linux_dsm_epyc7002/drivers/mtd/tests/mtd_nandecctest.c
Boris Brezillon 309600c14e mtd: rawnand: Allow selection of ECC byte ordering at runtime
Currently, the selection of ECC byte ordering for software hamming is
done at compilation time, which doesn't make sense when ECC byte
calculation is done in hardware and byte ordering is forced by the
hardware engine.
In this case, only the correction is done in software and we want to
force the byte-ordering no matter the value of CONFIG_MTD_NAND_ECC_SMC.

This is typically the case for the FSMC (Smart Media ordering), TMIO and
TXX9NDFMC (regular byte ordering) blocks.

For all other use cases (pure software implementation, SM FTL and
nandecctest), we keep selecting the byte ordering based on the
CONFIG_MTD_NAND_ECC_SMC value. It might not be ideal for SM FTL (I'd
expect Smart Media ordering to be employed by the Smart Media FTL), but
this option doesn't seem to be enabled in the existing _defconfig, so
I can't tell setting sm_order to true is the right choice.

Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2018-10-03 11:12:25 +02:00

330 lines
8.2 KiB
C

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/random.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/mtd/nand_ecc.h>
#include "mtd_test.h"
/*
* Test the implementation for software ECC
*
* No actual MTD device is needed, So we don't need to warry about losing
* important data by human error.
*
* This covers possible patterns of corruption which can be reliably corrected
* or detected.
*/
#if IS_ENABLED(CONFIG_MTD_NAND)
struct nand_ecc_test {
const char *name;
void (*prepare)(void *, void *, void *, void *, const size_t);
int (*verify)(void *, void *, void *, const size_t);
};
/*
* The reason for this __change_bit_le() instead of __change_bit() is to inject
* bit error properly within the region which is not a multiple of
* sizeof(unsigned long) on big-endian systems
*/
#ifdef __LITTLE_ENDIAN
#define __change_bit_le(nr, addr) __change_bit(nr, addr)
#elif defined(__BIG_ENDIAN)
#define __change_bit_le(nr, addr) \
__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
#else
#error "Unknown byte order"
#endif
static void single_bit_error_data(void *error_data, void *correct_data,
size_t size)
{
unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
memcpy(error_data, correct_data, size);
__change_bit_le(offset, error_data);
}
static void double_bit_error_data(void *error_data, void *correct_data,
size_t size)
{
unsigned int offset[2];
offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
do {
offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
} while (offset[0] == offset[1]);
memcpy(error_data, correct_data, size);
__change_bit_le(offset[0], error_data);
__change_bit_le(offset[1], error_data);
}
static unsigned int random_ecc_bit(size_t size)
{
unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
if (size == 256) {
/*
* Don't inject a bit error into the insignificant bits (16th
* and 17th bit) in ECC code for 256 byte data block
*/
while (offset == 16 || offset == 17)
offset = prandom_u32() % (3 * BITS_PER_BYTE);
}
return offset;
}
static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
size_t size)
{
unsigned int offset = random_ecc_bit(size);
memcpy(error_ecc, correct_ecc, 3);
__change_bit_le(offset, error_ecc);
}
static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
size_t size)
{
unsigned int offset[2];
offset[0] = random_ecc_bit(size);
do {
offset[1] = random_ecc_bit(size);
} while (offset[0] == offset[1]);
memcpy(error_ecc, correct_ecc, 3);
__change_bit_le(offset[0], error_ecc);
__change_bit_le(offset[1], error_ecc);
}
static void no_bit_error(void *error_data, void *error_ecc,
void *correct_data, void *correct_ecc, const size_t size)
{
memcpy(error_data, correct_data, size);
memcpy(error_ecc, correct_ecc, 3);
}
static int no_bit_error_verify(void *error_data, void *error_ecc,
void *correct_data, const size_t size)
{
unsigned char calc_ecc[3];
int ret;
__nand_calculate_ecc(error_data, size, calc_ecc,
IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
if (ret == 0 && !memcmp(correct_data, error_data, size))
return 0;
return -EINVAL;
}
static void single_bit_error_in_data(void *error_data, void *error_ecc,
void *correct_data, void *correct_ecc, const size_t size)
{
single_bit_error_data(error_data, correct_data, size);
memcpy(error_ecc, correct_ecc, 3);
}
static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
void *correct_data, void *correct_ecc, const size_t size)
{
memcpy(error_data, correct_data, size);
single_bit_error_ecc(error_ecc, correct_ecc, size);
}
static int single_bit_error_correct(void *error_data, void *error_ecc,
void *correct_data, const size_t size)
{
unsigned char calc_ecc[3];
int ret;
__nand_calculate_ecc(error_data, size, calc_ecc,
IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
if (ret == 1 && !memcmp(correct_data, error_data, size))
return 0;
return -EINVAL;
}
static void double_bit_error_in_data(void *error_data, void *error_ecc,
void *correct_data, void *correct_ecc, const size_t size)
{
double_bit_error_data(error_data, correct_data, size);
memcpy(error_ecc, correct_ecc, 3);
}
static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
void *correct_data, void *correct_ecc, const size_t size)
{
single_bit_error_data(error_data, correct_data, size);
single_bit_error_ecc(error_ecc, correct_ecc, size);
}
static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
void *correct_data, void *correct_ecc, const size_t size)
{
memcpy(error_data, correct_data, size);
double_bit_error_ecc(error_ecc, correct_ecc, size);
}
static int double_bit_error_detect(void *error_data, void *error_ecc,
void *correct_data, const size_t size)
{
unsigned char calc_ecc[3];
int ret;
__nand_calculate_ecc(error_data, size, calc_ecc,
IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
return (ret == -EBADMSG) ? 0 : -EINVAL;
}
static const struct nand_ecc_test nand_ecc_test[] = {
{
.name = "no-bit-error",
.prepare = no_bit_error,
.verify = no_bit_error_verify,
},
{
.name = "single-bit-error-in-data-correct",
.prepare = single_bit_error_in_data,
.verify = single_bit_error_correct,
},
{
.name = "single-bit-error-in-ecc-correct",
.prepare = single_bit_error_in_ecc,
.verify = single_bit_error_correct,
},
{
.name = "double-bit-error-in-data-detect",
.prepare = double_bit_error_in_data,
.verify = double_bit_error_detect,
},
{
.name = "single-bit-error-in-data-and-ecc-detect",
.prepare = single_bit_error_in_data_and_ecc,
.verify = double_bit_error_detect,
},
{
.name = "double-bit-error-in-ecc-detect",
.prepare = double_bit_error_in_ecc,
.verify = double_bit_error_detect,
},
};
static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
void *correct_ecc, const size_t size)
{
pr_info("hexdump of error data:\n");
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
error_data, size, false);
print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
pr_info("hexdump of correct data:\n");
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
correct_data, size, false);
print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
}
static int nand_ecc_test_run(const size_t size)
{
int i;
int err = 0;
void *error_data;
void *error_ecc;
void *correct_data;
void *correct_ecc;
error_data = kmalloc(size, GFP_KERNEL);
error_ecc = kmalloc(3, GFP_KERNEL);
correct_data = kmalloc(size, GFP_KERNEL);
correct_ecc = kmalloc(3, GFP_KERNEL);
if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
err = -ENOMEM;
goto error;
}
prandom_bytes(correct_data, size);
__nand_calculate_ecc(correct_data, size, correct_ecc,
IS_ENABLED(CONFIG_MTD_NAND_ECC_SMC));
for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
nand_ecc_test[i].prepare(error_data, error_ecc,
correct_data, correct_ecc, size);
err = nand_ecc_test[i].verify(error_data, error_ecc,
correct_data, size);
if (err) {
pr_err("not ok - %s-%zd\n",
nand_ecc_test[i].name, size);
dump_data_ecc(error_data, error_ecc,
correct_data, correct_ecc, size);
break;
}
pr_info("ok - %s-%zd\n",
nand_ecc_test[i].name, size);
err = mtdtest_relax();
if (err)
break;
}
error:
kfree(error_data);
kfree(error_ecc);
kfree(correct_data);
kfree(correct_ecc);
return err;
}
#else
static int nand_ecc_test_run(const size_t size)
{
return 0;
}
#endif
static int __init ecc_test_init(void)
{
int err;
err = nand_ecc_test_run(256);
if (err)
return err;
return nand_ecc_test_run(512);
}
static void __exit ecc_test_exit(void)
{
}
module_init(ecc_test_init);
module_exit(ecc_test_exit);
MODULE_DESCRIPTION("NAND ECC function test module");
MODULE_AUTHOR("Akinobu Mita");
MODULE_LICENSE("GPL");