mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-17 03:56:33 +07:00
674f368a95
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to make the ->setkey() functions provide more information about errors. However, no one actually checks for this flag, which makes it pointless. Also, many algorithms fail to set this flag when given a bad length key. Reviewing just the generic implementations, this is the case for aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309, rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably many more in arch/*/crypto/ and drivers/crypto/. Some algorithms can even set this flag when the key is the correct length. For example, authenc and authencesn set it when the key payload is malformed in any way (not just a bad length), the atmel-sha and ccree drivers can set it if a memory allocation fails, and the chelsio driver sets it for bad auth tag lengths, not just bad key lengths. So even if someone actually wanted to start checking this flag (which seems unlikely, since it's been unused for a long time), there would be a lot of work needed to get it working correctly. But it would probably be much better to go back to the drawing board and just define different return values, like -EINVAL if the key is invalid for the algorithm vs. -EKEYREJECTED if the key was rejected by a policy like "no weak keys". That would be much simpler, less error-prone, and easier to test. So just remove this flag. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
401 lines
9.8 KiB
C
401 lines
9.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
|
|
*
|
|
* Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/crypto.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/hash.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/scatterwalk.h>
|
|
|
|
#include "ccp-crypto.h"
|
|
|
|
static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
|
|
int ret)
|
|
{
|
|
struct ahash_request *req = ahash_request_cast(async_req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
|
unsigned int digest_size = crypto_ahash_digestsize(tfm);
|
|
|
|
if (ret)
|
|
goto e_free;
|
|
|
|
if (rctx->hash_rem) {
|
|
/* Save remaining data to buffer */
|
|
unsigned int offset = rctx->nbytes - rctx->hash_rem;
|
|
|
|
scatterwalk_map_and_copy(rctx->buf, rctx->src,
|
|
offset, rctx->hash_rem, 0);
|
|
rctx->buf_count = rctx->hash_rem;
|
|
} else {
|
|
rctx->buf_count = 0;
|
|
}
|
|
|
|
/* Update result area if supplied */
|
|
if (req->result && rctx->final)
|
|
memcpy(req->result, rctx->iv, digest_size);
|
|
|
|
e_free:
|
|
sg_free_table(&rctx->data_sg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
|
|
unsigned int final)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct scatterlist *sg, *cmac_key_sg = NULL;
|
|
unsigned int block_size =
|
|
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
|
|
unsigned int need_pad, sg_count;
|
|
gfp_t gfp;
|
|
u64 len;
|
|
int ret;
|
|
|
|
if (!ctx->u.aes.key_len)
|
|
return -EINVAL;
|
|
|
|
if (nbytes)
|
|
rctx->null_msg = 0;
|
|
|
|
len = (u64)rctx->buf_count + (u64)nbytes;
|
|
|
|
if (!final && (len <= block_size)) {
|
|
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
|
|
0, nbytes, 0);
|
|
rctx->buf_count += nbytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
rctx->src = req->src;
|
|
rctx->nbytes = nbytes;
|
|
|
|
rctx->final = final;
|
|
rctx->hash_rem = final ? 0 : len & (block_size - 1);
|
|
rctx->hash_cnt = len - rctx->hash_rem;
|
|
if (!final && !rctx->hash_rem) {
|
|
/* CCP can't do zero length final, so keep some data around */
|
|
rctx->hash_cnt -= block_size;
|
|
rctx->hash_rem = block_size;
|
|
}
|
|
|
|
if (final && (rctx->null_msg || (len & (block_size - 1))))
|
|
need_pad = 1;
|
|
else
|
|
need_pad = 0;
|
|
|
|
sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
|
|
|
|
/* Build the data scatterlist table - allocate enough entries for all
|
|
* possible data pieces (buffer, input data, padding)
|
|
*/
|
|
sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
|
|
gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
|
GFP_KERNEL : GFP_ATOMIC;
|
|
ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sg = NULL;
|
|
if (rctx->buf_count) {
|
|
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
|
|
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
|
|
if (!sg) {
|
|
ret = -EINVAL;
|
|
goto e_free;
|
|
}
|
|
}
|
|
|
|
if (nbytes) {
|
|
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
|
|
if (!sg) {
|
|
ret = -EINVAL;
|
|
goto e_free;
|
|
}
|
|
}
|
|
|
|
if (need_pad) {
|
|
int pad_length = block_size - (len & (block_size - 1));
|
|
|
|
rctx->hash_cnt += pad_length;
|
|
|
|
memset(rctx->pad, 0, sizeof(rctx->pad));
|
|
rctx->pad[0] = 0x80;
|
|
sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
|
|
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
|
|
if (!sg) {
|
|
ret = -EINVAL;
|
|
goto e_free;
|
|
}
|
|
}
|
|
if (sg) {
|
|
sg_mark_end(sg);
|
|
sg = rctx->data_sg.sgl;
|
|
}
|
|
|
|
/* Initialize the K1/K2 scatterlist */
|
|
if (final)
|
|
cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
|
|
: &ctx->u.aes.k1_sg;
|
|
|
|
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
|
|
INIT_LIST_HEAD(&rctx->cmd.entry);
|
|
rctx->cmd.engine = CCP_ENGINE_AES;
|
|
rctx->cmd.u.aes.type = ctx->u.aes.type;
|
|
rctx->cmd.u.aes.mode = ctx->u.aes.mode;
|
|
rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
|
|
rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
|
|
rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
|
|
rctx->cmd.u.aes.iv = &rctx->iv_sg;
|
|
rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
|
|
rctx->cmd.u.aes.src = sg;
|
|
rctx->cmd.u.aes.src_len = rctx->hash_cnt;
|
|
rctx->cmd.u.aes.dst = NULL;
|
|
rctx->cmd.u.aes.cmac_key = cmac_key_sg;
|
|
rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
|
|
rctx->cmd.u.aes.cmac_final = final;
|
|
|
|
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
|
|
|
|
return ret;
|
|
|
|
e_free:
|
|
sg_free_table(&rctx->data_sg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_aes_cmac_init(struct ahash_request *req)
|
|
{
|
|
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
|
|
|
memset(rctx, 0, sizeof(*rctx));
|
|
|
|
rctx->null_msg = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ccp_aes_cmac_update(struct ahash_request *req)
|
|
{
|
|
return ccp_do_cmac_update(req, req->nbytes, 0);
|
|
}
|
|
|
|
static int ccp_aes_cmac_final(struct ahash_request *req)
|
|
{
|
|
return ccp_do_cmac_update(req, 0, 1);
|
|
}
|
|
|
|
static int ccp_aes_cmac_finup(struct ahash_request *req)
|
|
{
|
|
return ccp_do_cmac_update(req, req->nbytes, 1);
|
|
}
|
|
|
|
static int ccp_aes_cmac_digest(struct ahash_request *req)
|
|
{
|
|
int ret;
|
|
|
|
ret = ccp_aes_cmac_init(req);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return ccp_aes_cmac_finup(req);
|
|
}
|
|
|
|
static int ccp_aes_cmac_export(struct ahash_request *req, void *out)
|
|
{
|
|
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct ccp_aes_cmac_exp_ctx state;
|
|
|
|
/* Don't let anything leak to 'out' */
|
|
memset(&state, 0, sizeof(state));
|
|
|
|
state.null_msg = rctx->null_msg;
|
|
memcpy(state.iv, rctx->iv, sizeof(state.iv));
|
|
state.buf_count = rctx->buf_count;
|
|
memcpy(state.buf, rctx->buf, sizeof(state.buf));
|
|
|
|
/* 'out' may not be aligned so memcpy from local variable */
|
|
memcpy(out, &state, sizeof(state));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ccp_aes_cmac_import(struct ahash_request *req, const void *in)
|
|
{
|
|
struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx(req);
|
|
struct ccp_aes_cmac_exp_ctx state;
|
|
|
|
/* 'in' may not be aligned so memcpy to local variable */
|
|
memcpy(&state, in, sizeof(state));
|
|
|
|
memset(rctx, 0, sizeof(*rctx));
|
|
rctx->null_msg = state.null_msg;
|
|
memcpy(rctx->iv, state.iv, sizeof(rctx->iv));
|
|
rctx->buf_count = state.buf_count;
|
|
memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
|
|
unsigned int key_len)
|
|
{
|
|
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
|
|
struct ccp_crypto_ahash_alg *alg =
|
|
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
|
|
u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
|
|
u64 rb_hi = 0x00, rb_lo = 0x87;
|
|
struct crypto_aes_ctx aes;
|
|
__be64 *gk;
|
|
int ret;
|
|
|
|
switch (key_len) {
|
|
case AES_KEYSIZE_128:
|
|
ctx->u.aes.type = CCP_AES_TYPE_128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
ctx->u.aes.type = CCP_AES_TYPE_192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
ctx->u.aes.type = CCP_AES_TYPE_256;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
ctx->u.aes.mode = alg->mode;
|
|
|
|
/* Set to zero until complete */
|
|
ctx->u.aes.key_len = 0;
|
|
|
|
/* Set the key for the AES cipher used to generate the keys */
|
|
ret = aes_expandkey(&aes, key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Encrypt a block of zeroes - use key area in context */
|
|
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
|
|
aes_encrypt(&aes, ctx->u.aes.key, ctx->u.aes.key);
|
|
memzero_explicit(&aes, sizeof(aes));
|
|
|
|
/* Generate K1 and K2 */
|
|
k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
|
|
k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
|
|
|
|
k1_hi = (k0_hi << 1) | (k0_lo >> 63);
|
|
k1_lo = k0_lo << 1;
|
|
if (ctx->u.aes.key[0] & 0x80) {
|
|
k1_hi ^= rb_hi;
|
|
k1_lo ^= rb_lo;
|
|
}
|
|
gk = (__be64 *)ctx->u.aes.k1;
|
|
*gk = cpu_to_be64(k1_hi);
|
|
gk++;
|
|
*gk = cpu_to_be64(k1_lo);
|
|
|
|
k2_hi = (k1_hi << 1) | (k1_lo >> 63);
|
|
k2_lo = k1_lo << 1;
|
|
if (ctx->u.aes.k1[0] & 0x80) {
|
|
k2_hi ^= rb_hi;
|
|
k2_lo ^= rb_lo;
|
|
}
|
|
gk = (__be64 *)ctx->u.aes.k2;
|
|
*gk = cpu_to_be64(k2_hi);
|
|
gk++;
|
|
*gk = cpu_to_be64(k2_lo);
|
|
|
|
ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
|
|
sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
|
|
sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
|
|
|
|
/* Save the supplied key */
|
|
memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
|
|
memcpy(ctx->u.aes.key, key, key_len);
|
|
ctx->u.aes.key_len = key_len;
|
|
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
|
|
|
|
ctx->complete = ccp_aes_cmac_complete;
|
|
ctx->u.aes.key_len = 0;
|
|
|
|
crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_aes_cmac_req_ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ccp_register_aes_cmac_algs(struct list_head *head)
|
|
{
|
|
struct ccp_crypto_ahash_alg *ccp_alg;
|
|
struct ahash_alg *alg;
|
|
struct hash_alg_common *halg;
|
|
struct crypto_alg *base;
|
|
int ret;
|
|
|
|
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
|
|
if (!ccp_alg)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&ccp_alg->entry);
|
|
ccp_alg->mode = CCP_AES_MODE_CMAC;
|
|
|
|
alg = &ccp_alg->alg;
|
|
alg->init = ccp_aes_cmac_init;
|
|
alg->update = ccp_aes_cmac_update;
|
|
alg->final = ccp_aes_cmac_final;
|
|
alg->finup = ccp_aes_cmac_finup;
|
|
alg->digest = ccp_aes_cmac_digest;
|
|
alg->export = ccp_aes_cmac_export;
|
|
alg->import = ccp_aes_cmac_import;
|
|
alg->setkey = ccp_aes_cmac_setkey;
|
|
|
|
halg = &alg->halg;
|
|
halg->digestsize = AES_BLOCK_SIZE;
|
|
halg->statesize = sizeof(struct ccp_aes_cmac_exp_ctx);
|
|
|
|
base = &halg->base;
|
|
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
|
|
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
|
|
base->cra_flags = CRYPTO_ALG_ASYNC |
|
|
CRYPTO_ALG_KERN_DRIVER_ONLY |
|
|
CRYPTO_ALG_NEED_FALLBACK;
|
|
base->cra_blocksize = AES_BLOCK_SIZE;
|
|
base->cra_ctxsize = sizeof(struct ccp_ctx);
|
|
base->cra_priority = CCP_CRA_PRIORITY;
|
|
base->cra_init = ccp_aes_cmac_cra_init;
|
|
base->cra_module = THIS_MODULE;
|
|
|
|
ret = crypto_register_ahash(alg);
|
|
if (ret) {
|
|
pr_err("%s ahash algorithm registration error (%d)\n",
|
|
base->cra_name, ret);
|
|
kfree(ccp_alg);
|
|
return ret;
|
|
}
|
|
|
|
list_add(&ccp_alg->entry, head);
|
|
|
|
return 0;
|
|
}
|