mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 00:12:13 +07:00
0da0b7fd73
Alter the dynroot mount so that cells created by manipulation of /proc/fs/afs/cells and /proc/fs/afs/rootcell and by specification of a root cell as a module parameter will cause directories for those cells to be created in the dynamic root superblock for the network namespace[*]. To this end: (1) Only one dynamic root superblock is now created per network namespace and this is shared between all attempts to mount it. This makes it easier to find the superblock to modify. (2) When a dynamic root superblock is created, the list of cells is walked and directories created for each cell already defined. (3) When a new cell is added, if a dynamic root superblock exists, a directory is created for it. (4) When a cell is destroyed, the directory is removed. (5) These directories are created by calling lookup_one_len() on the root dir which automatically creates them if they don't exist. [*] Inasmuch as network namespaces are currently supported here. Signed-off-by: David Howells <dhowells@redhat.com>
779 lines
19 KiB
C
779 lines
19 KiB
C
/* AFS cell and server record management
|
|
*
|
|
* Copyright (C) 2002, 2017 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/key.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/dns_resolver.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/namei.h>
|
|
#include <keys/rxrpc-type.h>
|
|
#include "internal.h"
|
|
|
|
static unsigned __read_mostly afs_cell_gc_delay = 10;
|
|
|
|
static void afs_manage_cell(struct work_struct *);
|
|
|
|
static void afs_dec_cells_outstanding(struct afs_net *net)
|
|
{
|
|
if (atomic_dec_and_test(&net->cells_outstanding))
|
|
wake_up_var(&net->cells_outstanding);
|
|
}
|
|
|
|
/*
|
|
* Set the cell timer to fire after a given delay, assuming it's not already
|
|
* set for an earlier time.
|
|
*/
|
|
static void afs_set_cell_timer(struct afs_net *net, time64_t delay)
|
|
{
|
|
if (net->live) {
|
|
atomic_inc(&net->cells_outstanding);
|
|
if (timer_reduce(&net->cells_timer, jiffies + delay * HZ))
|
|
afs_dec_cells_outstanding(net);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look up and get an activation reference on a cell record under RCU
|
|
* conditions. The caller must hold the RCU read lock.
|
|
*/
|
|
struct afs_cell *afs_lookup_cell_rcu(struct afs_net *net,
|
|
const char *name, unsigned int namesz)
|
|
{
|
|
struct afs_cell *cell = NULL;
|
|
struct rb_node *p;
|
|
int n, seq = 0, ret = 0;
|
|
|
|
_enter("%*.*s", namesz, namesz, name);
|
|
|
|
if (name && namesz == 0)
|
|
return ERR_PTR(-EINVAL);
|
|
if (namesz > AFS_MAXCELLNAME)
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
do {
|
|
/* Unfortunately, rbtree walking doesn't give reliable results
|
|
* under just the RCU read lock, so we have to check for
|
|
* changes.
|
|
*/
|
|
if (cell)
|
|
afs_put_cell(net, cell);
|
|
cell = NULL;
|
|
ret = -ENOENT;
|
|
|
|
read_seqbegin_or_lock(&net->cells_lock, &seq);
|
|
|
|
if (!name) {
|
|
cell = rcu_dereference_raw(net->ws_cell);
|
|
if (cell) {
|
|
afs_get_cell(cell);
|
|
break;
|
|
}
|
|
ret = -EDESTADDRREQ;
|
|
continue;
|
|
}
|
|
|
|
p = rcu_dereference_raw(net->cells.rb_node);
|
|
while (p) {
|
|
cell = rb_entry(p, struct afs_cell, net_node);
|
|
|
|
n = strncasecmp(cell->name, name,
|
|
min_t(size_t, cell->name_len, namesz));
|
|
if (n == 0)
|
|
n = cell->name_len - namesz;
|
|
if (n < 0) {
|
|
p = rcu_dereference_raw(p->rb_left);
|
|
} else if (n > 0) {
|
|
p = rcu_dereference_raw(p->rb_right);
|
|
} else {
|
|
if (atomic_inc_not_zero(&cell->usage)) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
/* We want to repeat the search, this time with
|
|
* the lock properly locked.
|
|
*/
|
|
}
|
|
cell = NULL;
|
|
}
|
|
|
|
} while (need_seqretry(&net->cells_lock, seq));
|
|
|
|
done_seqretry(&net->cells_lock, seq);
|
|
|
|
return ret == 0 ? cell : ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* Set up a cell record and fill in its name, VL server address list and
|
|
* allocate an anonymous key
|
|
*/
|
|
static struct afs_cell *afs_alloc_cell(struct afs_net *net,
|
|
const char *name, unsigned int namelen,
|
|
const char *vllist)
|
|
{
|
|
struct afs_cell *cell;
|
|
int i, ret;
|
|
|
|
ASSERT(name);
|
|
if (namelen == 0)
|
|
return ERR_PTR(-EINVAL);
|
|
if (namelen > AFS_MAXCELLNAME) {
|
|
_leave(" = -ENAMETOOLONG");
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
}
|
|
if (namelen == 5 && memcmp(name, "@cell", 5) == 0)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
_enter("%*.*s,%s", namelen, namelen, name, vllist);
|
|
|
|
cell = kzalloc(sizeof(struct afs_cell), GFP_KERNEL);
|
|
if (!cell) {
|
|
_leave(" = -ENOMEM");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
cell->net = net;
|
|
cell->name_len = namelen;
|
|
for (i = 0; i < namelen; i++)
|
|
cell->name[i] = tolower(name[i]);
|
|
|
|
atomic_set(&cell->usage, 2);
|
|
INIT_WORK(&cell->manager, afs_manage_cell);
|
|
cell->flags = ((1 << AFS_CELL_FL_NOT_READY) |
|
|
(1 << AFS_CELL_FL_NO_LOOKUP_YET));
|
|
INIT_LIST_HEAD(&cell->proc_volumes);
|
|
rwlock_init(&cell->proc_lock);
|
|
rwlock_init(&cell->vl_addrs_lock);
|
|
|
|
/* Fill in the VL server list if we were given a list of addresses to
|
|
* use.
|
|
*/
|
|
if (vllist) {
|
|
struct afs_addr_list *alist;
|
|
|
|
alist = afs_parse_text_addrs(vllist, strlen(vllist), ':',
|
|
VL_SERVICE, AFS_VL_PORT);
|
|
if (IS_ERR(alist)) {
|
|
ret = PTR_ERR(alist);
|
|
goto parse_failed;
|
|
}
|
|
|
|
rcu_assign_pointer(cell->vl_addrs, alist);
|
|
cell->dns_expiry = TIME64_MAX;
|
|
}
|
|
|
|
_leave(" = %p", cell);
|
|
return cell;
|
|
|
|
parse_failed:
|
|
if (ret == -EINVAL)
|
|
printk(KERN_ERR "kAFS: bad VL server IP address\n");
|
|
kfree(cell);
|
|
_leave(" = %d", ret);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* afs_lookup_cell - Look up or create a cell record.
|
|
* @net: The network namespace
|
|
* @name: The name of the cell.
|
|
* @namesz: The strlen of the cell name.
|
|
* @vllist: A colon/comma separated list of numeric IP addresses or NULL.
|
|
* @excl: T if an error should be given if the cell name already exists.
|
|
*
|
|
* Look up a cell record by name and query the DNS for VL server addresses if
|
|
* needed. Note that that actual DNS query is punted off to the manager thread
|
|
* so that this function can return immediately if interrupted whilst allowing
|
|
* cell records to be shared even if not yet fully constructed.
|
|
*/
|
|
struct afs_cell *afs_lookup_cell(struct afs_net *net,
|
|
const char *name, unsigned int namesz,
|
|
const char *vllist, bool excl)
|
|
{
|
|
struct afs_cell *cell, *candidate, *cursor;
|
|
struct rb_node *parent, **pp;
|
|
int ret, n;
|
|
|
|
_enter("%s,%s", name, vllist);
|
|
|
|
if (!excl) {
|
|
rcu_read_lock();
|
|
cell = afs_lookup_cell_rcu(net, name, namesz);
|
|
rcu_read_unlock();
|
|
if (!IS_ERR(cell))
|
|
goto wait_for_cell;
|
|
}
|
|
|
|
/* Assume we're probably going to create a cell and preallocate and
|
|
* mostly set up a candidate record. We can then use this to stash the
|
|
* name, the net namespace and VL server addresses.
|
|
*
|
|
* We also want to do this before we hold any locks as it may involve
|
|
* upcalling to userspace to make DNS queries.
|
|
*/
|
|
candidate = afs_alloc_cell(net, name, namesz, vllist);
|
|
if (IS_ERR(candidate)) {
|
|
_leave(" = %ld", PTR_ERR(candidate));
|
|
return candidate;
|
|
}
|
|
|
|
/* Find the insertion point and check to see if someone else added a
|
|
* cell whilst we were allocating.
|
|
*/
|
|
write_seqlock(&net->cells_lock);
|
|
|
|
pp = &net->cells.rb_node;
|
|
parent = NULL;
|
|
while (*pp) {
|
|
parent = *pp;
|
|
cursor = rb_entry(parent, struct afs_cell, net_node);
|
|
|
|
n = strncasecmp(cursor->name, name,
|
|
min_t(size_t, cursor->name_len, namesz));
|
|
if (n == 0)
|
|
n = cursor->name_len - namesz;
|
|
if (n < 0)
|
|
pp = &(*pp)->rb_left;
|
|
else if (n > 0)
|
|
pp = &(*pp)->rb_right;
|
|
else
|
|
goto cell_already_exists;
|
|
}
|
|
|
|
cell = candidate;
|
|
candidate = NULL;
|
|
rb_link_node_rcu(&cell->net_node, parent, pp);
|
|
rb_insert_color(&cell->net_node, &net->cells);
|
|
atomic_inc(&net->cells_outstanding);
|
|
write_sequnlock(&net->cells_lock);
|
|
|
|
queue_work(afs_wq, &cell->manager);
|
|
|
|
wait_for_cell:
|
|
_debug("wait_for_cell");
|
|
ret = wait_on_bit(&cell->flags, AFS_CELL_FL_NOT_READY, TASK_INTERRUPTIBLE);
|
|
smp_rmb();
|
|
|
|
switch (READ_ONCE(cell->state)) {
|
|
case AFS_CELL_FAILED:
|
|
ret = cell->error;
|
|
goto error;
|
|
default:
|
|
_debug("weird %u %d", cell->state, cell->error);
|
|
goto error;
|
|
case AFS_CELL_ACTIVE:
|
|
break;
|
|
}
|
|
|
|
_leave(" = %p [cell]", cell);
|
|
return cell;
|
|
|
|
cell_already_exists:
|
|
_debug("cell exists");
|
|
cell = cursor;
|
|
if (excl) {
|
|
ret = -EEXIST;
|
|
} else {
|
|
afs_get_cell(cursor);
|
|
ret = 0;
|
|
}
|
|
write_sequnlock(&net->cells_lock);
|
|
kfree(candidate);
|
|
if (ret == 0)
|
|
goto wait_for_cell;
|
|
goto error_noput;
|
|
error:
|
|
afs_put_cell(net, cell);
|
|
error_noput:
|
|
_leave(" = %d [error]", ret);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* set the root cell information
|
|
* - can be called with a module parameter string
|
|
* - can be called from a write to /proc/fs/afs/rootcell
|
|
*/
|
|
int afs_cell_init(struct afs_net *net, const char *rootcell)
|
|
{
|
|
struct afs_cell *old_root, *new_root;
|
|
const char *cp, *vllist;
|
|
size_t len;
|
|
|
|
_enter("");
|
|
|
|
if (!rootcell) {
|
|
/* module is loaded with no parameters, or built statically.
|
|
* - in the future we might initialize cell DB here.
|
|
*/
|
|
_leave(" = 0 [no root]");
|
|
return 0;
|
|
}
|
|
|
|
cp = strchr(rootcell, ':');
|
|
if (!cp) {
|
|
_debug("kAFS: no VL server IP addresses specified");
|
|
vllist = NULL;
|
|
len = strlen(rootcell);
|
|
} else {
|
|
vllist = cp + 1;
|
|
len = cp - rootcell;
|
|
}
|
|
|
|
/* allocate a cell record for the root cell */
|
|
new_root = afs_lookup_cell(net, rootcell, len, vllist, false);
|
|
if (IS_ERR(new_root)) {
|
|
_leave(" = %ld", PTR_ERR(new_root));
|
|
return PTR_ERR(new_root);
|
|
}
|
|
|
|
if (!test_and_set_bit(AFS_CELL_FL_NO_GC, &new_root->flags))
|
|
afs_get_cell(new_root);
|
|
|
|
/* install the new cell */
|
|
write_seqlock(&net->cells_lock);
|
|
old_root = rcu_access_pointer(net->ws_cell);
|
|
rcu_assign_pointer(net->ws_cell, new_root);
|
|
write_sequnlock(&net->cells_lock);
|
|
|
|
afs_put_cell(net, old_root);
|
|
_leave(" = 0");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update a cell's VL server address list from the DNS.
|
|
*/
|
|
static void afs_update_cell(struct afs_cell *cell)
|
|
{
|
|
struct afs_addr_list *alist, *old;
|
|
time64_t now, expiry;
|
|
|
|
_enter("%s", cell->name);
|
|
|
|
alist = afs_dns_query(cell, &expiry);
|
|
if (IS_ERR(alist)) {
|
|
switch (PTR_ERR(alist)) {
|
|
case -ENODATA:
|
|
/* The DNS said that the cell does not exist */
|
|
set_bit(AFS_CELL_FL_NOT_FOUND, &cell->flags);
|
|
clear_bit(AFS_CELL_FL_DNS_FAIL, &cell->flags);
|
|
cell->dns_expiry = ktime_get_real_seconds() + 61;
|
|
break;
|
|
|
|
case -EAGAIN:
|
|
case -ECONNREFUSED:
|
|
default:
|
|
set_bit(AFS_CELL_FL_DNS_FAIL, &cell->flags);
|
|
cell->dns_expiry = ktime_get_real_seconds() + 10;
|
|
break;
|
|
}
|
|
|
|
cell->error = -EDESTADDRREQ;
|
|
} else {
|
|
clear_bit(AFS_CELL_FL_DNS_FAIL, &cell->flags);
|
|
clear_bit(AFS_CELL_FL_NOT_FOUND, &cell->flags);
|
|
|
|
/* Exclusion on changing vl_addrs is achieved by a
|
|
* non-reentrant work item.
|
|
*/
|
|
old = rcu_dereference_protected(cell->vl_addrs, true);
|
|
rcu_assign_pointer(cell->vl_addrs, alist);
|
|
cell->dns_expiry = expiry;
|
|
|
|
if (old)
|
|
afs_put_addrlist(old);
|
|
}
|
|
|
|
if (test_and_clear_bit(AFS_CELL_FL_NO_LOOKUP_YET, &cell->flags))
|
|
wake_up_bit(&cell->flags, AFS_CELL_FL_NO_LOOKUP_YET);
|
|
|
|
now = ktime_get_real_seconds();
|
|
afs_set_cell_timer(cell->net, cell->dns_expiry - now);
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Destroy a cell record
|
|
*/
|
|
static void afs_cell_destroy(struct rcu_head *rcu)
|
|
{
|
|
struct afs_cell *cell = container_of(rcu, struct afs_cell, rcu);
|
|
|
|
_enter("%p{%s}", cell, cell->name);
|
|
|
|
ASSERTCMP(atomic_read(&cell->usage), ==, 0);
|
|
|
|
afs_put_addrlist(rcu_access_pointer(cell->vl_addrs));
|
|
key_put(cell->anonymous_key);
|
|
kfree(cell);
|
|
|
|
_leave(" [destroyed]");
|
|
}
|
|
|
|
/*
|
|
* Queue the cell manager.
|
|
*/
|
|
static void afs_queue_cell_manager(struct afs_net *net)
|
|
{
|
|
int outstanding = atomic_inc_return(&net->cells_outstanding);
|
|
|
|
_enter("%d", outstanding);
|
|
|
|
if (!queue_work(afs_wq, &net->cells_manager))
|
|
afs_dec_cells_outstanding(net);
|
|
}
|
|
|
|
/*
|
|
* Cell management timer. We have an increment on cells_outstanding that we
|
|
* need to pass along to the work item.
|
|
*/
|
|
void afs_cells_timer(struct timer_list *timer)
|
|
{
|
|
struct afs_net *net = container_of(timer, struct afs_net, cells_timer);
|
|
|
|
_enter("");
|
|
if (!queue_work(afs_wq, &net->cells_manager))
|
|
afs_dec_cells_outstanding(net);
|
|
}
|
|
|
|
/*
|
|
* Get a reference on a cell record.
|
|
*/
|
|
struct afs_cell *afs_get_cell(struct afs_cell *cell)
|
|
{
|
|
atomic_inc(&cell->usage);
|
|
return cell;
|
|
}
|
|
|
|
/*
|
|
* Drop a reference on a cell record.
|
|
*/
|
|
void afs_put_cell(struct afs_net *net, struct afs_cell *cell)
|
|
{
|
|
time64_t now, expire_delay;
|
|
|
|
if (!cell)
|
|
return;
|
|
|
|
_enter("%s", cell->name);
|
|
|
|
now = ktime_get_real_seconds();
|
|
cell->last_inactive = now;
|
|
expire_delay = 0;
|
|
if (!test_bit(AFS_CELL_FL_DNS_FAIL, &cell->flags) &&
|
|
!test_bit(AFS_CELL_FL_NOT_FOUND, &cell->flags))
|
|
expire_delay = afs_cell_gc_delay;
|
|
|
|
if (atomic_dec_return(&cell->usage) > 1)
|
|
return;
|
|
|
|
/* 'cell' may now be garbage collected. */
|
|
afs_set_cell_timer(net, expire_delay);
|
|
}
|
|
|
|
/*
|
|
* Allocate a key to use as a placeholder for anonymous user security.
|
|
*/
|
|
static int afs_alloc_anon_key(struct afs_cell *cell)
|
|
{
|
|
struct key *key;
|
|
char keyname[4 + AFS_MAXCELLNAME + 1], *cp, *dp;
|
|
|
|
/* Create a key to represent an anonymous user. */
|
|
memcpy(keyname, "afs@", 4);
|
|
dp = keyname + 4;
|
|
cp = cell->name;
|
|
do {
|
|
*dp++ = tolower(*cp);
|
|
} while (*cp++);
|
|
|
|
key = rxrpc_get_null_key(keyname);
|
|
if (IS_ERR(key))
|
|
return PTR_ERR(key);
|
|
|
|
cell->anonymous_key = key;
|
|
|
|
_debug("anon key %p{%x}",
|
|
cell->anonymous_key, key_serial(cell->anonymous_key));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Activate a cell.
|
|
*/
|
|
static int afs_activate_cell(struct afs_net *net, struct afs_cell *cell)
|
|
{
|
|
int ret;
|
|
|
|
if (!cell->anonymous_key) {
|
|
ret = afs_alloc_anon_key(cell);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
cell->cache = fscache_acquire_cookie(afs_cache_netfs.primary_index,
|
|
&afs_cell_cache_index_def,
|
|
cell->name, strlen(cell->name),
|
|
NULL, 0,
|
|
cell, 0, true);
|
|
#endif
|
|
ret = afs_proc_cell_setup(cell);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
mutex_lock(&net->proc_cells_lock);
|
|
list_add_tail(&cell->proc_link, &net->proc_cells);
|
|
afs_dynroot_mkdir(net, cell);
|
|
mutex_unlock(&net->proc_cells_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deactivate a cell.
|
|
*/
|
|
static void afs_deactivate_cell(struct afs_net *net, struct afs_cell *cell)
|
|
{
|
|
_enter("%s", cell->name);
|
|
|
|
afs_proc_cell_remove(cell);
|
|
|
|
mutex_lock(&net->proc_cells_lock);
|
|
list_del_init(&cell->proc_link);
|
|
afs_dynroot_rmdir(net, cell);
|
|
mutex_unlock(&net->proc_cells_lock);
|
|
|
|
#ifdef CONFIG_AFS_FSCACHE
|
|
fscache_relinquish_cookie(cell->cache, NULL, false);
|
|
cell->cache = NULL;
|
|
#endif
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Manage a cell record, initialising and destroying it, maintaining its DNS
|
|
* records.
|
|
*/
|
|
static void afs_manage_cell(struct work_struct *work)
|
|
{
|
|
struct afs_cell *cell = container_of(work, struct afs_cell, manager);
|
|
struct afs_net *net = cell->net;
|
|
bool deleted;
|
|
int ret, usage;
|
|
|
|
_enter("%s", cell->name);
|
|
|
|
again:
|
|
_debug("state %u", cell->state);
|
|
switch (cell->state) {
|
|
case AFS_CELL_INACTIVE:
|
|
case AFS_CELL_FAILED:
|
|
write_seqlock(&net->cells_lock);
|
|
usage = 1;
|
|
deleted = atomic_try_cmpxchg_relaxed(&cell->usage, &usage, 0);
|
|
if (deleted)
|
|
rb_erase(&cell->net_node, &net->cells);
|
|
write_sequnlock(&net->cells_lock);
|
|
if (deleted)
|
|
goto final_destruction;
|
|
if (cell->state == AFS_CELL_FAILED)
|
|
goto done;
|
|
cell->state = AFS_CELL_UNSET;
|
|
goto again;
|
|
|
|
case AFS_CELL_UNSET:
|
|
cell->state = AFS_CELL_ACTIVATING;
|
|
goto again;
|
|
|
|
case AFS_CELL_ACTIVATING:
|
|
ret = afs_activate_cell(net, cell);
|
|
if (ret < 0)
|
|
goto activation_failed;
|
|
|
|
cell->state = AFS_CELL_ACTIVE;
|
|
smp_wmb();
|
|
clear_bit(AFS_CELL_FL_NOT_READY, &cell->flags);
|
|
wake_up_bit(&cell->flags, AFS_CELL_FL_NOT_READY);
|
|
goto again;
|
|
|
|
case AFS_CELL_ACTIVE:
|
|
if (atomic_read(&cell->usage) > 1) {
|
|
time64_t now = ktime_get_real_seconds();
|
|
if (cell->dns_expiry <= now && net->live)
|
|
afs_update_cell(cell);
|
|
goto done;
|
|
}
|
|
cell->state = AFS_CELL_DEACTIVATING;
|
|
goto again;
|
|
|
|
case AFS_CELL_DEACTIVATING:
|
|
set_bit(AFS_CELL_FL_NOT_READY, &cell->flags);
|
|
if (atomic_read(&cell->usage) > 1)
|
|
goto reverse_deactivation;
|
|
afs_deactivate_cell(net, cell);
|
|
cell->state = AFS_CELL_INACTIVE;
|
|
goto again;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
_debug("bad state %u", cell->state);
|
|
BUG(); /* Unhandled state */
|
|
|
|
activation_failed:
|
|
cell->error = ret;
|
|
afs_deactivate_cell(net, cell);
|
|
|
|
cell->state = AFS_CELL_FAILED;
|
|
smp_wmb();
|
|
if (test_and_clear_bit(AFS_CELL_FL_NOT_READY, &cell->flags))
|
|
wake_up_bit(&cell->flags, AFS_CELL_FL_NOT_READY);
|
|
goto again;
|
|
|
|
reverse_deactivation:
|
|
cell->state = AFS_CELL_ACTIVE;
|
|
smp_wmb();
|
|
clear_bit(AFS_CELL_FL_NOT_READY, &cell->flags);
|
|
wake_up_bit(&cell->flags, AFS_CELL_FL_NOT_READY);
|
|
_leave(" [deact->act]");
|
|
return;
|
|
|
|
done:
|
|
_leave(" [done %u]", cell->state);
|
|
return;
|
|
|
|
final_destruction:
|
|
call_rcu(&cell->rcu, afs_cell_destroy);
|
|
afs_dec_cells_outstanding(net);
|
|
_leave(" [destruct %d]", atomic_read(&net->cells_outstanding));
|
|
}
|
|
|
|
/*
|
|
* Manage the records of cells known to a network namespace. This includes
|
|
* updating the DNS records and garbage collecting unused cells that were
|
|
* automatically added.
|
|
*
|
|
* Note that constructed cell records may only be removed from net->cells by
|
|
* this work item, so it is safe for this work item to stash a cursor pointing
|
|
* into the tree and then return to caller (provided it skips cells that are
|
|
* still under construction).
|
|
*
|
|
* Note also that we were given an increment on net->cells_outstanding by
|
|
* whoever queued us that we need to deal with before returning.
|
|
*/
|
|
void afs_manage_cells(struct work_struct *work)
|
|
{
|
|
struct afs_net *net = container_of(work, struct afs_net, cells_manager);
|
|
struct rb_node *cursor;
|
|
time64_t now = ktime_get_real_seconds(), next_manage = TIME64_MAX;
|
|
bool purging = !net->live;
|
|
|
|
_enter("");
|
|
|
|
/* Trawl the cell database looking for cells that have expired from
|
|
* lack of use and cells whose DNS results have expired and dispatch
|
|
* their managers.
|
|
*/
|
|
read_seqlock_excl(&net->cells_lock);
|
|
|
|
for (cursor = rb_first(&net->cells); cursor; cursor = rb_next(cursor)) {
|
|
struct afs_cell *cell =
|
|
rb_entry(cursor, struct afs_cell, net_node);
|
|
unsigned usage;
|
|
bool sched_cell = false;
|
|
|
|
usage = atomic_read(&cell->usage);
|
|
_debug("manage %s %u", cell->name, usage);
|
|
|
|
ASSERTCMP(usage, >=, 1);
|
|
|
|
if (purging) {
|
|
if (test_and_clear_bit(AFS_CELL_FL_NO_GC, &cell->flags))
|
|
usage = atomic_dec_return(&cell->usage);
|
|
ASSERTCMP(usage, ==, 1);
|
|
}
|
|
|
|
if (usage == 1) {
|
|
time64_t expire_at = cell->last_inactive;
|
|
|
|
if (!test_bit(AFS_CELL_FL_DNS_FAIL, &cell->flags) &&
|
|
!test_bit(AFS_CELL_FL_NOT_FOUND, &cell->flags))
|
|
expire_at += afs_cell_gc_delay;
|
|
if (purging || expire_at <= now)
|
|
sched_cell = true;
|
|
else if (expire_at < next_manage)
|
|
next_manage = expire_at;
|
|
}
|
|
|
|
if (!purging) {
|
|
if (cell->dns_expiry <= now)
|
|
sched_cell = true;
|
|
else if (cell->dns_expiry <= next_manage)
|
|
next_manage = cell->dns_expiry;
|
|
}
|
|
|
|
if (sched_cell)
|
|
queue_work(afs_wq, &cell->manager);
|
|
}
|
|
|
|
read_sequnlock_excl(&net->cells_lock);
|
|
|
|
/* Update the timer on the way out. We have to pass an increment on
|
|
* cells_outstanding in the namespace that we are in to the timer or
|
|
* the work scheduler.
|
|
*/
|
|
if (!purging && next_manage < TIME64_MAX) {
|
|
now = ktime_get_real_seconds();
|
|
|
|
if (next_manage - now <= 0) {
|
|
if (queue_work(afs_wq, &net->cells_manager))
|
|
atomic_inc(&net->cells_outstanding);
|
|
} else {
|
|
afs_set_cell_timer(net, next_manage - now);
|
|
}
|
|
}
|
|
|
|
afs_dec_cells_outstanding(net);
|
|
_leave(" [%d]", atomic_read(&net->cells_outstanding));
|
|
}
|
|
|
|
/*
|
|
* Purge in-memory cell database.
|
|
*/
|
|
void afs_cell_purge(struct afs_net *net)
|
|
{
|
|
struct afs_cell *ws;
|
|
|
|
_enter("");
|
|
|
|
write_seqlock(&net->cells_lock);
|
|
ws = rcu_access_pointer(net->ws_cell);
|
|
RCU_INIT_POINTER(net->ws_cell, NULL);
|
|
write_sequnlock(&net->cells_lock);
|
|
afs_put_cell(net, ws);
|
|
|
|
_debug("del timer");
|
|
if (del_timer_sync(&net->cells_timer))
|
|
atomic_dec(&net->cells_outstanding);
|
|
|
|
_debug("kick mgr");
|
|
afs_queue_cell_manager(net);
|
|
|
|
_debug("wait");
|
|
wait_var_event(&net->cells_outstanding,
|
|
!atomic_read(&net->cells_outstanding));
|
|
_leave("");
|
|
}
|