linux_dsm_epyc7002/sound/soc/intel/sst-firmware.c
2015-02-05 20:18:39 +00:00

1206 lines
29 KiB
C

/*
* Intel SST Firmware Loader
*
* Copyright (C) 2013, Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/firmware.h>
#include <linux/export.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/pci.h>
#include <linux/acpi.h>
/* supported DMA engine drivers */
#include <linux/platform_data/dma-dw.h>
#include <linux/dma/dw.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include "sst-dsp.h"
#include "sst-dsp-priv.h"
#define SST_DMA_RESOURCES 2
#define SST_DSP_DMA_MAX_BURST 0x3
#define SST_HSW_BLOCK_ANY 0xffffffff
#define SST_HSW_MASK_DMA_ADDR_DSP 0xfff00000
struct sst_dma {
struct sst_dsp *sst;
struct dw_dma_chip *chip;
struct dma_async_tx_descriptor *desc;
struct dma_chan *ch;
};
static inline void sst_memcpy32(volatile void __iomem *dest, void *src, u32 bytes)
{
/* __iowrite32_copy use 32bit size values so divide by 4 */
__iowrite32_copy((void *)dest, src, bytes/4);
}
static void sst_dma_transfer_complete(void *arg)
{
struct sst_dsp *sst = (struct sst_dsp *)arg;
dev_dbg(sst->dev, "DMA: callback\n");
}
static int sst_dsp_dma_copy(struct sst_dsp *sst, dma_addr_t dest_addr,
dma_addr_t src_addr, size_t size)
{
struct dma_async_tx_descriptor *desc;
struct sst_dma *dma = sst->dma;
if (dma->ch == NULL) {
dev_err(sst->dev, "error: no DMA channel\n");
return -ENODEV;
}
dev_dbg(sst->dev, "DMA: src: 0x%lx dest 0x%lx size %zu\n",
(unsigned long)src_addr, (unsigned long)dest_addr, size);
desc = dma->ch->device->device_prep_dma_memcpy(dma->ch, dest_addr,
src_addr, size, DMA_CTRL_ACK);
if (!desc){
dev_err(sst->dev, "error: dma prep memcpy failed\n");
return -EINVAL;
}
desc->callback = sst_dma_transfer_complete;
desc->callback_param = sst;
desc->tx_submit(desc);
dma_wait_for_async_tx(desc);
return 0;
}
/* copy to DSP */
int sst_dsp_dma_copyto(struct sst_dsp *sst, dma_addr_t dest_addr,
dma_addr_t src_addr, size_t size)
{
return sst_dsp_dma_copy(sst, dest_addr | SST_HSW_MASK_DMA_ADDR_DSP,
src_addr, size);
}
EXPORT_SYMBOL_GPL(sst_dsp_dma_copyto);
/* copy from DSP */
int sst_dsp_dma_copyfrom(struct sst_dsp *sst, dma_addr_t dest_addr,
dma_addr_t src_addr, size_t size)
{
return sst_dsp_dma_copy(sst, dest_addr,
src_addr | SST_HSW_MASK_DMA_ADDR_DSP, size);
}
EXPORT_SYMBOL_GPL(sst_dsp_dma_copyfrom);
/* remove module from memory - callers hold locks */
static void block_list_remove(struct sst_dsp *dsp,
struct list_head *block_list)
{
struct sst_mem_block *block, *tmp;
int err;
/* disable each block */
list_for_each_entry(block, block_list, module_list) {
if (block->ops && block->ops->disable) {
err = block->ops->disable(block);
if (err < 0)
dev_err(dsp->dev,
"error: cant disable block %d:%d\n",
block->type, block->index);
}
}
/* mark each block as free */
list_for_each_entry_safe(block, tmp, block_list, module_list) {
list_del(&block->module_list);
list_move(&block->list, &dsp->free_block_list);
dev_dbg(dsp->dev, "block freed %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
}
}
/* prepare the memory block to receive data from host - callers hold locks */
static int block_list_prepare(struct sst_dsp *dsp,
struct list_head *block_list)
{
struct sst_mem_block *block;
int ret = 0;
/* enable each block so that's it'e ready for data */
list_for_each_entry(block, block_list, module_list) {
if (block->ops && block->ops->enable && !block->users) {
ret = block->ops->enable(block);
if (ret < 0) {
dev_err(dsp->dev,
"error: cant disable block %d:%d\n",
block->type, block->index);
goto err;
}
}
}
return ret;
err:
list_for_each_entry(block, block_list, module_list) {
if (block->ops && block->ops->disable)
block->ops->disable(block);
}
return ret;
}
static struct dw_dma_platform_data dw_pdata = {
.is_private = 1,
.chan_allocation_order = CHAN_ALLOCATION_ASCENDING,
.chan_priority = CHAN_PRIORITY_ASCENDING,
};
static struct dw_dma_chip *dw_probe(struct device *dev, struct resource *mem,
int irq)
{
struct dw_dma_chip *chip;
int err;
chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return ERR_PTR(-ENOMEM);
chip->irq = irq;
chip->regs = devm_ioremap_resource(dev, mem);
if (IS_ERR(chip->regs))
return ERR_CAST(chip->regs);
err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(31));
if (err)
return ERR_PTR(err);
chip->dev = dev;
err = dw_dma_probe(chip, &dw_pdata);
if (err)
return ERR_PTR(err);
return chip;
}
static void dw_remove(struct dw_dma_chip *chip)
{
dw_dma_remove(chip);
}
static bool dma_chan_filter(struct dma_chan *chan, void *param)
{
struct sst_dsp *dsp = (struct sst_dsp *)param;
return chan->device->dev == dsp->dma_dev;
}
int sst_dsp_dma_get_channel(struct sst_dsp *dsp, int chan_id)
{
struct sst_dma *dma = dsp->dma;
struct dma_slave_config slave;
dma_cap_mask_t mask;
int ret;
/* The Intel MID DMA engine driver needs the slave config set but
* Synopsis DMA engine driver safely ignores the slave config */
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dma_cap_set(DMA_MEMCPY, mask);
dma->ch = dma_request_channel(mask, dma_chan_filter, dsp);
if (dma->ch == NULL) {
dev_err(dsp->dev, "error: DMA request channel failed\n");
return -EIO;
}
memset(&slave, 0, sizeof(slave));
slave.direction = DMA_MEM_TO_DEV;
slave.src_addr_width =
slave.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
slave.src_maxburst = slave.dst_maxburst = SST_DSP_DMA_MAX_BURST;
ret = dmaengine_slave_config(dma->ch, &slave);
if (ret) {
dev_err(dsp->dev, "error: unable to set DMA slave config %d\n",
ret);
dma_release_channel(dma->ch);
dma->ch = NULL;
}
return ret;
}
EXPORT_SYMBOL_GPL(sst_dsp_dma_get_channel);
void sst_dsp_dma_put_channel(struct sst_dsp *dsp)
{
struct sst_dma *dma = dsp->dma;
if (!dma->ch)
return;
dma_release_channel(dma->ch);
dma->ch = NULL;
}
EXPORT_SYMBOL_GPL(sst_dsp_dma_put_channel);
int sst_dma_new(struct sst_dsp *sst)
{
struct sst_pdata *sst_pdata = sst->pdata;
struct sst_dma *dma;
struct resource mem;
const char *dma_dev_name;
int ret = 0;
/* configure the correct platform data for whatever DMA engine
* is attached to the ADSP IP. */
switch (sst->pdata->dma_engine) {
case SST_DMA_TYPE_DW:
dma_dev_name = "dw_dmac";
break;
case SST_DMA_TYPE_MID:
dma_dev_name = "Intel MID DMA";
break;
default:
dev_err(sst->dev, "error: invalid DMA engine %d\n",
sst->pdata->dma_engine);
return -EINVAL;
}
dma = devm_kzalloc(sst->dev, sizeof(struct sst_dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->sst = sst;
memset(&mem, 0, sizeof(mem));
mem.start = sst->addr.lpe_base + sst_pdata->dma_base;
mem.end = sst->addr.lpe_base + sst_pdata->dma_base + sst_pdata->dma_size - 1;
mem.flags = IORESOURCE_MEM;
/* now register DMA engine device */
dma->chip = dw_probe(sst->dma_dev, &mem, sst_pdata->irq);
if (IS_ERR(dma->chip)) {
dev_err(sst->dev, "error: DMA device register failed\n");
ret = PTR_ERR(dma->chip);
goto err_dma_dev;
}
sst->dma = dma;
sst->fw_use_dma = true;
return 0;
err_dma_dev:
devm_kfree(sst->dev, dma);
return ret;
}
EXPORT_SYMBOL(sst_dma_new);
void sst_dma_free(struct sst_dma *dma)
{
if (dma == NULL)
return;
if (dma->ch)
dma_release_channel(dma->ch);
if (dma->chip)
dw_remove(dma->chip);
}
EXPORT_SYMBOL(sst_dma_free);
/* create new generic firmware object */
struct sst_fw *sst_fw_new(struct sst_dsp *dsp,
const struct firmware *fw, void *private)
{
struct sst_fw *sst_fw;
int err;
if (!dsp->ops->parse_fw)
return NULL;
sst_fw = kzalloc(sizeof(*sst_fw), GFP_KERNEL);
if (sst_fw == NULL)
return NULL;
sst_fw->dsp = dsp;
sst_fw->private = private;
sst_fw->size = fw->size;
/* allocate DMA buffer to store FW data */
sst_fw->dma_buf = dma_alloc_coherent(dsp->dma_dev, sst_fw->size,
&sst_fw->dmable_fw_paddr, GFP_DMA | GFP_KERNEL);
if (!sst_fw->dma_buf) {
dev_err(dsp->dev, "error: DMA alloc failed\n");
kfree(sst_fw);
return NULL;
}
/* copy FW data to DMA-able memory */
memcpy((void *)sst_fw->dma_buf, (void *)fw->data, fw->size);
if (dsp->fw_use_dma) {
err = sst_dsp_dma_get_channel(dsp, 0);
if (err < 0)
goto chan_err;
}
/* call core specific FW paser to load FW data into DSP */
err = dsp->ops->parse_fw(sst_fw);
if (err < 0) {
dev_err(dsp->dev, "error: parse fw failed %d\n", err);
goto parse_err;
}
if (dsp->fw_use_dma)
sst_dsp_dma_put_channel(dsp);
mutex_lock(&dsp->mutex);
list_add(&sst_fw->list, &dsp->fw_list);
mutex_unlock(&dsp->mutex);
return sst_fw;
parse_err:
if (dsp->fw_use_dma)
sst_dsp_dma_put_channel(dsp);
chan_err:
dma_free_coherent(dsp->dma_dev, sst_fw->size,
sst_fw->dma_buf,
sst_fw->dmable_fw_paddr);
sst_fw->dma_buf = NULL;
kfree(sst_fw);
return NULL;
}
EXPORT_SYMBOL_GPL(sst_fw_new);
int sst_fw_reload(struct sst_fw *sst_fw)
{
struct sst_dsp *dsp = sst_fw->dsp;
int ret;
dev_dbg(dsp->dev, "reloading firmware\n");
/* call core specific FW paser to load FW data into DSP */
ret = dsp->ops->parse_fw(sst_fw);
if (ret < 0)
dev_err(dsp->dev, "error: parse fw failed %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(sst_fw_reload);
void sst_fw_unload(struct sst_fw *sst_fw)
{
struct sst_dsp *dsp = sst_fw->dsp;
struct sst_module *module, *mtmp;
struct sst_module_runtime *runtime, *rtmp;
dev_dbg(dsp->dev, "unloading firmware\n");
mutex_lock(&dsp->mutex);
/* check module by module */
list_for_each_entry_safe(module, mtmp, &dsp->module_list, list) {
if (module->sst_fw == sst_fw) {
/* remove runtime modules */
list_for_each_entry_safe(runtime, rtmp, &module->runtime_list, list) {
block_list_remove(dsp, &runtime->block_list);
list_del(&runtime->list);
kfree(runtime);
}
/* now remove the module */
block_list_remove(dsp, &module->block_list);
list_del(&module->list);
kfree(module);
}
}
/* remove all scratch blocks */
block_list_remove(dsp, &dsp->scratch_block_list);
mutex_unlock(&dsp->mutex);
}
EXPORT_SYMBOL_GPL(sst_fw_unload);
/* free single firmware object */
void sst_fw_free(struct sst_fw *sst_fw)
{
struct sst_dsp *dsp = sst_fw->dsp;
mutex_lock(&dsp->mutex);
list_del(&sst_fw->list);
mutex_unlock(&dsp->mutex);
if (sst_fw->dma_buf)
dma_free_coherent(dsp->dma_dev, sst_fw->size, sst_fw->dma_buf,
sst_fw->dmable_fw_paddr);
kfree(sst_fw);
}
EXPORT_SYMBOL_GPL(sst_fw_free);
/* free all firmware objects */
void sst_fw_free_all(struct sst_dsp *dsp)
{
struct sst_fw *sst_fw, *t;
mutex_lock(&dsp->mutex);
list_for_each_entry_safe(sst_fw, t, &dsp->fw_list, list) {
list_del(&sst_fw->list);
dma_free_coherent(dsp->dev, sst_fw->size, sst_fw->dma_buf,
sst_fw->dmable_fw_paddr);
kfree(sst_fw);
}
mutex_unlock(&dsp->mutex);
}
EXPORT_SYMBOL_GPL(sst_fw_free_all);
/* create a new SST generic module from FW template */
struct sst_module *sst_module_new(struct sst_fw *sst_fw,
struct sst_module_template *template, void *private)
{
struct sst_dsp *dsp = sst_fw->dsp;
struct sst_module *sst_module;
sst_module = kzalloc(sizeof(*sst_module), GFP_KERNEL);
if (sst_module == NULL)
return NULL;
sst_module->id = template->id;
sst_module->dsp = dsp;
sst_module->sst_fw = sst_fw;
sst_module->scratch_size = template->scratch_size;
sst_module->persistent_size = template->persistent_size;
sst_module->entry = template->entry;
INIT_LIST_HEAD(&sst_module->block_list);
INIT_LIST_HEAD(&sst_module->runtime_list);
mutex_lock(&dsp->mutex);
list_add(&sst_module->list, &dsp->module_list);
mutex_unlock(&dsp->mutex);
return sst_module;
}
EXPORT_SYMBOL_GPL(sst_module_new);
/* free firmware module and remove from available list */
void sst_module_free(struct sst_module *sst_module)
{
struct sst_dsp *dsp = sst_module->dsp;
mutex_lock(&dsp->mutex);
list_del(&sst_module->list);
mutex_unlock(&dsp->mutex);
kfree(sst_module);
}
EXPORT_SYMBOL_GPL(sst_module_free);
struct sst_module_runtime *sst_module_runtime_new(struct sst_module *module,
int id, void *private)
{
struct sst_dsp *dsp = module->dsp;
struct sst_module_runtime *runtime;
runtime = kzalloc(sizeof(*runtime), GFP_KERNEL);
if (runtime == NULL)
return NULL;
runtime->id = id;
runtime->dsp = dsp;
runtime->module = module;
INIT_LIST_HEAD(&runtime->block_list);
mutex_lock(&dsp->mutex);
list_add(&runtime->list, &module->runtime_list);
mutex_unlock(&dsp->mutex);
return runtime;
}
EXPORT_SYMBOL_GPL(sst_module_runtime_new);
void sst_module_runtime_free(struct sst_module_runtime *runtime)
{
struct sst_dsp *dsp = runtime->dsp;
mutex_lock(&dsp->mutex);
list_del(&runtime->list);
mutex_unlock(&dsp->mutex);
kfree(runtime);
}
EXPORT_SYMBOL_GPL(sst_module_runtime_free);
static struct sst_mem_block *find_block(struct sst_dsp *dsp,
struct sst_block_allocator *ba)
{
struct sst_mem_block *block;
list_for_each_entry(block, &dsp->free_block_list, list) {
if (block->type == ba->type && block->offset == ba->offset)
return block;
}
return NULL;
}
/* Block allocator must be on block boundary */
static int block_alloc_contiguous(struct sst_dsp *dsp,
struct sst_block_allocator *ba, struct list_head *block_list)
{
struct list_head tmp = LIST_HEAD_INIT(tmp);
struct sst_mem_block *block;
u32 block_start = SST_HSW_BLOCK_ANY;
int size = ba->size, offset = ba->offset;
while (ba->size > 0) {
block = find_block(dsp, ba);
if (!block) {
list_splice(&tmp, &dsp->free_block_list);
ba->size = size;
ba->offset = offset;
return -ENOMEM;
}
list_move_tail(&block->list, &tmp);
ba->offset += block->size;
ba->size -= block->size;
}
ba->size = size;
ba->offset = offset;
list_for_each_entry(block, &tmp, list) {
if (block->offset < block_start)
block_start = block->offset;
list_add(&block->module_list, block_list);
dev_dbg(dsp->dev, "block allocated %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
}
list_splice(&tmp, &dsp->used_block_list);
return 0;
}
/* allocate first free DSP blocks for data - callers hold locks */
static int block_alloc(struct sst_dsp *dsp, struct sst_block_allocator *ba,
struct list_head *block_list)
{
struct sst_mem_block *block, *tmp;
int ret = 0;
if (ba->size == 0)
return 0;
/* find first free whole blocks that can hold module */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
/* ignore blocks with wrong type */
if (block->type != ba->type)
continue;
if (ba->size > block->size)
continue;
ba->offset = block->offset;
block->bytes_used = ba->size % block->size;
list_add(&block->module_list, block_list);
list_move(&block->list, &dsp->used_block_list);
dev_dbg(dsp->dev, "block allocated %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
return 0;
}
/* then find free multiple blocks that can hold module */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
/* ignore blocks with wrong type */
if (block->type != ba->type)
continue;
/* do we span > 1 blocks */
if (ba->size > block->size) {
/* align ba to block boundary */
ba->offset = block->offset;
ret = block_alloc_contiguous(dsp, ba, block_list);
if (ret == 0)
return ret;
}
}
/* not enough free block space */
return -ENOMEM;
}
int sst_alloc_blocks(struct sst_dsp *dsp, struct sst_block_allocator *ba,
struct list_head *block_list)
{
int ret;
dev_dbg(dsp->dev, "block request 0x%x bytes at offset 0x%x type %d\n",
ba->size, ba->offset, ba->type);
mutex_lock(&dsp->mutex);
ret = block_alloc(dsp, ba, block_list);
if (ret < 0) {
dev_err(dsp->dev, "error: can't alloc blocks %d\n", ret);
goto out;
}
/* prepare DSP blocks for module usage */
ret = block_list_prepare(dsp, block_list);
if (ret < 0)
dev_err(dsp->dev, "error: prepare failed\n");
out:
mutex_unlock(&dsp->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(sst_alloc_blocks);
int sst_free_blocks(struct sst_dsp *dsp, struct list_head *block_list)
{
mutex_lock(&dsp->mutex);
block_list_remove(dsp, block_list);
mutex_unlock(&dsp->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(sst_free_blocks);
/* allocate memory blocks for static module addresses - callers hold locks */
static int block_alloc_fixed(struct sst_dsp *dsp, struct sst_block_allocator *ba,
struct list_head *block_list)
{
struct sst_mem_block *block, *tmp;
struct sst_block_allocator ba_tmp = *ba;
u32 end = ba->offset + ba->size, block_end;
int err;
/* only IRAM/DRAM blocks are managed */
if (ba->type != SST_MEM_IRAM && ba->type != SST_MEM_DRAM)
return 0;
/* are blocks already attached to this module */
list_for_each_entry_safe(block, tmp, block_list, module_list) {
/* ignore blocks with wrong type */
if (block->type != ba->type)
continue;
block_end = block->offset + block->size;
/* find block that holds section */
if (ba->offset >= block->offset && end <= block_end)
return 0;
/* does block span more than 1 section */
if (ba->offset >= block->offset && ba->offset < block_end) {
/* align ba to block boundary */
ba_tmp.size -= block_end - ba->offset;
ba_tmp.offset = block_end;
err = block_alloc_contiguous(dsp, &ba_tmp, block_list);
if (err < 0)
return -ENOMEM;
/* module already owns blocks */
return 0;
}
}
/* find first free blocks that can hold section in free list */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
block_end = block->offset + block->size;
/* ignore blocks with wrong type */
if (block->type != ba->type)
continue;
/* find block that holds section */
if (ba->offset >= block->offset && end <= block_end) {
/* add block */
list_move(&block->list, &dsp->used_block_list);
list_add(&block->module_list, block_list);
dev_dbg(dsp->dev, "block allocated %d:%d at offset 0x%x\n",
block->type, block->index, block->offset);
return 0;
}
/* does block span more than 1 section */
if (ba->offset >= block->offset && ba->offset < block_end) {
/* add block */
list_move(&block->list, &dsp->used_block_list);
list_add(&block->module_list, block_list);
/* align ba to block boundary */
ba_tmp.size -= block_end - ba->offset;
ba_tmp.offset = block_end;
err = block_alloc_contiguous(dsp, &ba_tmp, block_list);
if (err < 0)
return -ENOMEM;
return 0;
}
}
return -ENOMEM;
}
/* Load fixed module data into DSP memory blocks */
int sst_module_alloc_blocks(struct sst_module *module)
{
struct sst_dsp *dsp = module->dsp;
struct sst_fw *sst_fw = module->sst_fw;
struct sst_block_allocator ba;
int ret;
memset(&ba, 0, sizeof(ba));
ba.size = module->size;
ba.type = module->type;
ba.offset = module->offset;
dev_dbg(dsp->dev, "block request 0x%x bytes at offset 0x%x type %d\n",
ba.size, ba.offset, ba.type);
mutex_lock(&dsp->mutex);
/* alloc blocks that includes this section */
ret = block_alloc_fixed(dsp, &ba, &module->block_list);
if (ret < 0) {
dev_err(dsp->dev,
"error: no free blocks for section at offset 0x%x size 0x%x\n",
module->offset, module->size);
mutex_unlock(&dsp->mutex);
return -ENOMEM;
}
/* prepare DSP blocks for module copy */
ret = block_list_prepare(dsp, &module->block_list);
if (ret < 0) {
dev_err(dsp->dev, "error: fw module prepare failed\n");
goto err;
}
/* copy partial module data to blocks */
if (dsp->fw_use_dma) {
ret = sst_dsp_dma_copyto(dsp,
dsp->addr.lpe_base + module->offset,
sst_fw->dmable_fw_paddr + module->data_offset,
module->size);
if (ret < 0) {
dev_err(dsp->dev, "error: module copy failed\n");
goto err;
}
} else
sst_memcpy32(dsp->addr.lpe + module->offset, module->data,
module->size);
mutex_unlock(&dsp->mutex);
return ret;
err:
block_list_remove(dsp, &module->block_list);
mutex_unlock(&dsp->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(sst_module_alloc_blocks);
/* Unload entire module from DSP memory */
int sst_module_free_blocks(struct sst_module *module)
{
struct sst_dsp *dsp = module->dsp;
mutex_lock(&dsp->mutex);
block_list_remove(dsp, &module->block_list);
mutex_unlock(&dsp->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(sst_module_free_blocks);
int sst_module_runtime_alloc_blocks(struct sst_module_runtime *runtime,
int offset)
{
struct sst_dsp *dsp = runtime->dsp;
struct sst_module *module = runtime->module;
struct sst_block_allocator ba;
int ret;
if (module->persistent_size == 0)
return 0;
memset(&ba, 0, sizeof(ba));
ba.size = module->persistent_size;
ba.type = SST_MEM_DRAM;
mutex_lock(&dsp->mutex);
/* do we need to allocate at a fixed address ? */
if (offset != 0) {
ba.offset = offset;
dev_dbg(dsp->dev, "persistent fixed block request 0x%x bytes type %d offset 0x%x\n",
ba.size, ba.type, ba.offset);
/* alloc blocks that includes this section */
ret = block_alloc_fixed(dsp, &ba, &runtime->block_list);
} else {
dev_dbg(dsp->dev, "persistent block request 0x%x bytes type %d\n",
ba.size, ba.type);
/* alloc blocks that includes this section */
ret = block_alloc(dsp, &ba, &runtime->block_list);
}
if (ret < 0) {
dev_err(dsp->dev,
"error: no free blocks for runtime module size 0x%x\n",
module->persistent_size);
mutex_unlock(&dsp->mutex);
return -ENOMEM;
}
runtime->persistent_offset = ba.offset;
/* prepare DSP blocks for module copy */
ret = block_list_prepare(dsp, &runtime->block_list);
if (ret < 0) {
dev_err(dsp->dev, "error: runtime block prepare failed\n");
goto err;
}
mutex_unlock(&dsp->mutex);
return ret;
err:
block_list_remove(dsp, &module->block_list);
mutex_unlock(&dsp->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(sst_module_runtime_alloc_blocks);
int sst_module_runtime_free_blocks(struct sst_module_runtime *runtime)
{
struct sst_dsp *dsp = runtime->dsp;
mutex_lock(&dsp->mutex);
block_list_remove(dsp, &runtime->block_list);
mutex_unlock(&dsp->mutex);
return 0;
}
EXPORT_SYMBOL_GPL(sst_module_runtime_free_blocks);
int sst_module_runtime_save(struct sst_module_runtime *runtime,
struct sst_module_runtime_context *context)
{
struct sst_dsp *dsp = runtime->dsp;
struct sst_module *module = runtime->module;
int ret = 0;
dev_dbg(dsp->dev, "saving runtime %d memory at 0x%x size 0x%x\n",
runtime->id, runtime->persistent_offset,
module->persistent_size);
context->buffer = dma_alloc_coherent(dsp->dma_dev,
module->persistent_size,
&context->dma_buffer, GFP_DMA | GFP_KERNEL);
if (!context->buffer) {
dev_err(dsp->dev, "error: DMA context alloc failed\n");
return -ENOMEM;
}
mutex_lock(&dsp->mutex);
if (dsp->fw_use_dma) {
ret = sst_dsp_dma_get_channel(dsp, 0);
if (ret < 0)
goto err;
ret = sst_dsp_dma_copyfrom(dsp, context->dma_buffer,
dsp->addr.lpe_base + runtime->persistent_offset,
module->persistent_size);
sst_dsp_dma_put_channel(dsp);
if (ret < 0) {
dev_err(dsp->dev, "error: context copy failed\n");
goto err;
}
} else
sst_memcpy32(context->buffer, dsp->addr.lpe +
runtime->persistent_offset,
module->persistent_size);
err:
mutex_unlock(&dsp->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(sst_module_runtime_save);
int sst_module_runtime_restore(struct sst_module_runtime *runtime,
struct sst_module_runtime_context *context)
{
struct sst_dsp *dsp = runtime->dsp;
struct sst_module *module = runtime->module;
int ret = 0;
dev_dbg(dsp->dev, "restoring runtime %d memory at 0x%x size 0x%x\n",
runtime->id, runtime->persistent_offset,
module->persistent_size);
mutex_lock(&dsp->mutex);
if (!context->buffer) {
dev_info(dsp->dev, "no context buffer need to restore!\n");
goto err;
}
if (dsp->fw_use_dma) {
ret = sst_dsp_dma_get_channel(dsp, 0);
if (ret < 0)
goto err;
ret = sst_dsp_dma_copyto(dsp,
dsp->addr.lpe_base + runtime->persistent_offset,
context->dma_buffer, module->persistent_size);
sst_dsp_dma_put_channel(dsp);
if (ret < 0) {
dev_err(dsp->dev, "error: module copy failed\n");
goto err;
}
} else
sst_memcpy32(dsp->addr.lpe + runtime->persistent_offset,
context->buffer, module->persistent_size);
dma_free_coherent(dsp->dma_dev, module->persistent_size,
context->buffer, context->dma_buffer);
context->buffer = NULL;
err:
mutex_unlock(&dsp->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(sst_module_runtime_restore);
/* register a DSP memory block for use with FW based modules */
struct sst_mem_block *sst_mem_block_register(struct sst_dsp *dsp, u32 offset,
u32 size, enum sst_mem_type type, struct sst_block_ops *ops, u32 index,
void *private)
{
struct sst_mem_block *block;
block = kzalloc(sizeof(*block), GFP_KERNEL);
if (block == NULL)
return NULL;
block->offset = offset;
block->size = size;
block->index = index;
block->type = type;
block->dsp = dsp;
block->private = private;
block->ops = ops;
mutex_lock(&dsp->mutex);
list_add(&block->list, &dsp->free_block_list);
mutex_unlock(&dsp->mutex);
return block;
}
EXPORT_SYMBOL_GPL(sst_mem_block_register);
/* unregister all DSP memory blocks */
void sst_mem_block_unregister_all(struct sst_dsp *dsp)
{
struct sst_mem_block *block, *tmp;
mutex_lock(&dsp->mutex);
/* unregister used blocks */
list_for_each_entry_safe(block, tmp, &dsp->used_block_list, list) {
list_del(&block->list);
kfree(block);
}
/* unregister free blocks */
list_for_each_entry_safe(block, tmp, &dsp->free_block_list, list) {
list_del(&block->list);
kfree(block);
}
mutex_unlock(&dsp->mutex);
}
EXPORT_SYMBOL_GPL(sst_mem_block_unregister_all);
/* allocate scratch buffer blocks */
int sst_block_alloc_scratch(struct sst_dsp *dsp)
{
struct sst_module *module;
struct sst_block_allocator ba;
int ret;
mutex_lock(&dsp->mutex);
/* calculate required scratch size */
dsp->scratch_size = 0;
list_for_each_entry(module, &dsp->module_list, list) {
dev_dbg(dsp->dev, "module %d scratch req 0x%x bytes\n",
module->id, module->scratch_size);
if (dsp->scratch_size < module->scratch_size)
dsp->scratch_size = module->scratch_size;
}
dev_dbg(dsp->dev, "scratch buffer required is 0x%x bytes\n",
dsp->scratch_size);
if (dsp->scratch_size == 0) {
dev_info(dsp->dev, "no modules need scratch buffer\n");
mutex_unlock(&dsp->mutex);
return 0;
}
/* allocate blocks for module scratch buffers */
dev_dbg(dsp->dev, "allocating scratch blocks\n");
ba.size = dsp->scratch_size;
ba.type = SST_MEM_DRAM;
/* do we need to allocate at fixed offset */
if (dsp->scratch_offset != 0) {
dev_dbg(dsp->dev, "block request 0x%x bytes type %d at 0x%x\n",
ba.size, ba.type, ba.offset);
ba.offset = dsp->scratch_offset;
/* alloc blocks that includes this section */
ret = block_alloc_fixed(dsp, &ba, &dsp->scratch_block_list);
} else {
dev_dbg(dsp->dev, "block request 0x%x bytes type %d\n",
ba.size, ba.type);
ba.offset = 0;
ret = block_alloc(dsp, &ba, &dsp->scratch_block_list);
}
if (ret < 0) {
dev_err(dsp->dev, "error: can't alloc scratch blocks\n");
mutex_unlock(&dsp->mutex);
return ret;
}
ret = block_list_prepare(dsp, &dsp->scratch_block_list);
if (ret < 0) {
dev_err(dsp->dev, "error: scratch block prepare failed\n");
mutex_unlock(&dsp->mutex);
return ret;
}
/* assign the same offset of scratch to each module */
dsp->scratch_offset = ba.offset;
mutex_unlock(&dsp->mutex);
return dsp->scratch_size;
}
EXPORT_SYMBOL_GPL(sst_block_alloc_scratch);
/* free all scratch blocks */
void sst_block_free_scratch(struct sst_dsp *dsp)
{
mutex_lock(&dsp->mutex);
block_list_remove(dsp, &dsp->scratch_block_list);
mutex_unlock(&dsp->mutex);
}
EXPORT_SYMBOL_GPL(sst_block_free_scratch);
/* get a module from it's unique ID */
struct sst_module *sst_module_get_from_id(struct sst_dsp *dsp, u32 id)
{
struct sst_module *module;
mutex_lock(&dsp->mutex);
list_for_each_entry(module, &dsp->module_list, list) {
if (module->id == id) {
mutex_unlock(&dsp->mutex);
return module;
}
}
mutex_unlock(&dsp->mutex);
return NULL;
}
EXPORT_SYMBOL_GPL(sst_module_get_from_id);
struct sst_module_runtime *sst_module_runtime_get_from_id(
struct sst_module *module, u32 id)
{
struct sst_module_runtime *runtime;
struct sst_dsp *dsp = module->dsp;
mutex_lock(&dsp->mutex);
list_for_each_entry(runtime, &module->runtime_list, list) {
if (runtime->id == id) {
mutex_unlock(&dsp->mutex);
return runtime;
}
}
mutex_unlock(&dsp->mutex);
return NULL;
}
EXPORT_SYMBOL_GPL(sst_module_runtime_get_from_id);
/* returns block address in DSP address space */
u32 sst_dsp_get_offset(struct sst_dsp *dsp, u32 offset,
enum sst_mem_type type)
{
switch (type) {
case SST_MEM_IRAM:
return offset - dsp->addr.iram_offset +
dsp->addr.dsp_iram_offset;
case SST_MEM_DRAM:
return offset - dsp->addr.dram_offset +
dsp->addr.dsp_dram_offset;
default:
return 0;
}
}
EXPORT_SYMBOL_GPL(sst_dsp_get_offset);