASE to minimize the window where BEV is set */
|
|
UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
|
|
|
|
/* Switch EBASE back to the one used by KVM */
|
|
uasm_i_mfc0(&p, V1, C0_STATUS);
|
|
uasm_i_lui(&p, AT, ST0_BEV >> 16);
|
|
uasm_i_or(&p, K0, V1, AT);
|
|
uasm_i_mtc0(&p, K0, C0_STATUS);
|
|
uasm_i_ehb(&p);
|
|
build_set_exc_base(&p, T0);
|
|
|
|
/* Setup status register for running guest in UM */
|
|
uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
|
|
UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
|
|
uasm_i_and(&p, V1, V1, AT);
|
|
uasm_i_mtc0(&p, V1, C0_STATUS);
|
|
uasm_i_ehb(&p);
|
|
|
|
p = kvm_mips_build_enter_guest(p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/**
|
|
* kvm_mips_build_ret_to_host() - Assemble code to return to the host.
|
|
* @addr: Address to start writing code.
|
|
*
|
|
* Assemble the code to handle return from the guest exit handler
|
|
* (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
|
|
* function generated by kvm_mips_build_vcpu_run().
|
|
*
|
|
* Returns: Next address after end of written function.
|
|
*/
|
|
static void *kvm_mips_build_ret_to_host(void *addr)
|
|
{
|
|
u32 *p = addr;
|
|
unsigned int i;
|
|
|
|
/* EBASE is already pointing to Linux */
|
|
UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
|
|
UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
|
|
|
|
/*
|
|
* r2/v0 is the return code, shift it down by 2 (arithmetic)
|
|
* to recover the err code
|
|
*/
|
|
uasm_i_sra(&p, K0, V0, 2);
|
|
uasm_i_move(&p, V0, K0);
|
|
|
|
/* Load context saved on the host stack */
|
|
for (i = 16; i < 31; ++i) {
|
|
if (i == 24)
|
|
i = 28;
|
|
UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
|
|
}
|
|
|
|
/* Restore RDHWR access */
|
|
UASM_i_LA_mostly(&p, K0, (long)&hwrena);
|
|
uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
|
|
uasm_i_mtc0(&p, K0, C0_HWRENA);
|
|
|
|
/* Restore RA, which is the address we will return to */
|
|
UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
|
|
uasm_i_jr(&p, RA);
|
|
uasm_i_nop(&p);
|
|
|
|
return p;
|
|
}
|
|
|