linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_display.c
Gajanan Bhat 12a3c05511 drm/i915: program drain latency regs on ValleyView
This patch adds support for programming drain latency registers of Pondicherry
memory arbiter of Valleyview.

v2: clarify function names (Daniel)
    fix summary typo (Daniel)
v3: add parens (Ben)
    make drain function return bool (Ben)

Acked-by: Ben Widawsky <ben@bwidawsk.net>
Signed-off-by: Gajanan Bhat <gajanan.bhat@intel.com>
Reviewed-by: Shobhit Kumar <shobhit.kumar@intel.com>
Reviewed-by: Vijay Purushothaman <vijay.a.purushothaman@intel.com>
Reviewed-by: Jesse Barnes <jesse.barnes@intel.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-03-28 23:55:36 +02:00

9730 lines
263 KiB
C

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <drm/drm_edid.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "drm_dp_helper.h"
#include "drm_crtc_helper.h"
#include <linux/dma_remapping.h>
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
static void intel_update_watermarks(struct drm_device *dev);
static void intel_increase_pllclock(struct drm_crtc *crtc);
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
int, int, intel_clock_t *, intel_clock_t *);
};
/* FDI */
#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
if (IS_GEN5(dev)) {
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
} else
return 27;
}
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 930000, .max = 1400000 },
.n = { .min = 3, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 2 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 930000, .max = 1400000 },
.n = { .min = 3, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 1, .max = 6 },
.p2 = { .dot_limit = 165000,
.p2_slow = 14, .p2_fast = 7 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 10, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 10, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 7, .max = 98 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 7 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 1, .max = 3},
.p2 = { .dot_limit = 270000,
.p2_slow = 10,
.p2_fast = 10
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = 22000, .max = 400000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 16, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8},
.p2 = { .dot_limit = 165000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = 20000, .max = 115000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 0,
.p2_slow = 14, .p2_fast = 14
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = 80000, .max = 224000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 0,
.p2_slow = 7, .p2_fast = 7
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_display_port = {
.dot = { .min = 161670, .max = 227000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 2 },
.m = { .min = 97, .max = 108 },
.m1 = { .min = 0x10, .max = 0x12 },
.m2 = { .min = 0x05, .max = 0x06 },
.p = { .min = 10, .max = 20 },
.p1 = { .min = 1, .max = 2},
.p2 = { .dot_limit = 0,
.p2_slow = 10, .p2_fast = 10 },
.find_pll = intel_find_pll_g4x_dp,
};
static const intel_limit_t intel_limits_pineview_sdvo = {
.dot = { .min = 20000, .max = 400000},
.vco = { .min = 1700000, .max = 3500000 },
/* Pineview's Ncounter is a ring counter */
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
/* Pineview only has one combined m divider, which we treat as m2. */
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_pineview_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1700000, .max = 3500000 },
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 7, .max = 112 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_find_best_PLL,
};
/* Ironlake / Sandybridge
*
* We calculate clock using (register_value + 2) for N/M1/M2, so here
* the range value for them is (actual_value - 2).
*/
static const intel_limit_t intel_limits_ironlake_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 5 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_single_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 118 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 56 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
.find_pll = intel_g4x_find_best_PLL,
};
/* LVDS 100mhz refclk limits. */
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 2 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_display_port = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000},
.n = { .min = 1, .max = 2 },
.m = { .min = 81, .max = 90 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 10, .max = 20 },
.p1 = { .min = 1, .max = 2},
.p2 = { .dot_limit = 0,
.p2_slow = 10, .p2_fast = 10 },
.find_pll = intel_find_pll_ironlake_dp,
};
u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
{
unsigned long flags;
u32 val = 0;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO read wait timed out\n");
goto out_unlock;
}
val = I915_READ(DPIO_DATA);
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
return val;
}
static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
u32 val)
{
unsigned long flags;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
I915_WRITE(DPIO_DATA, val);
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
DRM_ERROR("DPIO write wait timed out\n");
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
}
static void vlv_init_dpio(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Reset the DPIO config */
I915_WRITE(DPIO_CTL, 0);
POSTING_READ(DPIO_CTL);
I915_WRITE(DPIO_CTL, 1);
POSTING_READ(DPIO_CTL);
}
static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
unsigned int reg)
{
unsigned int val;
/* use the module option value if specified */
if (i915_lvds_channel_mode > 0)
return i915_lvds_channel_mode == 2;
if (dev_priv->lvds_val)
val = dev_priv->lvds_val;
else {
/* BIOS should set the proper LVDS register value at boot, but
* in reality, it doesn't set the value when the lid is closed;
* we need to check "the value to be set" in VBT when LVDS
* register is uninitialized.
*/
val = I915_READ(reg);
if (!(val & ~LVDS_DETECTED))
val = dev_priv->bios_lvds_val;
dev_priv->lvds_val = val;
}
return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
}
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
int refclk)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
/* LVDS dual channel */
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100000)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
HAS_eDP)
limit = &intel_limits_ironlake_display_port;
else
limit = &intel_limits_ironlake_dac;
return limit;
}
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (is_dual_link_lvds(dev_priv, LVDS))
/* LVDS with dual channel */
limit = &intel_limits_g4x_dual_channel_lvds;
else
/* LVDS with dual channel */
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
limit = &intel_limits_g4x_display_port;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
{
struct drm_device *dev = crtc->dev;
const intel_limit_t *limit;
if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc, refclk);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else if (!IS_GEN2(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else
limit = &intel_limits_i8xx_dvo;
}
return limit;
}
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / clock->n;
clock->dot = clock->vco / clock->p;
}
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
if (IS_PINEVIEW(dev)) {
pineview_clock(refclk, clock);
return;
}
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
if (encoder->base.crtc == crtc && encoder->type == type)
return true;
return false;
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_device *dev,
const intel_limit_t *limit,
const intel_clock_t *clock)
{
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid("m1 out of range\n");
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
INTELPllInvalid("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid("dot out of range\n");
return true;
}
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int err = target;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(I915_READ(LVDS)) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if (is_dual_link_lvds(dev_priv, LVDS))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
/* m1 is always 0 in Pineview */
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
int lvds_reg;
if (HAS_PCH_SPLIT(dev))
lvds_reg = PCH_LVDS;
else
lvds_reg = LVDS;
if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
intel_clock_t clock;
if (target < 200000) {
clock.n = 1;
clock.p1 = 2;
clock.p2 = 10;
clock.m1 = 12;
clock.m2 = 9;
} else {
clock.n = 2;
clock.p1 = 1;
clock.p2 = 10;
clock.m1 = 14;
clock.m2 = 8;
}
intel_clock(dev, refclk, &clock);
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 2;
clock.m1 = 23;
clock.m2 = 8;
} else {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 1;
clock.m1 = 14;
clock.m2 = 2;
}
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
clock.p = (clock.p1 * clock.p2);
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
clock.vco = 0;
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
/**
* intel_wait_for_vblank - wait for vblank on a given pipe
* @dev: drm device
* @pipe: pipe to wait for
*
* Wait for vblank to occur on a given pipe. Needed for various bits of
* mode setting code.
*/
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipestat_reg = PIPESTAT(pipe);
/* Clear existing vblank status. Note this will clear any other
* sticky status fields as well.
*
* This races with i915_driver_irq_handler() with the result
* that either function could miss a vblank event. Here it is not
* fatal, as we will either wait upon the next vblank interrupt or
* timeout. Generally speaking intel_wait_for_vblank() is only
* called during modeset at which time the GPU should be idle and
* should *not* be performing page flips and thus not waiting on
* vblanks...
* Currently, the result of us stealing a vblank from the irq
* handler is that a single frame will be skipped during swapbuffers.
*/
I915_WRITE(pipestat_reg,
I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
/* Wait for vblank interrupt bit to set */
if (wait_for(I915_READ(pipestat_reg) &
PIPE_VBLANK_INTERRUPT_STATUS,
50))
DRM_DEBUG_KMS("vblank wait timed out\n");
}
/*
* intel_wait_for_pipe_off - wait for pipe to turn off
* @dev: drm device
* @pipe: pipe to wait for
*
* After disabling a pipe, we can't wait for vblank in the usual way,
* spinning on the vblank interrupt status bit, since we won't actually
* see an interrupt when the pipe is disabled.
*
* On Gen4 and above:
* wait for the pipe register state bit to turn off
*
* Otherwise:
* wait for the display line value to settle (it usually
* ends up stopping at the start of the next frame).
*
*/
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen >= 4) {
int reg = PIPECONF(pipe);
/* Wait for the Pipe State to go off */
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
100))
DRM_DEBUG_KMS("pipe_off wait timed out\n");
} else {
u32 last_line;
int reg = PIPEDSL(pipe);
unsigned long timeout = jiffies + msecs_to_jiffies(100);
/* Wait for the display line to settle */
do {
last_line = I915_READ(reg) & DSL_LINEMASK;
mdelay(5);
} while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
time_after(timeout, jiffies));
if (time_after(jiffies, timeout))
DRM_DEBUG_KMS("pipe_off wait timed out\n");
}
}
static const char *state_string(bool enabled)
{
return enabled ? "on" : "off";
}
/* Only for pre-ILK configs */
static void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DPLL(pipe);
val = I915_READ(reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
/* For ILK+ */
static void assert_pch_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
if (HAS_PCH_CPT(dev_priv->dev)) {
u32 pch_dpll;
pch_dpll = I915_READ(PCH_DPLL_SEL);
/* Make sure the selected PLL is enabled to the transcoder */
WARN(!((pch_dpll >> (4 * pipe)) & 8),
"transcoder %d PLL not enabled\n", pipe);
/* Convert the transcoder pipe number to a pll pipe number */
pipe = (pch_dpll >> (4 * pipe)) & 1;
}
reg = PCH_DPLL(pipe);
val = I915_READ(reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PCH PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_TX_ENABLE);
WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_ENABLE);
WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* ILK FDI PLL is always enabled */
if (dev_priv->info->gen == 5)
return;
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
}
static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
}
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int pp_reg, lvds_reg;
u32 val;
enum pipe panel_pipe = PIPE_A;
bool locked = true;
if (HAS_PCH_SPLIT(dev_priv->dev)) {
pp_reg = PCH_PP_CONTROL;
lvds_reg = PCH_LVDS;
} else {
pp_reg = PP_CONTROL;
lvds_reg = LVDS;
}
val = I915_READ(pp_reg);
if (!(val & PANEL_POWER_ON) ||
((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
locked = false;
if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
panel_pipe = PIPE_B;
WARN(panel_pipe == pipe && locked,
"panel assertion failure, pipe %c regs locked\n",
pipe_name(pipe));
}
void assert_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
/* if we need the pipe A quirk it must be always on */
if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
state = true;
reg = PIPECONF(pipe);
val = I915_READ(reg);
cur_state = !!(val & PIPECONF_ENABLE);
WARN(cur_state != state,
"pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
static void assert_plane(struct drm_i915_private *dev_priv,
enum plane plane, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DSPCNTR(plane);
val = I915_READ(reg);
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
WARN(cur_state != state,
"plane %c assertion failure (expected %s, current %s)\n",
plane_name(plane), state_string(state), state_string(cur_state));
}
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg, i;
u32 val;
int cur_pipe;
/* Planes are fixed to pipes on ILK+ */
if (HAS_PCH_SPLIT(dev_priv->dev)) {
reg = DSPCNTR(pipe);
val = I915_READ(reg);
WARN((val & DISPLAY_PLANE_ENABLE),
"plane %c assertion failure, should be disabled but not\n",
plane_name(pipe));
return;
}
/* Need to check both planes against the pipe */
for (i = 0; i < 2; i++) {
reg = DSPCNTR(i);
val = I915_READ(reg);
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
DISPPLANE_SEL_PIPE_SHIFT;
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
"plane %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(i), pipe_name(pipe));
}
}
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
bool enabled;
reg = TRANSCONF(pipe);
val = I915_READ(reg);
enabled = !!(val & TRANS_ENABLE);
WARN(enabled,
"transcoder assertion failed, should be off on pipe %c but is still active\n",
pipe_name(pipe));
}
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 port_sel, u32 val)
{
if ((val & DP_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
return false;
} else {
if ((val & DP_PIPE_MASK) != (pipe << 30))
return false;
}
return true;
}
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & PORT_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
return false;
}
return true;
}
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & LVDS_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
return false;
}
return true;
}
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & ADPA_DAC_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
return false;
}
return true;
}
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
}
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
}
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
WARN(adpa_pipe_enabled(dev_priv, val, pipe),
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
reg = PCH_LVDS;
val = I915_READ(reg);
WARN(lvds_pipe_enabled(dev_priv, val, pipe),
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
}
/**
* intel_enable_pll - enable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
* make sure the PLL reg is writable first though, since the panel write
* protect mechanism may be enabled.
*
* Note! This is for pre-ILK only.
*/
static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
int reg;
u32 val;
/* No really, not for ILK+ */
BUG_ON(dev_priv->info->gen >= 5);
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
assert_panel_unlocked(dev_priv, pipe);
reg = DPLL(pipe);
val = I915_READ(reg);
val |= DPLL_VCO_ENABLE;
/* We do this three times for luck */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
/**
* intel_disable_pll - disable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe, making sure the pipe is off first.
*
* Note! This is for pre-ILK only.
*/
static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
int reg;
u32 val;
/* Don't disable pipe A or pipe A PLLs if needed */
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
return;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
reg = DPLL(pipe);
val = I915_READ(reg);
val &= ~DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
/**
* intel_enable_pch_pll - enable PCH PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* The PCH PLL needs to be enabled before the PCH transcoder, since it
* drives the transcoder clock.
*/
static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
if (pipe > 1)
return;
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
/* PCH refclock must be enabled first */
assert_pch_refclk_enabled(dev_priv);
reg = PCH_DPLL(pipe);
val = I915_READ(reg);
val |= DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
}
static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
pll_sel = TRANSC_DPLL_ENABLE;
if (pipe > 1)
return;
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
/* Make sure transcoder isn't still depending on us */
assert_transcoder_disabled(dev_priv, pipe);
if (pipe == 0)
pll_sel |= TRANSC_DPLLA_SEL;
else if (pipe == 1)
pll_sel |= TRANSC_DPLLB_SEL;
if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
return;
reg = PCH_DPLL(pipe);
val = I915_READ(reg);
val &= ~DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
}
static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val, pipeconf_val;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
/* Make sure PCH DPLL is enabled */
assert_pch_pll_enabled(dev_priv, pipe);
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, pipe);
assert_fdi_rx_enabled(dev_priv, pipe);
reg = TRANSCONF(pipe);
val = I915_READ(reg);
pipeconf_val = I915_READ(PIPECONF(pipe));
if (HAS_PCH_IBX(dev_priv->dev)) {
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
*/
val &= ~PIPE_BPC_MASK;
val |= pipeconf_val & PIPE_BPC_MASK;
}
val &= ~TRANS_INTERLACE_MASK;
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
if (HAS_PCH_IBX(dev_priv->dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
val |= TRANS_LEGACY_INTERLACED_ILK;
else
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(reg, val | TRANS_ENABLE);
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("failed to enable transcoder %d\n", pipe);
}
static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* FDI relies on the transcoder */
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
/* Ports must be off as well */
assert_pch_ports_disabled(dev_priv, pipe);
reg = TRANSCONF(pipe);
val = I915_READ(reg);
val &= ~TRANS_ENABLE;
I915_WRITE(reg, val);
/* wait for PCH transcoder off, transcoder state */
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
DRM_ERROR("failed to disable transcoder %d\n", pipe);
}
/**
* intel_enable_pipe - enable a pipe, asserting requirements
* @dev_priv: i915 private structure
* @pipe: pipe to enable
* @pch_port: on ILK+, is this pipe driving a PCH port or not
*
* Enable @pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
*
* @pipe should be %PIPE_A or %PIPE_B.
*
* Will wait until the pipe is actually running (i.e. first vblank) before
* returning.
*/
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
bool pch_port)
{
int reg;
u32 val;
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (!HAS_PCH_SPLIT(dev_priv->dev))
assert_pll_enabled(dev_priv, pipe);
else {
if (pch_port) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv, pipe);
assert_fdi_tx_pll_enabled(dev_priv, pipe);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
reg = PIPECONF(pipe);
val = I915_READ(reg);
if (val & PIPECONF_ENABLE)
return;
I915_WRITE(reg, val | PIPECONF_ENABLE);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
/**
* intel_disable_pipe - disable a pipe, asserting requirements
* @dev_priv: i915 private structure
* @pipe: pipe to disable
*
* Disable @pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. plane disabled, panel fitter off, etc.
*
* @pipe should be %PIPE_A or %PIPE_B.
*
* Will wait until the pipe has shut down before returning.
*/
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(dev_priv, pipe);
/* Don't disable pipe A or pipe A PLLs if needed */
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
return;
reg = PIPECONF(pipe);
val = I915_READ(reg);
if ((val & PIPECONF_ENABLE) == 0)
return;
I915_WRITE(reg, val & ~PIPECONF_ENABLE);
intel_wait_for_pipe_off(dev_priv->dev, pipe);
}
/*
* Plane regs are double buffered, going from enabled->disabled needs a
* trigger in order to latch. The display address reg provides this.
*/
static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
enum plane plane)
{
I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
}
/**
* intel_enable_plane - enable a display plane on a given pipe
* @dev_priv: i915 private structure
* @plane: plane to enable
* @pipe: pipe being fed
*
* Enable @plane on @pipe, making sure that @pipe is running first.
*/
static void intel_enable_plane(struct drm_i915_private *dev_priv,
enum plane plane, enum pipe pipe)
{
int reg;
u32 val;
/* If the pipe isn't enabled, we can't pump pixels and may hang */
assert_pipe_enabled(dev_priv, pipe);
reg = DSPCNTR(plane);
val = I915_READ(reg);
if (val & DISPLAY_PLANE_ENABLE)
return;
I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
intel_flush_display_plane(dev_priv, plane);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
/**
* intel_disable_plane - disable a display plane
* @dev_priv: i915 private structure
* @plane: plane to disable
* @pipe: pipe consuming the data
*
* Disable @plane; should be an independent operation.
*/
static void intel_disable_plane(struct drm_i915_private *dev_priv,
enum plane plane, enum pipe pipe)
{
int reg;
u32 val;
reg = DSPCNTR(plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) == 0)
return;
I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
intel_flush_display_plane(dev_priv, plane);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
static void disable_pch_dp(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
I915_WRITE(reg, val & ~DP_PORT_EN);
}
}
static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
reg, pipe);
I915_WRITE(reg, val & ~PORT_ENABLE);
}
}
/* Disable any ports connected to this transcoder */
static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 reg, val;
val = I915_READ(PCH_PP_CONTROL);
I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
if (adpa_pipe_enabled(dev_priv, val, pipe))
I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
reg = PCH_LVDS;
val = I915_READ(reg);
if (lvds_pipe_enabled(dev_priv, val, pipe)) {
DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
I915_WRITE(reg, val & ~LVDS_PORT_EN);
POSTING_READ(reg);
udelay(100);
}
disable_pch_hdmi(dev_priv, pipe, HDMIB);
disable_pch_hdmi(dev_priv, pipe, HDMIC);
disable_pch_hdmi(dev_priv, pipe, HDMID);
}
static void i8xx_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 fbc_ctl;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
DRM_DEBUG_KMS("disabled FBC\n");
}
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int cfb_pitch;
int plane, i;
u32 fbc_ctl, fbc_ctl2;
cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
if (fb->pitches[0] < cfb_pitch)
cfb_pitch = fb->pitches[0];
/* FBC_CTL wants 64B units */
cfb_pitch = (cfb_pitch / 64) - 1;
plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG + (i * 4), 0);
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= plane;
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, crtc->y);
/* enable it... */
fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= obj->fence_reg;
I915_WRITE(FBC_CONTROL, fbc_ctl);
DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
cfb_pitch, crtc->y, intel_crtc->plane);
}
static bool i8xx_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
/* enable it... */
I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
static void g4x_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
static bool g4x_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 blt_ecoskpd;
/* Make sure blitter notifies FBC of writes */
gen6_gt_force_wake_get(dev_priv);
blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT);
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
POSTING_READ(GEN6_BLITTER_ECOSKPD);
gen6_gt_force_wake_put(dev_priv);
}
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
dpfc_ctl &= DPFC_RESERVED;
dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
/* Set persistent mode for front-buffer rendering, ala X. */
dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_GEN6(dev)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
sandybridge_blit_fbc_update(dev);
}
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
static void ironlake_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("disabled FBC\n");
}
}
static bool ironlake_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
bool intel_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.fbc_enabled)
return false;
return dev_priv->display.fbc_enabled(dev);
}
static void intel_fbc_work_fn(struct work_struct *__work)
{
struct intel_fbc_work *work =
container_of(to_delayed_work(__work),
struct intel_fbc_work, work);
struct drm_device *dev = work->crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
if (work == dev_priv->fbc_work) {
/* Double check that we haven't switched fb without cancelling
* the prior work.
*/
if (work->crtc->fb == work->fb) {
dev_priv->display.enable_fbc(work->crtc,
work->interval);
dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
dev_priv->cfb_fb = work->crtc->fb->base.id;
dev_priv->cfb_y = work->crtc->y;
}
dev_priv->fbc_work = NULL;
}
mutex_unlock(&dev->struct_mutex);
kfree(work);
}
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
if (dev_priv->fbc_work == NULL)
return;
DRM_DEBUG_KMS("cancelling pending FBC enable\n");
/* Synchronisation is provided by struct_mutex and checking of
* dev_priv->fbc_work, so we can perform the cancellation
* entirely asynchronously.
*/
if (cancel_delayed_work(&dev_priv->fbc_work->work))
/* tasklet was killed before being run, clean up */
kfree(dev_priv->fbc_work);
/* Mark the work as no longer wanted so that if it does
* wake-up (because the work was already running and waiting
* for our mutex), it will discover that is no longer
* necessary to run.
*/
dev_priv->fbc_work = NULL;
}
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct intel_fbc_work *work;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!dev_priv->display.enable_fbc)
return;
intel_cancel_fbc_work(dev_priv);
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL) {
dev_priv->display.enable_fbc(crtc, interval);
return;
}
work->crtc = crtc;
work->fb = crtc->fb;
work->interval = interval;
INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
dev_priv->fbc_work = work;
DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* A more complicated solution would involve tracking vblanks
* following the termination of the page-flipping sequence
* and indeed performing the enable as a co-routine and not
* waiting synchronously upon the vblank.
*/
schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}
void intel_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
intel_cancel_fbc_work(dev_priv);
if (!dev_priv->display.disable_fbc)
return;
dev_priv->display.disable_fbc(dev);
dev_priv->cfb_plane = -1;
}
/**
* intel_update_fbc - enable/disable FBC as needed
* @dev: the drm_device
*
* Set up the framebuffer compression hardware at mode set time. We
* enable it if possible:
* - plane A only (on pre-965)
* - no pixel mulitply/line duplication
* - no alpha buffer discard
* - no dual wide
* - framebuffer <= 2048 in width, 1536 in height
*
* We can't assume that any compression will take place (worst case),
* so the compressed buffer has to be the same size as the uncompressed
* one. It also must reside (along with the line length buffer) in
* stolen memory.
*
* We need to enable/disable FBC on a global basis.
*/
static void intel_update_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = NULL, *tmp_crtc;
struct intel_crtc *intel_crtc;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int enable_fbc;
DRM_DEBUG_KMS("\n");
if (!i915_powersave)
return;
if (!I915_HAS_FBC(dev))
return;
/*
* If FBC is already on, we just have to verify that we can
* keep it that way...
* Need to disable if:
* - more than one pipe is active
* - changing FBC params (stride, fence, mode)
* - new fb is too large to fit in compressed buffer
* - going to an unsupported config (interlace, pixel multiply, etc.)
*/
list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
if (tmp_crtc->enabled && tmp_crtc->fb) {
if (crtc) {
DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
goto out_disable;
}
crtc = tmp_crtc;
}
}
if (!crtc || crtc->fb == NULL) {
DRM_DEBUG_KMS("no output, disabling\n");
dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
goto out_disable;
}
intel_crtc = to_intel_crtc(crtc);
fb = crtc->fb;
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
enable_fbc = i915_enable_fbc;
if (enable_fbc < 0) {
DRM_DEBUG_KMS("fbc set to per-chip default\n");
enable_fbc = 1;
if (INTEL_INFO(dev)->gen <= 6)
enable_fbc = 0;
}
if (!enable_fbc) {
DRM_DEBUG_KMS("fbc disabled per module param\n");
dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
goto out_disable;
}
if (intel_fb->obj->base.size > dev_priv->cfb_size) {
DRM_DEBUG_KMS("framebuffer too large, disabling "
"compression\n");
dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
goto out_disable;
}
if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
(crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
DRM_DEBUG_KMS("mode incompatible with compression, "
"disabling\n");
dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
goto out_disable;
}
if ((crtc->mode.hdisplay > 2048) ||
(crtc->mode.vdisplay > 1536)) {
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
goto out_disable;
}
if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
DRM_DEBUG_KMS("plane not 0, disabling compression\n");
dev_priv->no_fbc_reason = FBC_BAD_PLANE;
goto out_disable;
}
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*/
if (obj->tiling_mode != I915_TILING_X ||
obj->fence_reg == I915_FENCE_REG_NONE) {
DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
dev_priv->no_fbc_reason = FBC_NOT_TILED;
goto out_disable;
}
/* If the kernel debugger is active, always disable compression */
if (in_dbg_master())
goto out_disable;
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (dev_priv->cfb_plane == intel_crtc->plane &&
dev_priv->cfb_fb == fb->base.id &&
dev_priv->cfb_y == crtc->y)
return;
if (intel_fbc_enabled(dev)) {
/* We update FBC along two paths, after changing fb/crtc
* configuration (modeswitching) and after page-flipping
* finishes. For the latter, we know that not only did
* we disable the FBC at the start of the page-flip
* sequence, but also more than one vblank has passed.
*
* For the former case of modeswitching, it is possible
* to switch between two FBC valid configurations
* instantaneously so we do need to disable the FBC
* before we can modify its control registers. We also
* have to wait for the next vblank for that to take
* effect. However, since we delay enabling FBC we can
* assume that a vblank has passed since disabling and
* that we can safely alter the registers in the deferred
* callback.
*
* In the scenario that we go from a valid to invalid
* and then back to valid FBC configuration we have
* no strict enforcement that a vblank occurred since
* disabling the FBC. However, along all current pipe
* disabling paths we do need to wait for a vblank at
* some point. And we wait before enabling FBC anyway.
*/
DRM_DEBUG_KMS("disabling active FBC for update\n");
intel_disable_fbc(dev);
}
intel_enable_fbc(crtc, 500);
return;
out_disable:
/* Multiple disables should be harmless */
if (intel_fbc_enabled(dev)) {
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
intel_disable_fbc(dev);
}
}
int
intel_pin_and_fence_fb_obj(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 alignment;
int ret;
switch (obj->tiling_mode) {
case I915_TILING_NONE:
if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
alignment = 128 * 1024;
else if (INTEL_INFO(dev)->gen >= 4)
alignment = 4 * 1024;
else
alignment = 64 * 1024;
break;
case I915_TILING_X:
/* pin() will align the object as required by fence */
alignment = 0;
break;
case I915_TILING_Y:
/* FIXME: Is this true? */
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
return -EINVAL;
default:
BUG();
}
dev_priv->mm.interruptible = false;
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
if (ret)
goto err_interruptible;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
if (obj->tiling_mode != I915_TILING_NONE) {
ret = i915_gem_object_get_fence(obj, pipelined);
if (ret)
goto err_unpin;
i915_gem_object_pin_fence(obj);
}
dev_priv->mm.interruptible = true;
return 0;
err_unpin:
i915_gem_object_unpin(obj);
err_interruptible:
dev_priv->mm.interruptible = true;
return ret;
}
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
{
i915_gem_object_unpin_fence(obj);
i915_gem_object_unpin(obj);
}
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long Start, Offset;
u32 dspcntr;
u32 reg;
switch (plane) {
case 0:
case 1:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
reg = DSPCNTR(plane);
dspcntr = I915_READ(reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
return -EINVAL;
}
if (INTEL_INFO(dev)->gen >= 4) {
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
}
I915_WRITE(reg, dspcntr);
Start = obj->gtt_offset;
Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
Start, Offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DSPSURF(plane), Start);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPADDR(plane), Offset);
} else
I915_WRITE(DSPADDR(plane), Start + Offset);
POSTING_READ(reg);
return 0;
}
static int ironlake_update_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long Start, Offset;
u32 dspcntr;
u32 reg;
switch (plane) {
case 0:
case 1:
case 2:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
reg = DSPCNTR(plane);
dspcntr = I915_READ(reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->depth != 16)
return -EINVAL;
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
if (fb->depth == 24)
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
else if (fb->depth == 30)
dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
return -EINVAL;
}
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
/* must disable */
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
I915_WRITE(reg, dspcntr);
Start = obj->gtt_offset;
Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
Start, Offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
I915_WRITE(DSPSURF(plane), Start);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPADDR(plane), Offset);
POSTING_READ(reg);
return 0;
}
/* Assume fb object is pinned & idle & fenced and just update base pointers */
static int
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = dev_priv->display.update_plane(crtc, fb, x, y);
if (ret)
return ret;
intel_update_fbc(dev);
intel_increase_pllclock(crtc);
return 0;
}
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int ret;
/* no fb bound */
if (!crtc->fb) {
DRM_ERROR("No FB bound\n");
return 0;
}
switch (intel_crtc->plane) {
case 0:
case 1:
break;
case 2:
if (IS_IVYBRIDGE(dev))
break;
/* fall through otherwise */
default:
DRM_ERROR("no plane for crtc\n");
return -EINVAL;
}
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev,
to_intel_framebuffer(crtc->fb)->obj,
NULL);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
DRM_ERROR("pin & fence failed\n");
return ret;
}
if (old_fb) {
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
wait_event(dev_priv->pending_flip_queue,
atomic_read(&dev_priv->mm.wedged) ||
atomic_read(&obj->pending_flip) == 0);
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
ret = i915_gem_object_finish_gpu(obj);
(void) ret;
}
ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
LEAVE_ATOMIC_MODE_SET);
if (ret) {
intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
mutex_unlock(&dev->struct_mutex);
DRM_ERROR("failed to update base address\n");
return ret;
}
if (old_fb) {
intel_wait_for_vblank(dev, intel_crtc->pipe);
intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
}
mutex_unlock(&dev->struct_mutex);
if (!dev->primary->master)
return 0;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return 0;
if (intel_crtc->pipe) {
master_priv->sarea_priv->pipeB_x = x;
master_priv->sarea_priv->pipeB_y = y;
} else {
master_priv->sarea_priv->pipeA_x = x;
master_priv->sarea_priv->pipeA_y = y;
}
return 0;
}
static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_FREQ_MASK;
if (clock < 200000) {
u32 temp;
dpa_ctl |= DP_PLL_FREQ_160MHZ;
/* workaround for 160Mhz:
1) program 0x4600c bits 15:0 = 0x8124
2) program 0x46010 bit 0 = 1
3) program 0x46034 bit 24 = 1
4) program 0x64000 bit 14 = 1
*/
temp = I915_READ(0x4600c);
temp &= 0xffff0000;
I915_WRITE(0x4600c, temp | 0x8124);
temp = I915_READ(0x46010);
I915_WRITE(0x46010, temp | 1);
temp = I915_READ(0x46034);
I915_WRITE(0x46034, temp | (1 << 24));
} else {
dpa_ctl |= DP_PLL_FREQ_270MHZ;
}
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(500);
}
static void intel_fdi_normal_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* enable normal train */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if (IS_IVYBRIDGE(dev)) {
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
/* wait one idle pattern time */
POSTING_READ(reg);
udelay(1000);
/* IVB wants error correction enabled */
if (IS_IVYBRIDGE(dev))
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
FDI_FE_ERRC_ENABLE);
}
static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 flags = I915_READ(SOUTH_CHICKEN1);
flags |= FDI_PHASE_SYNC_OVR(pipe);
I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
flags |= FDI_PHASE_SYNC_EN(pipe);
I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
POSTING_READ(SOUTH_CHICKEN1);
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 reg, temp, tries;
/* FDI needs bits from pipe & plane first */
assert_pipe_enabled(dev_priv, pipe);
assert_plane_enabled(dev_priv, plane);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
I915_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
/* Ironlake workaround, enable clock pointer after FDI enable*/
if (HAS_PCH_IBX(dev)) {
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
FDI_RX_PHASE_SYNC_POINTER_EN);
}
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
DRM_DEBUG_KMS("FDI train 1 done.\n");
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done\n");
}
static const int snb_b_fdi_train_param[] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i, retry;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
if (HAS_PCH_CPT(dev))
cpt_phase_pointer_enable(dev, pipe);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_GEN6(dev)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
/* Manual link training for Ivy Bridge A0 parts */
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_AUTO;
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
if (HAS_PCH_CPT(dev))
cpt_phase_pointer_enable(dev, pipe);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK ||
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* Write the TU size bits so error detection works */
I915_WRITE(FDI_RX_TUSIZE1(pipe),
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~((0x7 << 19) | (0x7 << 16));
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
POSTING_READ(reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
temp = I915_READ(reg);
I915_WRITE(reg, temp | FDI_PCDCLK);
POSTING_READ(reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
}
}
static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 flags = I915_READ(SOUTH_CHICKEN1);
flags &= ~(FDI_PHASE_SYNC_EN(pipe));
I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
POSTING_READ(SOUTH_CHICKEN1);
}
static void ironlake_fdi_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* disable CPU FDI tx and PCH FDI rx */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
POSTING_READ(reg);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(0x7 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(100);
/* Ironlake workaround, disable clock pointer after downing FDI */
if (HAS_PCH_IBX(dev)) {
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe),
I915_READ(FDI_RX_CHICKEN(pipe) &
~FDI_RX_PHASE_SYNC_POINTER_EN));
} else if (HAS_PCH_CPT(dev)) {
cpt_phase_pointer_disable(dev, pipe);
}
/* still set train pattern 1 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
/* BPC in FDI rx is consistent with that in PIPECONF */
temp &= ~(0x07 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(100);
}
/*
* When we disable a pipe, we need to clear any pending scanline wait events
* to avoid hanging the ring, which we assume we are waiting on.
*/
static void intel_clear_scanline_wait(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
u32 tmp;
if (IS_GEN2(dev))
/* Can't break the hang on i8xx */
return;
ring = LP_RING(dev_priv);
tmp = I915_READ_CTL(ring);
if (tmp & RING_WAIT)
I915_WRITE_CTL(ring, tmp);
}
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
{
struct drm_i915_gem_object *obj;
struct drm_i915_private *dev_priv;
if (crtc->fb == NULL)
return;
obj = to_intel_framebuffer(crtc->fb)->obj;
dev_priv = crtc->dev->dev_private;
wait_event(dev_priv->pending_flip_queue,
atomic_read(&obj->pending_flip) == 0);
}
static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
/*
* If there's a non-PCH eDP on this crtc, it must be DP_A, and that
* must be driven by its own crtc; no sharing is possible.
*/
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
switch (encoder->type) {
case INTEL_OUTPUT_EDP:
if (!intel_encoder_is_pch_edp(&encoder->base))
return false;
continue;
}
}
return true;
}
/*
* Enable PCH resources required for PCH ports:
* - PCH PLLs
* - FDI training & RX/TX
* - update transcoder timings
* - DP transcoding bits
* - transcoder
*/
static void ironlake_pch_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, transc_sel;
/* For PCH output, training FDI link */
dev_priv->display.fdi_link_train(crtc);
intel_enable_pch_pll(dev_priv, pipe);
if (HAS_PCH_CPT(dev)) {
transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
TRANSC_DPLLB_SEL;
/* Be sure PCH DPLL SEL is set */
temp = I915_READ(PCH_DPLL_SEL);
if (pipe == 0) {
temp &= ~(TRANSA_DPLLB_SEL);
temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
} else if (pipe == 1) {
temp &= ~(TRANSB_DPLLB_SEL);
temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
} else if (pipe == 2) {
temp &= ~(TRANSC_DPLLB_SEL);
temp |= (TRANSC_DPLL_ENABLE | transc_sel);
}
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* set transcoder timing, panel must allow it */
assert_panel_unlocked(dev_priv, pipe);
I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
intel_fdi_normal_train(crtc);
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev) &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_PORT_SEL_MASK |
TRANS_DP_SYNC_MASK |
TRANS_DP_BPC_MASK);
temp |= (TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_ENH_FRAMING);
temp |= bpc << 9; /* same format but at 11:9 */
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
switch (intel_trans_dp_port_sel(crtc)) {
case PCH_DP_B:
temp |= TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
temp |= TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
temp |= TRANS_DP_PORT_SEL_D;
break;
default:
DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
temp |= TRANS_DP_PORT_SEL_B;
break;
}
I915_WRITE(reg, temp);
}
intel_enable_transcoder(dev_priv, pipe);
}
void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
u32 temp;
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
/* Without this, mode sets may fail silently on FDI */
I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
udelay(250);
I915_WRITE(tc2reg, 0);
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
}
}
static void ironlake_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 temp;
bool is_pch_port;
if (intel_crtc->active)
return;
intel_crtc->active = true;
intel_update_watermarks(dev);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(PCH_LVDS);
if ((temp & LVDS_PORT_EN) == 0)
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
}
is_pch_port = intel_crtc_driving_pch(crtc);
if (is_pch_port)
ironlake_fdi_pll_enable(crtc);
else
ironlake_fdi_disable(crtc);
/* Enable panel fitting for LVDS */
if (dev_priv->pch_pf_size &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
*/
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
}
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_crtc_load_lut(crtc);
intel_enable_pipe(dev_priv, pipe, is_pch_port);
intel_enable_plane(dev_priv, plane, pipe);
if (is_pch_port)
ironlake_pch_enable(crtc);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
intel_crtc_update_cursor(crtc, true);
}
static void ironlake_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 reg, temp;
if (!intel_crtc->active)
return;
intel_crtc_wait_for_pending_flips(crtc);
drm_vblank_off(dev, pipe);
intel_crtc_update_cursor(crtc, false);
intel_disable_plane(dev_priv, plane, pipe);
if (dev_priv->cfb_plane == plane)
intel_disable_fbc(dev);
intel_disable_pipe(dev_priv, pipe);
/* Disable PF */
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
ironlake_fdi_disable(crtc);
/* This is a horrible layering violation; we should be doing this in
* the connector/encoder ->prepare instead, but we don't always have
* enough information there about the config to know whether it will
* actually be necessary or just cause undesired flicker.
*/
intel_disable_pch_ports(dev_priv, pipe);
intel_disable_transcoder(dev_priv, pipe);
if (HAS_PCH_CPT(dev)) {
/* disable TRANS_DP_CTL */
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
temp |= TRANS_DP_PORT_SEL_NONE;
I915_WRITE(reg, temp);
/* disable DPLL_SEL */
temp = I915_READ(PCH_DPLL_SEL);
switch (pipe) {
case 0:
temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
break;
case 1:
temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
break;
case 2:
/* C shares PLL A or B */
temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
break;
default:
BUG(); /* wtf */
}
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* disable PCH DPLL */
if (!intel_crtc->no_pll)
intel_disable_pch_pll(dev_priv, pipe);
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
intel_crtc->active = false;
intel_update_watermarks(dev);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
intel_clear_scanline_wait(dev);
mutex_unlock(&dev->struct_mutex);
}
static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
ironlake_crtc_enable(crtc);
break;
case DRM_MODE_DPMS_OFF:
DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
ironlake_crtc_disable(crtc);
break;
}
}
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
if (!enable && intel_crtc->overlay) {
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
dev_priv->mm.interruptible = false;
(void) intel_overlay_switch_off(intel_crtc->overlay);
dev_priv->mm.interruptible = true;
mutex_unlock(&dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
static void i9xx_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
if (intel_crtc->active)
return;
intel_crtc->active = true;
intel_update_watermarks(dev);
intel_enable_pll(dev_priv, pipe);
intel_enable_pipe(dev_priv, pipe, false);
intel_enable_plane(dev_priv, plane, pipe);
intel_crtc_load_lut(crtc);
intel_update_fbc(dev);
/* Give the overlay scaler a chance to enable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, true);
intel_crtc_update_cursor(crtc, true);
}
static void i9xx_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
if (!intel_crtc->active)
return;
/* Give the overlay scaler a chance to disable if it's on this pipe */
intel_crtc_wait_for_pending_flips(crtc);
drm_vblank_off(dev, pipe);
intel_crtc_dpms_overlay(intel_crtc, false);
intel_crtc_update_cursor(crtc, false);
if (dev_priv->cfb_plane == plane)
intel_disable_fbc(dev);
intel_disable_plane(dev_priv, plane, pipe);
intel_disable_pipe(dev_priv, pipe);
intel_disable_pll(dev_priv, pipe);
intel_crtc->active = false;
intel_update_fbc(dev);
intel_update_watermarks(dev);
intel_clear_scanline_wait(dev);
}
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
{
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
i9xx_crtc_enable(crtc);
break;
case DRM_MODE_DPMS_OFF:
i9xx_crtc_disable(crtc);
break;
}
}
/**
* Sets the power management mode of the pipe and plane.
*/
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool enabled;
if (intel_crtc->dpms_mode == mode)
return;
intel_crtc->dpms_mode = mode;
dev_priv->display.dpms(crtc, mode);
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
break;
}
}
static void intel_crtc_disable(struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
struct drm_device *dev = crtc->dev;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
if (crtc->fb) {
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
mutex_unlock(&dev->struct_mutex);
}
}
/* Prepare for a mode set.
*
* Note we could be a lot smarter here. We need to figure out which outputs
* will be enabled, which disabled (in short, how the config will changes)
* and perform the minimum necessary steps to accomplish that, e.g. updating
* watermarks, FBC configuration, making sure PLLs are programmed correctly,
* panel fitting is in the proper state, etc.
*/
static void i9xx_crtc_prepare(struct drm_crtc *crtc)
{
i9xx_crtc_disable(crtc);
}
static void i9xx_crtc_commit(struct drm_crtc *crtc)
{
i9xx_crtc_enable(crtc);
}
static void ironlake_crtc_prepare(struct drm_crtc *crtc)
{
ironlake_crtc_disable(crtc);
}
static void ironlake_crtc_commit(struct drm_crtc *crtc)
{
ironlake_crtc_enable(crtc);
}
void intel_encoder_prepare(struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of prepare see intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void intel_encoder_commit(struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_device *dev = encoder->dev;
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
/* lvds has its own version of commit see intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
if (HAS_PCH_CPT(dev))
intel_cpt_verify_modeset(dev, intel_crtc->pipe);
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
if (HAS_PCH_SPLIT(dev)) {
/* FDI link clock is fixed at 2.7G */
if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
return false;
}
/* All interlaced capable intel hw wants timings in frames. */
drm_mode_set_crtcinfo(adjusted_mode, 0);
return true;
}
static int valleyview_get_display_clock_speed(struct drm_device *dev)
{
return 400000; /* FIXME */
}
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
}
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333000;
}
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
return 200000;
}
static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
}
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266000;
}
static int i855_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
/* Shouldn't happen */
return 0;
}
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133000;
}
struct fdi_m_n {
u32 tu;
u32 gmch_m;
u32 gmch_n;
u32 link_m;
u32 link_n;
};
static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
static void
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
int link_clock, struct fdi_m_n *m_n)
{
m_n->tu = 64; /* default size */
/* BUG_ON(pixel_clock > INT_MAX / 36); */
m_n->gmch_m = bits_per_pixel * pixel_clock;
m_n->gmch_n = link_clock * nlanes * 8;
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
struct intel_watermark_params {
unsigned long fifo_size;
unsigned long max_wm;
unsigned long default_wm;
unsigned long guard_size;
unsigned long cacheline_size;
};
/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_HPLLOFF_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
G4X_FIFO_SIZE,
G4X_MAX_WM,
G4X_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
VALLEYVIEW_FIFO_SIZE,
VALLEYVIEW_MAX_WM,
VALLEYVIEW_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
I965_CURSOR_FIFO,
VALLEYVIEW_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
I945_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
I915_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
I855GM_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
I830_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_wm_info = {
ILK_DISPLAY_FIFO,
ILK_DISPLAY_MAXWM,
ILK_DISPLAY_DFTWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
ILK_CURSOR_FIFO,
ILK_CURSOR_MAXWM,
ILK_CURSOR_DFTWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
ILK_DISPLAY_SR_FIFO,
ILK_DISPLAY_MAX_SRWM,
ILK_DISPLAY_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
ILK_CURSOR_SR_FIFO,
ILK_CURSOR_MAX_SRWM,
ILK_CURSOR_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_wm_info = {
SNB_DISPLAY_FIFO,
SNB_DISPLAY_MAXWM,
SNB_DISPLAY_DFTWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
SNB_CURSOR_FIFO,
SNB_CURSOR_MAXWM,
SNB_CURSOR_DFTWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
SNB_DISPLAY_SR_FIFO,
SNB_DISPLAY_MAX_SRWM,
SNB_DISPLAY_DFT_SRWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
SNB_CURSOR_SR_FIFO,
SNB_CURSOR_MAX_SRWM,
SNB_CURSOR_DFT_SRWM,
2,
SNB_FIFO_LINE_SIZE
};
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @pixel_size: display pixel size
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
const struct intel_watermark_params *wm,
int fifo_size,
int pixel_size,
unsigned long latency_ns)
{
long entries_required, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1000;
entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
wm_size = fifo_size - (entries_required + wm->guard_size);
DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
return wm_size;
}
struct cxsr_latency {
int is_desktop;
int is_ddr3;
unsigned long fsb_freq;
unsigned long mem_freq;
unsigned long display_sr;
unsigned long display_hpll_disable;
unsigned long cursor_sr;
unsigned long cursor_hpll_disable;
};
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
int is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
static void pineview_disable_cxsr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* deactivate cxsr */
I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int latency_ns = 5000;
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
if (plane)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x1ff;
if (plane)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
return size;
}
static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
struct drm_crtc *crtc, *enabled = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (crtc->enabled && crtc->fb) {
if (enabled)
return NULL;
enabled = crtc;
}
}
return enabled;
}
static void pineview_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned long wm;
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
dev_priv->fsb_freq, dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
pineview_disable_cxsr(dev);
return;
}
crtc = single_enabled_crtc(dev);
if (crtc) {
int clock = crtc->mode.clock;
int pixel_size = crtc->fb->bits_per_pixel / 8;
/* Display SR */
wm = intel_calculate_wm(clock, &pineview_display_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= wm << DSPFW_SR_SHIFT;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= wm & DSPFW_HPLL_SR_MASK;
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
/* activate cxsr */
I915_WRITE(DSPFW3,
I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
DRM_DEBUG_KMS("Self-refresh is enabled\n");
} else {
pineview_disable_cxsr(dev);
DRM_DEBUG_KMS("Self-refresh is disabled\n");
}
}
static bool g4x_compute_wm0(struct drm_device *dev,
int plane,
const struct intel_watermark_params *display,
int display_latency_ns,
const struct intel_watermark_params *cursor,
int cursor_latency_ns,
int *plane_wm,
int *cursor_wm)
{
struct drm_crtc *crtc;
int htotal, hdisplay, clock, pixel_size;
int line_time_us, line_count;
int entries, tlb_miss;
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled) {
*cursor_wm = cursor->guard_size;
*plane_wm = display->guard_size;
return false;
}
htotal = crtc->mode.htotal;
hdisplay = crtc->mode.hdisplay;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
/* Use the small buffer method to calculate plane watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*plane_wm = entries + display->guard_size;
if (*plane_wm > (int)display->max_wm)
*plane_wm = display->max_wm;
/* Use the large buffer method to calculate cursor watermark */
line_time_us = ((htotal * 1000) / clock);
line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
entries = line_count * 64 * pixel_size;
tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
if (*cursor_wm > (int)cursor->max_wm)
*cursor_wm = (int)cursor->max_wm;
return true;
}
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool g4x_check_srwm(struct drm_device *dev,
int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
display_wm, cursor_wm);
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
display_wm, display->max_wm);
return false;
}
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
cursor_wm, cursor->max_wm);
return false;
}
if (!(display_wm || cursor_wm)) {
DRM_DEBUG_KMS("SR latency is 0, disabling\n");
return false;
}
return true;
}
static bool g4x_compute_srwm(struct drm_device *dev,
int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
int hdisplay, htotal, pixel_size, clock;
unsigned long line_time_us;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*display_wm = *cursor_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
hdisplay = crtc->mode.hdisplay;
htotal = crtc->mode.htotal;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
line_time_us = (htotal * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * 64;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
return g4x_check_srwm(dev,
*display_wm, *cursor_wm,
display, cursor);
}
static bool vlv_compute_drain_latency(struct drm_device *dev,
int plane,
int *plane_prec_mult,
int *plane_dl,
int *cursor_prec_mult,
int *cursor_dl)
{
struct drm_crtc *crtc;
int clock, pixel_size;
int entries;
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled)
return false;
clock = crtc->mode.clock; /* VESA DOT Clock */
pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
entries = (clock / 1000) * pixel_size;
*plane_prec_mult = (entries > 256) ?
DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
pixel_size);
entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
*cursor_prec_mult = (entries > 256) ?
DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
return true;
}
/*
* Update drain latency registers of memory arbiter
*
* Valleyview SoC has a new memory arbiter and needs drain latency registers
* to be programmed. Each plane has a drain latency multiplier and a drain
* latency value.
*/
static void vlv_update_drain_latency(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_prec, planea_dl, planeb_prec, planeb_dl;
int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
either 16 or 32 */
/* For plane A, Cursor A */
if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
&cursor_prec_mult, &cursora_dl)) {
cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
I915_WRITE(VLV_DDL1, cursora_prec |
(cursora_dl << DDL_CURSORA_SHIFT) |
planea_prec | planea_dl);
}
/* For plane B, Cursor B */
if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
&cursor_prec_mult, &cursorb_dl)) {
cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
I915_WRITE(VLV_DDL2, cursorb_prec |
(cursorb_dl << DDL_CURSORB_SHIFT) |
planeb_prec | planeb_dl);
}
}
#define single_plane_enabled(mask) is_power_of_2(mask)
static void valleyview_update_wm(struct drm_device *dev)
{
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
vlv_update_drain_latency(dev);
if (g4x_compute_wm0(dev, 0,
&valleyview_wm_info, latency_ns,
&valleyview_cursor_wm_info, latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1;
if (g4x_compute_wm0(dev, 1,
&valleyview_wm_info, latency_ns,
&valleyview_cursor_wm_info, latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 2;
plane_sr = cursor_sr = 0;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&valleyview_wm_info,
&valleyview_cursor_wm_info,
&plane_sr, &cursor_sr))
I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
else
I915_WRITE(FW_BLC_SELF_VLV,
I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
planea_wm);
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
}
static void g4x_update_wm(struct drm_device *dev)
{
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
if (g4x_compute_wm0(dev, 0,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1;
if (g4x_compute_wm0(dev, 1,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 2;
plane_sr = cursor_sr = 0;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&g4x_wm_info,
&g4x_cursor_wm_info,
&plane_sr, &cursor_sr))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
else
I915_WRITE(FW_BLC_SELF,
I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
planea_wm);
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
/* HPLL off in SR has some issues on G4x... disable it */
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
static void i965_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
int clock = crtc->mode.clock;
int htotal = crtc->mode.htotal;
int hdisplay = crtc->mode.hdisplay;
int pixel_size = crtc->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = ((htotal * 1000) / clock);
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
entries, srwm);
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * 64;
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size);
cursor_sr = i965_cursor_wm_info.fifo_size -
(entries + i965_cursor_wm_info.guard_size);
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
} else {
/* Turn off self refresh if both pipes are enabled */
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
& ~FW_BLC_SELF_EN);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
(8 << 16) | (8 << 8) | (8 << 0));
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
/* update cursor SR watermark */
I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
static void i9xx_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
const struct intel_watermark_params *wm_info;
uint32_t fwater_lo;
uint32_t fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct drm_crtc *crtc, *enabled = NULL;
if (IS_I945GM(dev))
wm_info = &i945_wm_info;
else if (!IS_GEN2(dev))
wm_info = &i915_wm_info;
else
wm_info = &i855_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev, 0);
crtc = intel_get_crtc_for_plane(dev, 0);
if (crtc->enabled && crtc->fb) {
planea_wm = intel_calculate_wm(crtc->mode.clock,
wm_info, fifo_size,
crtc->fb->bits_per_pixel / 8,
latency_ns);
enabled = crtc;
} else
planea_wm = fifo_size - wm_info->guard_size;
fifo_size = dev_priv->display.get_fifo_size(dev, 1);
crtc = intel_get_crtc_for_plane(dev, 1);
if (crtc->enabled && crtc->fb) {
planeb_wm = intel_calculate_wm(crtc->mode.clock,
wm_info, fifo_size,
crtc->fb->bits_per_pixel / 8,
latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else
planeb_wm = fifo_size - wm_info->guard_size;
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Play safe and disable self-refresh before adjusting watermarks. */
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
int clock = enabled->mode.clock;
int htotal = enabled->mode.htotal;
int hdisplay = enabled->mode.hdisplay;
int pixel_size = enabled->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
line_time_us = (htotal * 1000) / clock;
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else if (IS_I915GM(dev))
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
if (HAS_FW_BLC(dev)) {
if (enabled) {
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
DRM_DEBUG_KMS("memory self refresh enabled\n");
} else
DRM_DEBUG_KMS("memory self refresh disabled\n");
}
}
static void i830_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
uint32_t fwater_lo;
int planea_wm;
crtc = single_enabled_crtc(dev);
if (crtc == NULL)
return;
planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
dev_priv->display.get_fifo_size(dev, 0),
crtc->fb->bits_per_pixel / 8,
latency_ns);
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
I915_WRITE(FW_BLC, fwater_lo);
}
#define ILK_LP0_PLANE_LATENCY 700
#define ILK_LP0_CURSOR_LATENCY 1300
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool ironlake_check_srwm(struct drm_device *dev, int level,
int fbc_wm, int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
struct drm_i915_private *dev_priv = dev->dev_private;
DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
" cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
if (fbc_wm > SNB_FBC_MAX_SRWM) {
DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
fbc_wm, SNB_FBC_MAX_SRWM, level);
/* fbc has it's own way to disable FBC WM */
I915_WRITE(DISP_ARB_CTL,
I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
return false;
}
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
display_wm, SNB_DISPLAY_MAX_SRWM, level);
return false;
}
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
cursor_wm, SNB_CURSOR_MAX_SRWM, level);
return false;
}
if (!(fbc_wm || display_wm || cursor_wm)) {
DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
return false;
}
return true;
}
/*
* Compute watermark values of WM[1-3],
*/
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *fbc_wm, int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
unsigned long line_time_us;
int hdisplay, htotal, pixel_size, clock;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*fbc_wm = *display_wm = *cursor_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
hdisplay = crtc->mode.hdisplay;
htotal = crtc->mode.htotal;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
line_time_us = (htotal * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
/*
* Spec says:
* FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
*/
*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * 64;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
return ironlake_check_srwm(dev, level,
*fbc_wm, *display_wm, *cursor_wm,
display, cursor);
}
static void ironlake_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int fbc_wm, plane_wm, cursor_wm;
unsigned int enabled;
enabled = 0;
if (g4x_compute_wm0(dev, 0,
&ironlake_display_wm_info,
ILK_LP0_PLANE_LATENCY,
&ironlake_cursor_wm_info,
ILK_LP0_CURSOR_LATENCY,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEA_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
" plane %d, " "cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 1;
}
if (g4x_compute_wm0(dev, 1,
&ironlake_display_wm_info,
ILK_LP0_PLANE_LATENCY,
&ironlake_cursor_wm_info,
ILK_LP0_CURSOR_LATENCY,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEB_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 2;
}
/*
* Calculate and update the self-refresh watermark only when one
* display plane is used.
*/
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
if (!single_plane_enabled(enabled))
return;
enabled = ffs(enabled) - 1;
/* WM1 */
if (!ironlake_compute_srwm(dev, 1, enabled,
ILK_READ_WM1_LATENCY() * 500,
&ironlake_display_srwm_info,
&ironlake_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM1_LP_ILK,
WM1_LP_SR_EN |
(ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/* WM2 */
if (!ironlake_compute_srwm(dev, 2, enabled,
ILK_READ_WM2_LATENCY() * 500,
&ironlake_display_srwm_info,
&ironlake_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM2_LP_ILK,
WM2_LP_EN |
(ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/*
* WM3 is unsupported on ILK, probably because we don't have latency
* data for that power state
*/
}
void sandybridge_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
u32 val;
int fbc_wm, plane_wm, cursor_wm;
unsigned int enabled;
enabled = 0;
if (g4x_compute_wm0(dev, 0,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
val = I915_READ(WM0_PIPEA_ILK);
val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
I915_WRITE(WM0_PIPEA_ILK, val |
((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
" plane %d, " "cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 1;
}
if (g4x_compute_wm0(dev, 1,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
val = I915_READ(WM0_PIPEB_ILK);
val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
I915_WRITE(WM0_PIPEB_ILK, val |
((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 2;
}
/* IVB has 3 pipes */
if (IS_IVYBRIDGE(dev) &&
g4x_compute_wm0(dev, 2,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
val = I915_READ(WM0_PIPEC_IVB);
val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
I915_WRITE(WM0_PIPEC_IVB, val |
((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 3;
}
/*
* Calculate and update the self-refresh watermark only when one
* display plane is used.
*
* SNB support 3 levels of watermark.
*
* WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
* and disabled in the descending order
*
*/
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
if (!single_plane_enabled(enabled) ||
dev_priv->sprite_scaling_enabled)
return;
enabled = ffs(enabled) - 1;
/* WM1 */
if (!ironlake_compute_srwm(dev, 1, enabled,
SNB_READ_WM1_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM1_LP_ILK,
WM1_LP_SR_EN |
(SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/* WM2 */
if (!ironlake_compute_srwm(dev, 2, enabled,
SNB_READ_WM2_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM2_LP_ILK,
WM2_LP_EN |
(SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
/* WM3 */
if (!ironlake_compute_srwm(dev, 3, enabled,
SNB_READ_WM3_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
I915_WRITE(WM3_LP_ILK,
WM3_LP_EN |
(SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
}
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
uint32_t sprite_width, int pixel_size,
const struct intel_watermark_params *display,
int display_latency_ns, int *sprite_wm)
{
struct drm_crtc *crtc;
int clock;
int entries, tlb_miss;
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled) {
*sprite_wm = display->guard_size;
return false;
}
clock = crtc->mode.clock;
/* Use the small buffer method to calculate the sprite watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size -
sprite_width * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*sprite_wm = entries + display->guard_size;
if (*sprite_wm > (int)display->max_wm)
*sprite_wm = display->max_wm;
return true;
}
static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
uint32_t sprite_width, int pixel_size,
const struct intel_watermark_params *display,
int latency_ns, int *sprite_wm)
{
struct drm_crtc *crtc;
unsigned long line_time_us;
int clock;
int line_count, line_size;
int small, large;
int entries;
if (!latency_ns) {
*sprite_wm = 0;
return false;
}
crtc = intel_get_crtc_for_plane(dev, plane);
clock = crtc->mode.clock;
line_time_us = (sprite_width * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = sprite_width * pixel_size;
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*sprite_wm = entries + display->guard_size;
return *sprite_wm > 0x3ff ? false : true;
}
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
uint32_t sprite_width, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
u32 val;
int sprite_wm, reg;
int ret;
switch (pipe) {
case 0:
reg = WM0_PIPEA_ILK;
break;
case 1:
reg = WM0_PIPEB_ILK;
break;
case 2:
reg = WM0_PIPEC_IVB;
break;
default:
return; /* bad pipe */
}
ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
&sandybridge_display_wm_info,
latency, &sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
pipe);
return;
}
val = I915_READ(reg);
val &= ~WM0_PIPE_SPRITE_MASK;
I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM1_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM1S_LP_ILK, sprite_wm);
/* Only IVB has two more LP watermarks for sprite */
if (!IS_IVYBRIDGE(dev))
return;
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM2_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM2S_LP_IVB, sprite_wm);
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM3_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM3S_LP_IVB, sprite_wm);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
static void intel_update_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(dev);
}
void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
uint32_t sprite_width, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.update_sprite_wm)
dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
pixel_size);
}
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
if (i915_panel_use_ssc >= 0)
return i915_panel_use_ssc != 0;
return dev_priv->lvds_use_ssc
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
}
/**
* intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
* @crtc: CRTC structure
* @mode: requested mode
*
* A pipe may be connected to one or more outputs. Based on the depth of the
* attached framebuffer, choose a good color depth to use on the pipe.
*
* If possible, match the pipe depth to the fb depth. In some cases, this
* isn't ideal, because the connected output supports a lesser or restricted
* set of depths. Resolve that here:
* LVDS typically supports only 6bpc, so clamp down in that case
* HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
* Displays may support a restricted set as well, check EDID and clamp as
* appropriate.
* DP may want to dither down to 6bpc to fit larger modes
*
* RETURNS:
* Dithering requirement (i.e. false if display bpc and pipe bpc match,
* true if they don't match).
*/
static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
unsigned int *pipe_bpp,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_encoder *encoder;
struct drm_connector *connector;
unsigned int display_bpc = UINT_MAX, bpc;
/* Walk the encoders & connectors on this crtc, get min bpc */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
if (encoder->crtc != crtc)
continue;
if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
unsigned int lvds_bpc;
if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
LVDS_A3_POWER_UP)
lvds_bpc = 8;
else
lvds_bpc = 6;
if (lvds_bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
display_bpc = lvds_bpc;
}
continue;
}
if (intel_encoder->type == INTEL_OUTPUT_EDP) {
/* Use VBT settings if we have an eDP panel */
unsigned int edp_bpc = dev_priv->edp.bpp / 3;
if (edp_bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
display_bpc = edp_bpc;
}
continue;
}
/* Not one of the known troublemakers, check the EDID */
list_for_each_entry(connector, &dev->mode_config.connector_list,
head) {
if (connector->encoder != encoder)
continue;
/* Don't use an invalid EDID bpc value */
if (connector->display_info.bpc &&
connector->display_info.bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
display_bpc = connector->display_info.bpc;
}
}
/*
* HDMI is either 12 or 8, so if the display lets 10bpc sneak
* through, clamp it down. (Note: >12bpc will be caught below.)
*/
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
if (display_bpc > 8 && display_bpc < 12) {
DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
display_bpc = 12;
} else {
DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
display_bpc = 8;
}
}
}
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
display_bpc = 6;
}
/*
* We could just drive the pipe at the highest bpc all the time and
* enable dithering as needed, but that costs bandwidth. So choose
* the minimum value that expresses the full color range of the fb but
* also stays within the max display bpc discovered above.
*/
switch (crtc->fb->depth) {
case 8:
bpc = 8; /* since we go through a colormap */
break;
case 15:
case 16:
bpc = 6; /* min is 18bpp */
break;
case 24:
bpc = 8;
break;
case 30:
bpc = 10;
break;
case 48:
bpc = 12;
break;
default:
DRM_DEBUG("unsupported depth, assuming 24 bits\n");
bpc = min((unsigned int)8, display_bpc);
break;
}
display_bpc = min(display_bpc, bpc);
DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
bpc, display_bpc);
*pipe_bpp = display_bpc * 3;
return display_bpc != bpc;
}
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
refclk = dev_priv->lvds_ssc_freq * 1000;
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
refclk / 1000);
} else if (!IS_GEN2(dev)) {
refclk = 96000;
} else {
refclk = 48000;
}
return refclk;
}
static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
intel_clock_t *clock)
{
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock->p1 = 2;
clock->p2 = 10;
clock->n = 3;
clock->m1 = 16;
clock->m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock->p1 = 1;
clock->p2 = 10;
clock->n = 6;
clock->m1 = 12;
clock->m2 = 8;
}
}
static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
intel_clock_t *clock,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 fp, fp2 = 0;
if (IS_PINEVIEW(dev)) {
fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = (1 << reduced_clock->n) << 16 |
reduced_clock->m1 << 8 | reduced_clock->m2;
} else {
fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
reduced_clock->m2;
}
I915_WRITE(FP0(pipe), fp);
intel_crtc->lowfreq_avail = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
reduced_clock && i915_powersave) {
I915_WRITE(FP1(pipe), fp2);
intel_crtc->lowfreq_avail = true;
} else {
I915_WRITE(FP1(pipe), fp);
}
}
static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 temp, lvds_sync = 0;
temp = I915_READ(LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (pipe == 1) {
temp |= LVDS_PIPEB_SELECT;
} else {
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock->p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
/* set the dithering flag on LVDS as needed */
if (INTEL_INFO(dev)->gen >= 4) {
if (dev_priv->lvds_dither)
temp |= LVDS_ENABLE_DITHER;
else
temp &= ~LVDS_ENABLE_DITHER;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
lvds_sync |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
lvds_sync |= LVDS_VSYNC_POLARITY;
if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
!= lvds_sync) {
char flags[2] = "-+";
DRM_INFO("Changing LVDS panel from "
"(%chsync, %cvsync) to (%chsync, %cvsync)\n",
flags[!(temp & LVDS_HSYNC_POLARITY)],
flags[!(temp & LVDS_VSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
temp |= lvds_sync;
}
I915_WRITE(LVDS, temp);
}
static void i9xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock, intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
bool is_sdvo;
is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
if (pixel_multiplier > 1) {
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev))
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && reduced_clock)
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (INTEL_INFO(dev)->gen >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
intel_dp_set_m_n(crtc, mode, adjusted_mode);
I915_WRITE(DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
if (INTEL_INFO(dev)->gen >= 4) {
u32 temp = 0;
if (is_sdvo) {
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
}
I915_WRITE(DPLL_MD(pipe), temp);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
}
static void i8xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
I915_WRITE(DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dspcntr, pipeconf, vsyncshift;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_lvds = false, is_tv = false, is_dp = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
const intel_limit_t *limit;
int ret;
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
}
num_connectors++;
}
refclk = i9xx_get_refclk(crtc, num_connectors);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Ensure that the cursor is valid for the new mode before changing... */
intel_crtc_update_cursor(crtc, true);
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&clock,
&reduced_clock);
}
if (is_sdvo && is_tv)
i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
&reduced_clock : NULL);
if (IS_GEN2(dev))
i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
else
i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
if (pipe == 0)
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
/* Enable pixel doubling when the dot clock is > 90% of the (display)
* core speed.
*
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
* pipe == 0 check?
*/
if (mode->clock >
dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
pipeconf |= PIPECONF_DOUBLE_WIDE;
else
pipeconf &= ~PIPECONF_DOUBLE_WIDE;
}
/* default to 8bpc */
pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
if (is_dp) {
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
pipeconf |= PIPECONF_BPP_6 |
PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
}
}
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
drm_mode_debug_printmodeline(mode);
if (HAS_PIPE_CXSR(dev)) {
if (intel_crtc->lowfreq_avail) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
} else {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
}
}
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (!IS_GEN2(dev) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_end -= 1;
vsyncshift = adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2;
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
vsyncshift = 0;
}
if (!IS_GEN3(dev))
I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(pipe),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(pipe),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(pipe),
(adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(pipe),
(adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(pipe),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
I915_WRITE(DSPSIZE(plane),
((mode->vdisplay - 1) << 16) |
(mode->hdisplay - 1));
I915_WRITE(DSPPOS(plane), 0);
I915_WRITE(PIPESRC(pipe),
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
I915_WRITE(PIPECONF(pipe), pipeconf);
POSTING_READ(PIPECONF(pipe));
intel_enable_pipe(dev_priv, pipe, false);
intel_wait_for_vblank(dev, pipe);
I915_WRITE(DSPCNTR(plane), dspcntr);
POSTING_READ(DSPCNTR(plane));
intel_enable_plane(dev_priv, plane, pipe);
ret = intel_pipe_set_base(crtc, x, y, old_fb);
intel_update_watermarks(dev);
return ret;
}
/*
* Initialize reference clocks when the driver loads
*/
void ironlake_init_pch_refclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
u32 temp;
bool has_lvds = false;
bool has_cpu_edp = false;
bool has_pch_edp = false;
bool has_panel = false;
bool has_ck505 = false;
bool can_ssc = false;
/* We need to take the global config into account */
list_for_each_entry(encoder, &mode_config->encoder_list,
base.head) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
has_panel = true;
has_lvds = true;
break;
case INTEL_OUTPUT_EDP:
has_panel = true;
if (intel_encoder_is_pch_edp(&encoder->base))
has_pch_edp = true;
else
has_cpu_edp = true;
break;
}
}
if (HAS_PCH_IBX(dev)) {
has_ck505 = dev_priv->display_clock_mode;
can_ssc = has_ck505;
} else {
has_ck505 = false;
can_ssc = true;
}
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
has_panel, has_lvds, has_pch_edp, has_cpu_edp,
has_ck505);
/* Ironlake: try to setup display ref clock before DPLL
* enabling. This is only under driver's control after
* PCH B stepping, previous chipset stepping should be
* ignoring this setting.
*/
temp = I915_READ(PCH_DREF_CONTROL);
/* Always enable nonspread source */
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
temp |= DREF_NONSPREAD_CK505_ENABLE;
else
temp |= DREF_NONSPREAD_SOURCE_ENABLE;
if (has_panel) {
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_ENABLE;
/* SSC must be turned on before enabling the CPU output */
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on panel\n");
temp |= DREF_SSC1_ENABLE;
}
/* Get SSC going before enabling the outputs */
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Enable CPU source on CPU attached eDP */
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on eDP\n");
temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
}
else
temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
} else {
DRM_DEBUG_KMS("Disabling SSC entirely\n");
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Turn off CPU output */
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
/* Turn off the SSC source */
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_DISABLE;
/* Turn off SSC1 */
temp &= ~ DREF_SSC1_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
}
}
static int ironlake_get_refclk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *edp_encoder = NULL;
int num_connectors = 0;
bool is_lvds = false;
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_EDP:
edp_encoder = encoder;
break;
}
num_connectors++;
}
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
dev_priv->lvds_ssc_freq);
return dev_priv->lvds_ssc_freq * 1000;
}
return 120000;
}
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
struct intel_encoder *has_edp_encoder = NULL;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
const intel_limit_t *limit;
int ret;
struct fdi_m_n m_n = {0};
u32 temp;
u32 lvds_sync = 0;
int target_clock, pixel_multiplier, lane, link_bw, factor;
unsigned int pipe_bpp;
bool dither;
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
case INTEL_OUTPUT_EDP:
has_edp_encoder = encoder;
break;
}
num_connectors++;
}
refclk = ironlake_get_refclk(crtc);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Ensure that the cursor is valid for the new mode before changing... */
intel_crtc_update_cursor(crtc, true);
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&clock,
&reduced_clock);
}
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (is_sdvo && is_tv) {
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 3;
clock.m1 = 16;
clock.m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 6;
clock.m1 = 12;
clock.m2 = 8;
}
}
/* FDI link */
pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
lane = 0;
/* CPU eDP doesn't require FDI link, so just set DP M/N
according to current link config */
if (has_edp_encoder &&
!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
target_clock = mode->clock;
intel_edp_link_config(has_edp_encoder,
&lane, &link_bw);
} else {
/* [e]DP over FDI requires target mode clock
instead of link clock */
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
target_clock = mode->clock;
else
target_clock = adjusted_mode->clock;
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
* mode pixel clock is stored in units of 1KHz.
* Hence the bw of each lane in terms of the mode signal
* is:
*/
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
}
/* determine panel color depth */
temp = I915_READ(PIPECONF(pipe));
temp &= ~PIPE_BPC_MASK;
dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
switch (pipe_bpp) {
case 18:
temp |= PIPE_6BPC;
break;
case 24:
temp |= PIPE_8BPC;
break;
case 30:
temp |= PIPE_10BPC;
break;
case 36:
temp |= PIPE_12BPC;
break;
default:
WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
pipe_bpp);
temp |= PIPE_8BPC;
pipe_bpp = 24;
break;
}
intel_crtc->bpp = pipe_bpp;
I915_WRITE(PIPECONF(pipe), temp);
if (!lane) {
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
lane = bps / (link_bw * 8) + 1;
}
intel_crtc->fdi_lanes = lane;
if (pixel_multiplier > 1)
link_bw *= pixel_multiplier;
ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
&m_n);
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
if (has_reduced_clock)
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
reduced_clock.m2;
/* Enable autotuning of the PLL clock (if permissible) */
factor = 21;
if (is_lvds) {
if ((intel_panel_use_ssc(dev_priv) &&
dev_priv->lvds_ssc_freq == 100) ||
(I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
factor = 25;
} else if (is_sdvo && is_tv)
factor = 20;
if (clock.m < factor * clock.n)
fp |= FP_CB_TUNE;
dpll = 0;
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
if (pixel_multiplier > 1) {
dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (is_sdvo && is_tv)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (is_tv)
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
drm_mode_debug_printmodeline(mode);
/* PCH eDP needs FDI, but CPU eDP does not */
if (!intel_crtc->no_pll) {
if (!has_edp_encoder ||
intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
I915_WRITE(PCH_FP0(pipe), fp);
I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(PCH_DPLL(pipe));
udelay(150);
}
} else {
if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
fp == I915_READ(PCH_FP0(0))) {
intel_crtc->use_pll_a = true;
DRM_DEBUG_KMS("using pipe a dpll\n");
} else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
fp == I915_READ(PCH_FP0(1))) {
intel_crtc->use_pll_a = false;
DRM_DEBUG_KMS("using pipe b dpll\n");
} else {
DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
return -EINVAL;
}
}
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
temp = I915_READ(PCH_LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (HAS_PCH_CPT(dev)) {
temp &= ~PORT_TRANS_SEL_MASK;
temp |= PORT_TRANS_SEL_CPT(pipe);
} else {
if (pipe == 1)
temp |= LVDS_PIPEB_SELECT;
else
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock.p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
lvds_sync |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
lvds_sync |= LVDS_VSYNC_POLARITY;
if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
!= lvds_sync) {
char flags[2] = "-+";
DRM_INFO("Changing LVDS panel from "
"(%chsync, %cvsync) to (%chsync, %cvsync)\n",
flags[!(temp & LVDS_HSYNC_POLARITY)],
flags[!(temp & LVDS_VSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
temp |= lvds_sync;
}
I915_WRITE(PCH_LVDS, temp);
}
pipeconf &= ~PIPECONF_DITHER_EN;
pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
if ((is_lvds && dev_priv->lvds_dither) || dither) {
pipeconf |= PIPECONF_DITHER_EN;
pipeconf |= PIPECONF_DITHER_TYPE_SP;
}
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
intel_dp_set_m_n(crtc, mode, adjusted_mode);
} else {
/* For non-DP output, clear any trans DP clock recovery setting.*/
I915_WRITE(TRANSDATA_M1(pipe), 0);
I915_WRITE(TRANSDATA_N1(pipe), 0);
I915_WRITE(TRANSDPLINK_M1(pipe), 0);
I915_WRITE(TRANSDPLINK_N1(pipe), 0);
}
if (!intel_crtc->no_pll &&
(!has_edp_encoder ||
intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
I915_WRITE(PCH_DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(PCH_DPLL(pipe));
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(PCH_DPLL(pipe), dpll);
}
intel_crtc->lowfreq_avail = false;
if (!intel_crtc->no_pll) {
if (is_lvds && has_reduced_clock && i915_powersave) {
I915_WRITE(PCH_FP1(pipe), fp2);
intel_crtc->lowfreq_avail = true;
if (HAS_PIPE_CXSR(dev)) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
}
} else {
I915_WRITE(PCH_FP1(pipe), fp);
if (HAS_PIPE_CXSR(dev)) {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
}
}
}
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACED_ILK;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_end -= 1;
I915_WRITE(VSYNCSHIFT(pipe),
adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2);
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
I915_WRITE(VSYNCSHIFT(pipe), 0);
}
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(pipe),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(pipe),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(pipe),
(adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(pipe),
(adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(pipe),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
I915_WRITE(PIPESRC(pipe),
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
if (has_edp_encoder &&
!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
ironlake_set_pll_edp(crtc, adjusted_mode->clock);
}
I915_WRITE(PIPECONF(pipe), pipeconf);
POSTING_READ(PIPECONF(pipe));
intel_wait_for_vblank(dev, pipe);
I915_WRITE(DSPCNTR(plane), dspcntr);
POSTING_READ(DSPCNTR(plane));
ret = intel_pipe_set_base(crtc, x, y, old_fb);
intel_update_watermarks(dev);
return ret;
}
static int intel_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int ret;
drm_vblank_pre_modeset(dev, pipe);
ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
x, y, old_fb);
drm_vblank_post_modeset(dev, pipe);
if (ret)
intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
else
intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
return ret;
}
static bool intel_eld_uptodate(struct drm_connector *connector,
int reg_eldv, uint32_t bits_eldv,
int reg_elda, uint32_t bits_elda,
int reg_edid)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t i;
i = I915_READ(reg_eldv);
i &= bits_eldv;
if (!eld[0])
return !i;
if (!i)
return false;
i = I915_READ(reg_elda);
i &= ~bits_elda;
I915_WRITE(reg_elda, i);
for (i = 0; i < eld[2]; i++)
if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
return false;
return true;
}
static void g4x_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t eldv;
uint32_t len;
uint32_t i;
i = I915_READ(G4X_AUD_VID_DID);
if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
eldv = G4X_ELDV_DEVCL_DEVBLC;
else
eldv = G4X_ELDV_DEVCTG;
if (intel_eld_uptodate(connector,
G4X_AUD_CNTL_ST, eldv,
G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
G4X_HDMIW_HDMIEDID))
return;
i = I915_READ(G4X_AUD_CNTL_ST);
i &= ~(eldv | G4X_ELD_ADDR);
len = (i >> 9) & 0x1f; /* ELD buffer size */
I915_WRITE(G4X_AUD_CNTL_ST, i);
if (!eld[0])
return;
len = min_t(uint8_t, eld[2], len);
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
i = I915_READ(G4X_AUD_CNTL_ST);
i |= eldv;
I915_WRITE(G4X_AUD_CNTL_ST, i);
}
static void ironlake_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t eldv;
uint32_t i;
int len;
int hdmiw_hdmiedid;
int aud_config;
int aud_cntl_st;
int aud_cntrl_st2;
if (HAS_PCH_IBX(connector->dev)) {
hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
aud_config = IBX_AUD_CONFIG_A;
aud_cntl_st = IBX_AUD_CNTL_ST_A;
aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
} else {
hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
aud_config = CPT_AUD_CONFIG_A;
aud_cntl_st = CPT_AUD_CNTL_ST_A;
aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
}
i = to_intel_crtc(crtc)->pipe;
hdmiw_hdmiedid += i * 0x100;
aud_cntl_st += i * 0x100;
aud_config += i * 0x100;
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
i = I915_READ(aud_cntl_st);
i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
if (!i) {
DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
/* operate blindly on all ports */
eldv = IBX_ELD_VALIDB;
eldv |= IBX_ELD_VALIDB << 4;
eldv |= IBX_ELD_VALIDB << 8;
} else {
DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
} else
I915_WRITE(aud_config, 0);
if (intel_eld_uptodate(connector,
aud_cntrl_st2, eldv,
aud_cntl_st, IBX_ELD_ADDRESS,
hdmiw_hdmiedid))
return;
i = I915_READ(aud_cntrl_st2);
i &= ~eldv;
I915_WRITE(aud_cntrl_st2, i);
if (!eld[0])
return;
i = I915_READ(aud_cntl_st);
i &= ~IBX_ELD_ADDRESS;
I915_WRITE(aud_cntl_st, i);
len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
i = I915_READ(aud_cntrl_st2);
i |= eldv;
I915_WRITE(aud_cntrl_st2, i);
}
void intel_write_eld(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct drm_crtc *crtc = encoder->crtc;
struct drm_connector *connector;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
connector = drm_select_eld(encoder, mode);
if (!connector)
return;
DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id,
drm_get_connector_name(connector),
connector->encoder->base.id,
drm_get_encoder_name(connector->encoder));
connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
if (dev_priv->display.write_eld)
dev_priv->display.write_eld(connector, crtc);
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int palreg = PALETTE(intel_crtc->pipe);
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
return;
/* use legacy palette for Ironlake */
if (HAS_PCH_SPLIT(dev))
palreg = LGC_PALETTE(intel_crtc->pipe);
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
}
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool visible = base != 0;
u32 cntl;
if (intel_crtc->cursor_visible == visible)
return;
cntl = I915_READ(_CURACNTR);
if (visible) {
/* On these chipsets we can only modify the base whilst
* the cursor is disabled.
*/
I915_WRITE(_CURABASE, base);
cntl &= ~(CURSOR_FORMAT_MASK);
/* XXX width must be 64, stride 256 => 0x00 << 28 */
cntl |= CURSOR_ENABLE |
CURSOR_GAMMA_ENABLE |
CURSOR_FORMAT_ARGB;
} else
cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
I915_WRITE(_CURACNTR, cntl);
intel_crtc->cursor_visible = visible;
}
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR(pipe));
if (base) {
cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
cntl |= pipe << 28; /* Connect to correct pipe */
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR(pipe), cntl);
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE(pipe), base);
}
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
if (base) {
cntl &= ~CURSOR_MODE;
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR_IVB(pipe), cntl);
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE_IVB(pipe), base);
}
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int x = intel_crtc->cursor_x;
int y = intel_crtc->cursor_y;
u32 base, pos;
bool visible;
pos = 0;
if (on && crtc->enabled && crtc->fb) {
base = intel_crtc->cursor_addr;
if (x > (int) crtc->fb->width)
base = 0;
if (y > (int) crtc->fb->height)
base = 0;
} else
base = 0;
if (x < 0) {
if (x + intel_crtc->cursor_width < 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
pos |= x << CURSOR_X_SHIFT;
if (y < 0) {
if (y + intel_crtc->cursor_height < 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
pos |= y << CURSOR_Y_SHIFT;
visible = base != 0;
if (!visible && !intel_crtc->cursor_visible)
return;
if (IS_IVYBRIDGE(dev)) {
I915_WRITE(CURPOS_IVB(pipe), pos);
ivb_update_cursor(crtc, base);
} else {
I915_WRITE(CURPOS(pipe), pos);
if (IS_845G(dev) || IS_I865G(dev))
i845_update_cursor(crtc, base);
else
i9xx_update_cursor(crtc, base);
}
if (visible)
intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
}
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
uint32_t addr;
int ret;
DRM_DEBUG_KMS("\n");
/* if we want to turn off the cursor ignore width and height */
if (!handle) {
DRM_DEBUG_KMS("cursor off\n");
addr = 0;
obj = NULL;
mutex_lock(&dev->struct_mutex);
goto finish;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
DRM_ERROR("we currently only support 64x64 cursors\n");
return -EINVAL;
}
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL)
return -ENOENT;
if (obj->base.size < width * height * 4) {
DRM_ERROR("buffer is to small\n");
ret = -ENOMEM;
goto fail;
}
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!dev_priv->info->cursor_needs_physical) {
if (obj->tiling_mode) {
DRM_ERROR("cursor cannot be tiled\n");
ret = -EINVAL;
goto fail_locked;
}
ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
if (ret) {
DRM_ERROR("failed to move cursor bo into the GTT\n");
goto fail_locked;
}
ret = i915_gem_object_put_fence(obj);
if (ret) {
DRM_ERROR("failed to release fence for cursor");
goto fail_unpin;
}
addr = obj->gtt_offset;
} else {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = i915_gem_attach_phys_object(dev, obj,
(intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
align);
if (ret) {
DRM_ERROR("failed to attach phys object\n");
goto fail_locked;
}
addr = obj->phys_obj->handle->busaddr;
}
if (IS_GEN2(dev))
I915_WRITE(CURSIZE, (height << 12) | width);
finish:
if (intel_crtc->cursor_bo) {
if (dev_priv->info->cursor_needs_physical) {
if (intel_crtc->cursor_bo != obj)
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
} else
i915_gem_object_unpin(intel_crtc->cursor_bo);
drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
}
mutex_unlock(&dev->struct_mutex);
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = obj;
intel_crtc->cursor_width = width;
intel_crtc->cursor_height = height;
intel_crtc_update_cursor(crtc, true);
return 0;
fail_unpin:
i915_gem_object_unpin(obj);
fail_locked:
mutex_unlock(&dev->struct_mutex);
fail:
drm_gem_object_unreference_unlocked(&obj->base);
return ret;
}
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->cursor_x = x;
intel_crtc->cursor_y = y;
intel_crtc_update_cursor(crtc, true);
return 0;
}
/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->lut_r[regno] = red >> 8;
intel_crtc->lut_g[regno] = green >> 8;
intel_crtc->lut_b[regno] = blue >> 8;
}
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
*red = intel_crtc->lut_r[regno] << 8;
*green = intel_crtc->lut_g[regno] << 8;
*blue = intel_crtc->lut_b[regno] << 8;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
int end = (start + size > 256) ? 256 : start + size, i;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
for (i = start; i < end; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/**
* Get a pipe with a simple mode set on it for doing load-based monitor
* detection.
*
* It will be up to the load-detect code to adjust the pipe as appropriate for
* its requirements. The pipe will be connected to no other encoders.
*
* Currently this code will only succeed if there is a pipe with no encoders
* configured for it. In the future, it could choose to temporarily disable
* some outputs to free up a pipe for its use.
*
* \return crtc, or NULL if no pipes are available.
*/
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
drm_gem_object_unreference_unlocked(&obj->base);
return ERR_PTR(-ENOMEM);
}
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
if (ret) {
drm_gem_object_unreference_unlocked(&obj->base);
kfree(intel_fb);
return ERR_PTR(ret);
}
return &intel_fb->base;
}
static u32
intel_framebuffer_pitch_for_width(int width, int bpp)
{
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
return ALIGN(pitch, 64);
}
static u32
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
{
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
}
static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device *dev,
struct drm_display_mode *mode,
int depth, int bpp)
{
struct drm_i915_gem_object *obj;
struct drm_mode_fb_cmd2 mode_cmd;
obj = i915_gem_alloc_object(dev,
intel_framebuffer_size_for_mode(mode, bpp));
if (obj == NULL)
return ERR_PTR(-ENOMEM);
mode_cmd.width = mode->hdisplay;
mode_cmd.height = mode->vdisplay;
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
bpp);
mode_cmd.pixel_format = 0;
return intel_framebuffer_create(dev, &mode_cmd, obj);
}
static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device *dev,
struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_framebuffer *fb;
if (dev_priv->fbdev == NULL)
return NULL;
obj = dev_priv->fbdev->ifb.obj;
if (obj == NULL)
return NULL;
fb = &dev_priv->fbdev->ifb.base;
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
fb->bits_per_pixel))
return NULL;
if (obj->base.size < mode->vdisplay * fb->pitches[0])
return NULL;
return fb;
}
bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
struct drm_connector *connector,
struct drm_display_mode *mode,
struct intel_load_detect_pipe *old)
{
struct intel_crtc *intel_crtc;
struct drm_crtc *possible_crtc;
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_framebuffer *old_fb;
int i = -1;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector),
encoder->base.id, drm_get_encoder_name(encoder));
/*
* Algorithm gets a little messy:
*
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
*
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
intel_crtc = to_intel_crtc(crtc);
old->dpms_mode = intel_crtc->dpms_mode;
old->load_detect_temp = false;
/* Make sure the crtc and connector are running */
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
struct drm_encoder_helper_funcs *encoder_funcs;
struct drm_crtc_helper_funcs *crtc_funcs;
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
encoder_funcs = encoder->helper_private;
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
return true;
}
/* Find an unused one (if possible) */
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (!possible_crtc->enabled) {
crtc = possible_crtc;
break;
}
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
DRM_DEBUG_KMS("no pipe available for load-detect\n");
return false;
}
encoder->crtc = crtc;
connector->encoder = encoder;
intel_crtc = to_intel_crtc(crtc);
old->dpms_mode = intel_crtc->dpms_mode;
old->load_detect_temp = true;
old->release_fb = NULL;
if (!mode)
mode = &load_detect_mode;
old_fb = crtc->fb;
/* We need a framebuffer large enough to accommodate all accesses
* that the plane may generate whilst we perform load detection.
* We can not rely on the fbcon either being present (we get called
* during its initialisation to detect all boot displays, or it may
* not even exist) or that it is large enough to satisfy the
* requested mode.
*/
crtc->fb = mode_fits_in_fbdev(dev, mode);
if (crtc->fb == NULL) {
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
old->release_fb = crtc->fb;
} else
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
if (IS_ERR(crtc->fb)) {
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
crtc->fb = old_fb;
return false;
}
if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
crtc->fb = old_fb;
return false;
}
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev, intel_crtc->pipe);
return true;
}
void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
struct drm_connector *connector,
struct intel_load_detect_pipe *old)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector),
encoder->base.id, drm_get_encoder_name(encoder));
if (old->load_detect_temp) {
connector->encoder = NULL;
drm_helper_disable_unused_functions(dev);
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
return;
}
/* Switch crtc and encoder back off if necessary */
if (old->dpms_mode != DRM_MODE_DPMS_ON) {
encoder_funcs->dpms(encoder, old->dpms_mode);
crtc_funcs->dpms(crtc, old->dpms_mode);
}
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll = I915_READ(DPLL(pipe));
u32 fp;
intel_clock_t clock;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = I915_READ(FP0(pipe));
else
fp = I915_READ(FP1(pipe));
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (!IS_GEN2(dev)) {
if (IS_PINEVIEW(dev))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return 0;
}
/* XXX: Handle the 100Mhz refclk */
intel_clock(dev, 96000, &clock);
} else {
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
/* XXX: might not be 66MHz */
intel_clock(dev, 66000, &clock);
} else
intel_clock(dev, 48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
intel_clock(dev, 48000, &clock);
}
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config connector
* configuration being accurate, which it isn't necessarily.
*/
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct drm_display_mode *mode;
int htot = I915_READ(HTOTAL(pipe));
int hsync = I915_READ(HSYNC(pipe));
int vtot = I915_READ(VTOTAL(pipe));
int vsync = I915_READ(VSYNC(pipe));
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
mode->clock = intel_crtc_clock_get(dev, crtc);
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
drm_mode_set_crtcinfo(mode, 0);
return mode;
}
#define GPU_IDLE_TIMEOUT 500 /* ms */
/* When this timer fires, we've been idle for awhile */
static void intel_gpu_idle_timer(unsigned long arg)
{
struct drm_device *dev = (struct drm_device *)arg;
drm_i915_private_t *dev_priv = dev->dev_private;
if (!list_empty(&dev_priv->mm.active_list)) {
/* Still processing requests, so just re-arm the timer. */
mod_timer(&dev_priv->idle_timer, jiffies +
msecs_to_jiffies(GPU_IDLE_TIMEOUT));
return;
}
dev_priv->busy = false;
queue_work(dev_priv->wq, &dev_priv->idle_work);
}
#define CRTC_IDLE_TIMEOUT 1000 /* ms */
static void intel_crtc_idle_timer(unsigned long arg)
{
struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
struct drm_crtc *crtc = &intel_crtc->base;
drm_i915_private_t *dev_priv = crtc->dev->dev_private;
struct intel_framebuffer *intel_fb;
intel_fb = to_intel_framebuffer(crtc->fb);
if (intel_fb && intel_fb->obj->active) {
/* The framebuffer is still being accessed by the GPU. */
mod_timer(&intel_crtc->idle_timer, jiffies +
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
return;
}
intel_crtc->busy = false;
queue_work(dev_priv->wq, &dev_priv->idle_work);
}
static void intel_increase_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
if (HAS_PCH_SPLIT(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
dpll = I915_READ(dpll_reg);
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
DRM_DEBUG_DRIVER("upclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (dpll & DISPLAY_RATE_SELECT_FPA1)
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
}
/* Schedule downclock */
mod_timer(&intel_crtc->idle_timer, jiffies +
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
}
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll = I915_READ(dpll_reg);
if (HAS_PCH_SPLIT(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
DRM_DEBUG_DRIVER("downclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
}
}
/**
* intel_idle_update - adjust clocks for idleness
* @work: work struct
*
* Either the GPU or display (or both) went idle. Check the busy status
* here and adjust the CRTC and GPU clocks as necessary.
*/
static void intel_idle_update(struct work_struct *work)
{
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
idle_work);
struct drm_device *dev = dev_priv->dev;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
if (!i915_powersave)
return;
mutex_lock(&dev->struct_mutex);
i915_update_gfx_val(dev_priv);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
/* Skip inactive CRTCs */
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
if (!intel_crtc->busy)
intel_decrease_pllclock(crtc);
}
mutex_unlock(&dev->struct_mutex);
}
/**
* intel_mark_busy - mark the GPU and possibly the display busy
* @dev: drm device
* @obj: object we're operating on
*
* Callers can use this function to indicate that the GPU is busy processing
* commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
* buffer), we'll also mark the display as busy, so we know to increase its
* clock frequency.
*/
void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = NULL;
struct intel_framebuffer *intel_fb;
struct intel_crtc *intel_crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return;
if (!dev_priv->busy)
dev_priv->busy = true;
else
mod_timer(&dev_priv->idle_timer, jiffies +
msecs_to_jiffies(GPU_IDLE_TIMEOUT));
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
intel_fb = to_intel_framebuffer(crtc->fb);
if (intel_fb->obj == obj) {
if (!intel_crtc->busy) {
/* Non-busy -> busy, upclock */
intel_increase_pllclock(crtc);
intel_crtc->busy = true;
} else {
/* Busy -> busy, put off timer */
mod_timer(&intel_crtc->idle_timer, jiffies +
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
}
}
}
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct intel_unpin_work *work;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
intel_crtc->unpin_work = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
if (work) {
cancel_work_sync(&work->work);
kfree(work);
}
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
static void intel_unpin_work_fn(struct work_struct *__work)
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
mutex_lock(&work->dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb_obj);
drm_gem_object_unreference(&work->pending_flip_obj->base);
drm_gem_object_unreference(&work->old_fb_obj->base);
intel_update_fbc(work->dev);
mutex_unlock(&work->dev->struct_mutex);
kfree(work);
}
static void do_intel_finish_page_flip(struct drm_device *dev,
struct drm_crtc *crtc)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
struct drm_i915_gem_object *obj;
struct drm_pending_vblank_event *e;
struct timeval tnow, tvbl;
unsigned long flags;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
do_gettimeofday(&tnow);
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
if (work == NULL || !work->pending) {
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
intel_crtc->unpin_work = NULL;
if (work->event) {
e = work->event;
e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
/* Called before vblank count and timestamps have
* been updated for the vblank interval of flip
* completion? Need to increment vblank count and
* add one videorefresh duration to returned timestamp
* to account for this. We assume this happened if we
* get called over 0.9 frame durations after the last
* timestamped vblank.
*
* This calculation can not be used with vrefresh rates
* below 5Hz (10Hz to be on the safe side) without
* promoting to 64 integers.
*/
if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
9 * crtc->framedur_ns) {
e->event.sequence++;
tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
crtc->framedur_ns);
}
e->event.tv_sec = tvbl.tv_sec;
e->event.tv_usec = tvbl.tv_usec;
list_add_tail(&e->base.link,
&e->base.file_priv->event_list);
wake_up_interruptible(&e->base.file_priv->event_wait);
}
drm_vblank_put(dev, intel_crtc->pipe);
spin_unlock_irqrestore(&dev->event_lock, flags);
obj = work->old_fb_obj;
atomic_clear_mask(1 << intel_crtc->plane,
&obj->pending_flip.counter);
if (atomic_read(&obj->pending_flip) == 0)
wake_up(&dev_priv->pending_flip_queue);
schedule_work(&work->work);
trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
}
void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
do_intel_finish_page_flip(dev, crtc);
}
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
do_intel_finish_page_flip(dev, crtc);
}
void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
if ((++intel_crtc->unpin_work->pending) > 1)
DRM_ERROR("Prepared flip multiple times\n");
} else {
DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static int intel_gen2_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
unsigned long offset;
u32 flip_mask;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
if (ret)
goto out;
/* Offset into the new buffer for cases of shared fbs between CRTCs */
offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
ret = BEGIN_LP_RING(6);
if (ret)
goto out;
/* Can't queue multiple flips, so wait for the previous
* one to finish before executing the next.
*/
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
OUT_RING(MI_NOOP);
OUT_RING(MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
OUT_RING(fb->pitches[0]);
OUT_RING(obj->gtt_offset + offset);
OUT_RING(0); /* aux display base address, unused */
ADVANCE_LP_RING();
out:
return ret;
}
static int intel_gen3_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
unsigned long offset;
u32 flip_mask;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
if (ret)
goto out;
/* Offset into the new buffer for cases of shared fbs between CRTCs */
offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
ret = BEGIN_LP_RING(6);
if (ret)
goto out;
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
OUT_RING(MI_NOOP);
OUT_RING(MI_DISPLAY_FLIP_I915 |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
OUT_RING(fb->pitches[0]);
OUT_RING(obj->gtt_offset + offset);
OUT_RING(MI_NOOP);
ADVANCE_LP_RING();
out:
return ret;
}
static int intel_gen4_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
if (ret)
goto out;
ret = BEGIN_LP_RING(4);
if (ret)
goto out;
/* i965+ uses the linear or tiled offsets from the
* Display Registers (which do not change across a page-flip)
* so we need only reprogram the base address.
*/
OUT_RING(MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
OUT_RING(fb->pitches[0]);
OUT_RING(obj->gtt_offset | obj->tiling_mode);
/* XXX Enabling the panel-fitter across page-flip is so far
* untested on non-native modes, so ignore it for now.
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
OUT_RING(pf | pipesrc);
ADVANCE_LP_RING();
out:
return ret;
}
static int intel_gen6_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
if (ret)
goto out;
ret = BEGIN_LP_RING(4);
if (ret)
goto out;
OUT_RING(MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
OUT_RING(fb->pitches[0] | obj->tiling_mode);
OUT_RING(obj->gtt_offset);
pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
OUT_RING(pf | pipesrc);
ADVANCE_LP_RING();
out:
return ret;
}
/*
* On gen7 we currently use the blit ring because (in early silicon at least)
* the render ring doesn't give us interrpts for page flip completion, which
* means clients will hang after the first flip is queued. Fortunately the
* blit ring generates interrupts properly, so use it instead.
*/
static int intel_gen7_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto out;
ret = intel_ring_begin(ring, 4);
if (ret)
goto out;
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
intel_ring_emit(ring, (obj->gtt_offset));
intel_ring_emit(ring, (MI_NOOP));
intel_ring_advance(ring);
out:
return ret;
}
static int intel_default_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
return -ENODEV;
}
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
unsigned long flags;
int ret;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
work->event = event;
work->dev = crtc->dev;
intel_fb = to_intel_framebuffer(crtc->fb);
work->old_fb_obj = intel_fb->obj;
INIT_WORK(&work->work, intel_unpin_work_fn);
ret = drm_vblank_get(dev, intel_crtc->pipe);
if (ret)
goto free_work;
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
spin_unlock_irqrestore(&dev->event_lock, flags);
kfree(work);
drm_vblank_put(dev, intel_crtc->pipe);
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
return -EBUSY;
}
intel_crtc->unpin_work = work;
spin_unlock_irqrestore(&dev->event_lock, flags);
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
mutex_lock(&dev->struct_mutex);
/* Reference the objects for the scheduled work. */
drm_gem_object_reference(&work->old_fb_obj->base);
drm_gem_object_reference(&obj->base);
crtc->fb = fb;
work->pending_flip_obj = obj;
work->enable_stall_check = true;
/* Block clients from rendering to the new back buffer until
* the flip occurs and the object is no longer visible.
*/
atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
if (ret)
goto cleanup_pending;
intel_disable_fbc(dev);
mutex_unlock(&dev->struct_mutex);
trace_i915_flip_request(intel_crtc->plane, obj);
return 0;
cleanup_pending:
atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
drm_gem_object_unreference(&work->old_fb_obj->base);
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
spin_lock_irqsave(&dev->event_lock, flags);
intel_crtc->unpin_work = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
drm_vblank_put(dev, intel_crtc->pipe);
free_work:
kfree(work);
return ret;
}
static void intel_sanitize_modesetting(struct drm_device *dev,
int pipe, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg, val;
if (HAS_PCH_SPLIT(dev))
return;
/* Who knows what state these registers were left in by the BIOS or
* grub?
*
* If we leave the registers in a conflicting state (e.g. with the
* display plane reading from the other pipe than the one we intend
* to use) then when we attempt to teardown the active mode, we will
* not disable the pipes and planes in the correct order -- leaving
* a plane reading from a disabled pipe and possibly leading to
* undefined behaviour.
*/
reg = DSPCNTR(plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) == 0)
return;
if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
return;
/* This display plane is active and attached to the other CPU pipe. */
pipe = !pipe;
/* Disable the plane and wait for it to stop reading from the pipe. */
intel_disable_plane(dev_priv, plane, pipe);
intel_disable_pipe(dev_priv, pipe);
}
static void intel_crtc_reset(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
/* Reset flags back to the 'unknown' status so that they
* will be correctly set on the initial modeset.
*/
intel_crtc->dpms_mode = -1;
/* We need to fix up any BIOS configuration that conflicts with
* our expectations.
*/
intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
}
static struct drm_crtc_helper_funcs intel_helper_funcs = {
.dpms = intel_crtc_dpms,
.mode_fixup = intel_crtc_mode_fixup,
.mode_set = intel_crtc_mode_set,
.mode_set_base = intel_pipe_set_base,
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
.disable = intel_crtc_disable,
};
static const struct drm_crtc_funcs intel_crtc_funcs = {
.reset = intel_crtc_reset,
.cursor_set = intel_crtc_cursor_set,
.cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = intel_crtc_destroy,
.page_flip = intel_crtc_page_flip,
};
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int i;
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
/* Swap pipes & planes for FBC on pre-965 */
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (IS_MOBILE(dev) && IS_GEN3(dev)) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = !pipe;
}
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
intel_crtc_reset(&intel_crtc->base);
intel_crtc->active = true; /* force the pipe off on setup_init_config */
intel_crtc->bpp = 24; /* default for pre-Ironlake */
if (HAS_PCH_SPLIT(dev)) {
if (pipe == 2 && IS_IVYBRIDGE(dev))
intel_crtc->no_pll = true;
intel_helper_funcs.prepare = ironlake_crtc_prepare;
intel_helper_funcs.commit = ironlake_crtc_commit;
} else {
intel_helper_funcs.prepare = i9xx_crtc_prepare;
intel_helper_funcs.commit = i9xx_crtc_commit;
}
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
intel_crtc->busy = false;
setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
(unsigned long)intel_crtc);
}
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_mode_object *drmmode_obj;
struct intel_crtc *crtc;
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
}
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
DRM_MODE_OBJECT_CRTC);
if (!drmmode_obj) {
DRM_ERROR("no such CRTC id\n");
return -EINVAL;
}
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static int intel_encoder_clones(struct drm_device *dev, int type_mask)
{
struct intel_encoder *encoder;
int index_mask = 0;
int entry = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
if (type_mask & encoder->clone_mask)
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static bool has_edp_a(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_MOBILE(dev))
return false;
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
if (IS_GEN5(dev) &&
(I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
bool dpd_is_edp = false;
bool has_lvds;
has_lvds = intel_lvds_init(dev);
if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
/* disable the panel fitter on everything but LVDS */
I915_WRITE(PFIT_CONTROL, 0);
}
if (HAS_PCH_SPLIT(dev)) {
dpd_is_edp = intel_dpd_is_edp(dev);
if (has_edp_a(dev))
intel_dp_init(dev, DP_A);
if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D);
}
intel_crt_init(dev);
if (HAS_PCH_SPLIT(dev)) {
int found;
if (I915_READ(HDMIB) & PORT_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, PCH_SDVOB, true);
if (!found)
intel_hdmi_init(dev, HDMIB);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B);
}
if (I915_READ(HDMIC) & PORT_DETECTED)
intel_hdmi_init(dev, HDMIC);
if (I915_READ(HDMID) & PORT_DETECTED)
intel_hdmi_init(dev, HDMID);
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C);
if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, SDVOB, true);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, SDVOB);
}
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_B\n");
intel_dp_init(dev, DP_B);
}
}
/* Before G4X SDVOC doesn't have its own detect register */
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, SDVOC, false);
}
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, SDVOC);
}
if (SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_C\n");
intel_dp_init(dev, DP_C);
}
}
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED)) {
DRM_DEBUG_KMS("probing DP_D\n");
intel_dp_init(dev, DP_D);
}
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
if (SUPPORTS_TV(dev))
intel_tv_init(dev);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(dev, encoder->clone_mask);
}
/* disable all the possible outputs/crtcs before entering KMS mode */
drm_helper_disable_unused_functions(dev);
if (HAS_PCH_SPLIT(dev))
ironlake_init_pch_refclk(dev);
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
drm_framebuffer_cleanup(fb);
drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
return drm_gem_handle_create(file, &obj->base, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
int ret;
if (obj->tiling_mode == I915_TILING_Y)
return -EINVAL;
if (mode_cmd->pitches[0] & 63)
return -EINVAL;
switch (mode_cmd->pixel_format) {
case DRM_FORMAT_RGB332:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
/* RGB formats are common across chipsets */
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_VYUY:
break;
default:
DRM_DEBUG_KMS("unsupported pixel format %u\n",
mode_cmd->pixel_format);
return -EINVAL;
}
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_i915_gem_object *obj;
obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
mode_cmd->handles[0]));
if (&obj->base == NULL)
return ERR_PTR(-ENOENT);
return intel_framebuffer_create(dev, mode_cmd, obj);
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.output_poll_changed = intel_fb_output_poll_changed,
};
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
struct drm_i915_gem_object *ctx;
int ret;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
ctx = i915_gem_alloc_object(dev, 4096);
if (!ctx) {
DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
return NULL;
}
ret = i915_gem_object_pin(ctx, 4096, true);
if (ret) {
DRM_ERROR("failed to pin power context: %d\n", ret);
goto err_unref;
}
ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
if (ret) {
DRM_ERROR("failed to set-domain on power context: %d\n", ret);
goto err_unpin;
}
return ctx;
err_unpin:
i915_gem_object_unpin(ctx);
err_unref:
drm_gem_object_unreference(&ctx->base);
mutex_unlock(&dev->struct_mutex);
return NULL;
}
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl;
rgvswctl = I915_READ16(MEMSWCTL);
if (rgvswctl & MEMCTL_CMD_STS) {
DRM_DEBUG("gpu busy, RCS change rejected\n");
return false; /* still busy with another command */
}
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
I915_WRITE16(MEMSWCTL, rgvswctl);
POSTING_READ16(MEMSWCTL);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE16(MEMSWCTL, rgvswctl);
return true;
}
void ironlake_enable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rgvmodectl = I915_READ(MEMMODECTL);
u8 fmax, fmin, fstart, vstart;
/* Enable temp reporting */
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
/* 100ms RC evaluation intervals */
I915_WRITE(RCUPEI, 100000);
I915_WRITE(RCDNEI, 100000);
/* Set max/min thresholds to 90ms and 80ms respectively */
I915_WRITE(RCBMAXAVG, 90000);
I915_WRITE(RCBMINAVG, 80000);
I915_WRITE(MEMIHYST, 1);
/* Set up min, max, and cur for interrupt handling */
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
dev_priv->fmax = fmax; /* IPS callback will increase this */
dev_priv->fstart = fstart;
dev_priv->max_delay = fstart;
dev_priv->min_delay = fmin;
dev_priv->cur_delay = fstart;
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
fmax, fmin, fstart);
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
/*
* Interrupts will be enabled in ironlake_irq_postinstall
*/
I915_WRITE(VIDSTART, vstart);
POSTING_READ(VIDSTART);
rgvmodectl |= MEMMODE_SWMODE_EN;
I915_WRITE(MEMMODECTL, rgvmodectl);
if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
DRM_ERROR("stuck trying to change perf mode\n");
msleep(1);
ironlake_set_drps(dev, fstart);
dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
I915_READ(0x112e0);
dev_priv->last_time1 = jiffies_to_msecs(jiffies);
dev_priv->last_count2 = I915_READ(0x112f4);
getrawmonotonic(&dev_priv->last_time2);
}
void ironlake_disable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl = I915_READ16(MEMSWCTL);
/* Ack interrupts, disable EFC interrupt */
I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
I915_WRITE(DEIIR, DE_PCU_EVENT);
I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
/* Go back to the starting frequency */
ironlake_set_drps(dev, dev_priv->fstart);
msleep(1);
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE(MEMSWCTL, rgvswctl);
msleep(1);
}
void gen6_set_rps(struct drm_device *dev, u8 val)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 swreq;
swreq = (val & 0x3ff) << 25;
I915_WRITE(GEN6_RPNSWREQ, swreq);
}
void gen6_disable_rps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
I915_WRITE(GEN6_PMIER, 0);
/* Complete PM interrupt masking here doesn't race with the rps work
* item again unmasking PM interrupts because that is using a different
* register (PMIMR) to mask PM interrupts. The only risk is in leaving
* stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
spin_lock_irq(&dev_priv->rps_lock);
dev_priv->pm_iir = 0;
spin_unlock_irq(&dev_priv->rps_lock);
I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
}
static unsigned long intel_pxfreq(u32 vidfreq)
{
unsigned long freq;
int div = (vidfreq & 0x3f0000) >> 16;
int post = (vidfreq & 0x3000) >> 12;
int pre = (vidfreq & 0x7);
if (!pre)
return 0;
freq = ((div * 133333) / ((1<<post) * pre));
return freq;
}
void intel_init_emon(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 lcfuse;
u8 pxw[16];
int i;
/* Disable to program */
I915_WRITE(ECR, 0);
POSTING_READ(ECR);
/* Program energy weights for various events */
I915_WRITE(SDEW, 0x15040d00);
I915_WRITE(CSIEW0, 0x007f0000);
I915_WRITE(CSIEW1, 0x1e220004);
I915_WRITE(CSIEW2, 0x04000004);
for (i = 0; i < 5; i++)
I915_WRITE(PEW + (i * 4), 0);
for (i = 0; i < 3; i++)
I915_WRITE(DEW + (i * 4), 0);
/* Program P-state weights to account for frequency power adjustment */
for (i = 0; i < 16; i++) {
u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
unsigned long freq = intel_pxfreq(pxvidfreq);
unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
unsigned long val;
val = vid * vid;
val *= (freq / 1000);
val *= 255;
val /= (127*127*900);
if (val > 0xff)
DRM_ERROR("bad pxval: %ld\n", val);
pxw[i] = val;
}
/* Render standby states get 0 weight */
pxw[14] = 0;
pxw[15] = 0;
for (i = 0; i < 4; i++) {
u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
I915_WRITE(PXW + (i * 4), val);
}
/* Adjust magic regs to magic values (more experimental results) */
I915_WRITE(OGW0, 0);
I915_WRITE(OGW1, 0);
I915_WRITE(EG0, 0x00007f00);
I915_WRITE(EG1, 0x0000000e);
I915_WRITE(EG2, 0x000e0000);
I915_WRITE(EG3, 0x68000300);
I915_WRITE(EG4, 0x42000000);
I915_WRITE(EG5, 0x00140031);
I915_WRITE(EG6, 0);
I915_WRITE(EG7, 0);
for (i = 0; i < 8; i++)
I915_WRITE(PXWL + (i * 4), 0);
/* Enable PMON + select events */
I915_WRITE(ECR, 0x80000019);
lcfuse = I915_READ(LCFUSE02);
dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
}
static bool intel_enable_rc6(struct drm_device *dev)
{
/*
* Respect the kernel parameter if it is set
*/
if (i915_enable_rc6 >= 0)
return i915_enable_rc6;
/*
* Disable RC6 on Ironlake
*/
if (INTEL_INFO(dev)->gen == 5)
return 0;
/*
* Disable rc6 on Sandybridge
*/
if (INTEL_INFO(dev)->gen == 6) {
DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
return 0;
}
DRM_DEBUG_DRIVER("RC6 enabled\n");
return 1;
}
void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
u32 pcu_mbox, rc6_mask = 0;
u32 gtfifodbg;
int cur_freq, min_freq, max_freq;
int i;
/* Here begins a magic sequence of register writes to enable
* auto-downclocking.
*
* Perhaps there might be some value in exposing these to
* userspace...
*/
I915_WRITE(GEN6_RC_STATE, 0);
mutex_lock(&dev_priv->dev->struct_mutex);
/* Clear the DBG now so we don't confuse earlier errors */
if ((gtfifodbg = I915_READ(GTFIFODBG))) {
DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
I915_WRITE(GTFIFODBG, gtfifodbg);
}
gen6_gt_force_wake_get(dev_priv);
/* disable the counters and set deterministic thresholds */
I915_WRITE(GEN6_RC_CONTROL, 0);
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
for (i = 0; i < I915_NUM_RINGS; i++)
I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
if (intel_enable_rc6(dev_priv->dev))
rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
GEN6_RC_CTL_RC6_ENABLE;
I915_WRITE(GEN6_RC_CONTROL,
rc6_mask |
GEN6_RC_CTL_EI_MODE(1) |
GEN6_RC_CTL_HW_ENABLE);
I915_WRITE(GEN6_RPNSWREQ,
GEN6_FREQUENCY(10) |
GEN6_OFFSET(0) |
GEN6_AGGRESSIVE_TURBO);
I915_WRITE(GEN6_RC_VIDEO_FREQ,
GEN6_FREQUENCY(12));
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
18 << 24 |
6 << 16);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
I915_WRITE(GEN6_RP_UP_EI, 100000);
I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_CONT);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
I915_WRITE(GEN6_PCODE_DATA, 0);
I915_WRITE(GEN6_PCODE_MAILBOX,
GEN6_PCODE_READY |
GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
min_freq = (rp_state_cap & 0xff0000) >> 16;
max_freq = rp_state_cap & 0xff;
cur_freq = (gt_perf_status & 0xff00) >> 8;
/* Check for overclock support */
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
pcu_mbox = I915_READ(GEN6_PCODE_DATA);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
if (pcu_mbox & (1<<31)) { /* OC supported */
max_freq = pcu_mbox & 0xff;
DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
}
/* In units of 100MHz */
dev_priv->max_delay = max_freq;
dev_priv->min_delay = min_freq;
dev_priv->cur_delay = cur_freq;
/* requires MSI enabled */
I915_WRITE(GEN6_PMIER,
GEN6_PM_MBOX_EVENT |
GEN6_PM_THERMAL_EVENT |
GEN6_PM_RP_DOWN_TIMEOUT |
GEN6_PM_RP_UP_THRESHOLD |
GEN6_PM_RP_DOWN_THRESHOLD |
GEN6_PM_RP_UP_EI_EXPIRED |
GEN6_PM_RP_DOWN_EI_EXPIRED);
spin_lock_irq(&dev_priv->rps_lock);
WARN_ON(dev_priv->pm_iir != 0);
I915_WRITE(GEN6_PMIMR, 0);
spin_unlock_irq(&dev_priv->rps_lock);
/* enable all PM interrupts */
I915_WRITE(GEN6_PMINTRMSK, 0);
gen6_gt_force_wake_put(dev_priv);
mutex_unlock(&dev_priv->dev->struct_mutex);
}
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
{
int min_freq = 15;
int gpu_freq, ia_freq, max_ia_freq;
int scaling_factor = 180;
max_ia_freq = cpufreq_quick_get_max(0);
/*
* Default to measured freq if none found, PCU will ensure we don't go
* over
*/
if (!max_ia_freq)
max_ia_freq = tsc_khz;
/* Convert from kHz to MHz */
max_ia_freq /= 1000;
mutex_lock(&dev_priv->dev->struct_mutex);
/*
* For each potential GPU frequency, load a ring frequency we'd like
* to use for memory access. We do this by specifying the IA frequency
* the PCU should use as a reference to determine the ring frequency.
*/
for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
gpu_freq--) {
int diff = dev_priv->max_delay - gpu_freq;
/*
* For GPU frequencies less than 750MHz, just use the lowest
* ring freq.
*/
if (gpu_freq < min_freq)
ia_freq = 800;
else
ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
I915_WRITE(GEN6_PCODE_DATA,
(ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
gpu_freq);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
GEN6_PCODE_READY) == 0, 10)) {
DRM_ERROR("pcode write of freq table timed out\n");
continue;
}
}
mutex_unlock(&dev_priv->dev->struct_mutex);
}
static void ironlake_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
/* Required for FBC */
dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
DPFCRUNIT_CLOCK_GATE_DISABLE |
DPFDUNIT_CLOCK_GATE_DISABLE;
/* Required for CxSR */
dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(PCH_3DCGDIS0,
MARIUNIT_CLOCK_GATE_DISABLE |
SVSMUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(PCH_3DCGDIS1,
VFMUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
/*
* According to the spec the following bits should be set in
* order to enable memory self-refresh
* The bit 22/21 of 0x42004
* The bit 5 of 0x42020
* The bit 15 of 0x45000
*/
I915_WRITE(ILK_DISPLAY_CHICKEN2,
(I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
I915_WRITE(ILK_DSPCLK_GATE,
(I915_READ(ILK_DSPCLK_GATE) |
ILK_DPARB_CLK_GATE));
I915_WRITE(DISP_ARB_CTL,
(I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS));
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
/*
* Based on the document from hardware guys the following bits
* should be set unconditionally in order to enable FBC.
* The bit 22 of 0x42000
* The bit 22 of 0x42004
* The bit 7,8,9 of 0x42020.
*/
if (IS_IRONLAKE_M(dev)) {
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE);
I915_WRITE(ILK_DSPCLK_GATE,
I915_READ(ILK_DSPCLK_GATE) |
ILK_DPFC_DIS1 |
ILK_DPFC_DIS2 |
ILK_CLK_FBC);
}
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
I915_WRITE(_3D_CHICKEN2,
_3D_CHICKEN2_WM_READ_PIPELINED << 16 |
_3D_CHICKEN2_WM_READ_PIPELINED);
}
static void gen6_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
* gating disable must be set. Failure to set it results in
* flickering pixels due to Z write ordering failures after
* some amount of runtime in the Mesa "fire" demo, and Unigine
* Sanctuary and Tropics, and apparently anything else with
* alpha test or pixel discard.
*
* According to the spec, bit 11 (RCCUNIT) must also be set,
* but we didn't debug actual testcases to find it out.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be
* set in order to enable memory self-refresh and fbc:
* The bit21 and bit22 of 0x42000
* The bit21 and bit22 of 0x42004
* The bit5 and bit7 of 0x42020
* The bit14 of 0x70180
* The bit14 of 0x71180
*/
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
I915_WRITE(ILK_DSPCLK_GATE,
I915_READ(ILK_DSPCLK_GATE) |
ILK_DPARB_CLK_GATE |
ILK_DPFD_CLK_GATE);
for_each_pipe(pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_flush_display_plane(dev_priv, pipe);
}
}
static void ivybridge_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
for_each_pipe(pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_flush_display_plane(dev_priv, pipe);
}
}
static void valleyview_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating workaround.
*/
I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
/* This is required by WaCatErrorRejectionIssue */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
for_each_pipe(pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_flush_display_plane(dev_priv, pipe);
}
I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
}
static void g4x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate;
I915_WRITE(RENCLK_GATE_D1, 0);
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
I915_WRITE(RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
}
static void crestline_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(DSPCLK_GATE_D, 0);
I915_WRITE(RAMCLK_GATE_D, 0);
I915_WRITE16(DEUC, 0);
}
static void broadwater_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
}
static void gen3_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dstate = I915_READ(D_STATE);
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
I915_WRITE(D_STATE, dstate);
}
static void i85x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}
static void i830_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}
static void ibx_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
static void cpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
DPLS_EDP_PPS_FIX_DIS);
/* Without this, mode sets may fail silently on FDI */
for_each_pipe(pipe)
I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
}
static void ironlake_teardown_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->renderctx) {
i915_gem_object_unpin(dev_priv->renderctx);
drm_gem_object_unreference(&dev_priv->renderctx->base);
dev_priv->renderctx = NULL;
}
if (dev_priv->pwrctx) {
i915_gem_object_unpin(dev_priv->pwrctx);
drm_gem_object_unreference(&dev_priv->pwrctx->base);
dev_priv->pwrctx = NULL;
}
}
static void ironlake_disable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (I915_READ(PWRCTXA)) {
/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
50);
I915_WRITE(PWRCTXA, 0);
POSTING_READ(PWRCTXA);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
POSTING_READ(RSTDBYCTL);
}
ironlake_teardown_rc6(dev);
}
static int ironlake_setup_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->renderctx == NULL)
dev_priv->renderctx = intel_alloc_context_page(dev);
if (!dev_priv->renderctx)
return -ENOMEM;
if (dev_priv->pwrctx == NULL)
dev_priv->pwrctx = intel_alloc_context_page(dev);
if (!dev_priv->pwrctx) {
ironlake_teardown_rc6(dev);
return -ENOMEM;
}
return 0;
}
void ironlake_enable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
/* rc6 disabled by default due to repeated reports of hanging during
* boot and resume.
*/
if (!intel_enable_rc6(dev))
return;
mutex_lock(&dev->struct_mutex);
ret = ironlake_setup_rc6(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return;
}
/*
* GPU can automatically power down the render unit if given a page
* to save state.
*/
ret = BEGIN_LP_RING(6);
if (ret) {
ironlake_teardown_rc6(dev);
mutex_unlock(&dev->struct_mutex);
return;
}
OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
OUT_RING(MI_SET_CONTEXT);
OUT_RING(dev_priv->renderctx->gtt_offset |
MI_MM_SPACE_GTT |
MI_SAVE_EXT_STATE_EN |
MI_RESTORE_EXT_STATE_EN |
MI_RESTORE_INHIBIT);
OUT_RING(MI_SUSPEND_FLUSH);
OUT_RING(MI_NOOP);
OUT_RING(MI_FLUSH);
ADVANCE_LP_RING();
/*
* Wait for the command parser to advance past MI_SET_CONTEXT. The HW
* does an implicit flush, combined with MI_FLUSH above, it should be
* safe to assume that renderctx is valid
*/
ret = intel_wait_ring_idle(LP_RING(dev_priv));
if (ret) {
DRM_ERROR("failed to enable ironlake power power savings\n");
ironlake_teardown_rc6(dev);
mutex_unlock(&dev->struct_mutex);
return;
}
I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
mutex_unlock(&dev->struct_mutex);
}
void intel_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->display.init_clock_gating(dev);
if (dev_priv->display.init_pch_clock_gating)
dev_priv->display.init_pch_clock_gating(dev);
}
/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* We always want a DPMS function */
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.dpms = ironlake_crtc_dpms;
dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
dev_priv->display.update_plane = ironlake_update_plane;
} else {
dev_priv->display.dpms = i9xx_crtc_dpms;
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
dev_priv->display.update_plane = i9xx_update_plane;
}
if (I915_HAS_FBC(dev)) {
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
dev_priv->display.enable_fbc = ironlake_enable_fbc;
dev_priv->display.disable_fbc = ironlake_disable_fbc;
} else if (IS_GM45(dev)) {
dev_priv->display.fbc_enabled = g4x_fbc_enabled;
dev_priv->display.enable_fbc = g4x_enable_fbc;
dev_priv->display.disable_fbc = g4x_disable_fbc;
} else if (IS_CRESTLINE(dev)) {
dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
dev_priv->display.enable_fbc = i8xx_enable_fbc;
dev_priv->display.disable_fbc = i8xx_disable_fbc;
}
/* 855GM needs testing */
}
/* Returns the core display clock speed */
if (IS_VALLEYVIEW(dev))
dev_priv->display.get_display_clock_speed =
valleyview_get_display_clock_speed;
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
i915_get_display_clock_speed;
else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
dev_priv->display.get_display_clock_speed =
i9xx_misc_get_display_clock_speed;
else if (IS_I915GM(dev))
dev_priv->display.get_display_clock_speed =
i915gm_get_display_clock_speed;
else if (IS_I865G(dev))
dev_priv->display.get_display_clock_speed =
i865_get_display_clock_speed;
else if (IS_I85X(dev))
dev_priv->display.get_display_clock_speed =
i855_get_display_clock_speed;
else /* 852, 830 */
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
/* For FIFO watermark updates */
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
/* IVB configs may use multi-threaded forcewake */
if (IS_IVYBRIDGE(dev)) {
u32 ecobus;
/* A small trick here - if the bios hasn't configured MT forcewake,
* and if the device is in RC6, then force_wake_mt_get will not wake
* the device and the ECOBUS read will return zero. Which will be
* (correctly) interpreted by the test below as MT forcewake being
* disabled.
*/
mutex_lock(&dev->struct_mutex);
__gen6_gt_force_wake_mt_get(dev_priv);
ecobus = I915_READ_NOTRACE(ECOBUS);
__gen6_gt_force_wake_mt_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
if (ecobus & FORCEWAKE_MT_ENABLE) {
DRM_DEBUG_KMS("Using MT version of forcewake\n");
dev_priv->display.force_wake_get =
__gen6_gt_force_wake_mt_get;
dev_priv->display.force_wake_put =
__gen6_gt_force_wake_mt_put;
}
}
if (HAS_PCH_IBX(dev))
dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
else if (HAS_PCH_CPT(dev))
dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
if (IS_GEN5(dev)) {
if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
dev_priv->display.update_wm = ironlake_update_wm;
else {
DRM_DEBUG_KMS("Failed to get proper latency. "
"Disable CxSR\n");
dev_priv->display.update_wm = NULL;
}
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_GEN6(dev)) {
if (SNB_READ_WM0_LATENCY()) {
dev_priv->display.update_wm = sandybridge_update_wm;
dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
dev_priv->display.update_wm = NULL;
}
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_IVYBRIDGE(dev)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
if (SNB_READ_WM0_LATENCY()) {
dev_priv->display.update_wm = sandybridge_update_wm;
dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
dev_priv->display.update_wm = NULL;
}
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
dev_priv->display.write_eld = ironlake_write_eld;
} else
dev_priv->display.update_wm = NULL;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.update_wm = valleyview_update_wm;
dev_priv->display.init_clock_gating =
valleyview_init_clock_gating;
} else if (IS_PINEVIEW(dev)) {
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq)) {
DRM_INFO("failed to find known CxSR latency "
"(found ddr%s fsb freq %d, mem freq %d), "
"disabling CxSR\n",
(dev_priv->is_ddr3 == 1) ? "3" : "2",
dev_priv->fsb_freq, dev_priv->mem_freq);
/* Disable CxSR and never update its watermark again */
pineview_disable_cxsr(dev);
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pineview_update_wm;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_G4X(dev)) {
dev_priv->display.write_eld = g4x_write_eld;
dev_priv->display.update_wm = g4x_update_wm;
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
} else if (IS_GEN4(dev)) {
dev_priv->display.update_wm = i965_update_wm;
if (IS_CRESTLINE(dev))
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
else if (IS_BROADWATER(dev))
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
} else if (IS_GEN3(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_I865G(dev)) {
dev_priv->display.update_wm = i830_update_wm;
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
} else if (IS_I85X(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i85x_get_fifo_size;
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
} else {
dev_priv->display.update_wm = i830_update_wm;
dev_priv->display.init_clock_gating = i830_init_clock_gating;
if (IS_845G(dev))
dev_priv->display.get_fifo_size = i845_get_fifo_size;
else
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
/* Default just returns -ENODEV to indicate unsupported */
dev_priv->display.queue_flip = intel_default_queue_flip;
switch (INTEL_INFO(dev)->gen) {
case 2:
dev_priv->display.queue_flip = intel_gen2_queue_flip;
break;
case 3:
dev_priv->display.queue_flip = intel_gen3_queue_flip;
break;
case 4:
case 5:
dev_priv->display.queue_flip = intel_gen4_queue_flip;
break;
case 6:
dev_priv->display.queue_flip = intel_gen6_queue_flip;
break;
case 7:
dev_priv->display.queue_flip = intel_gen7_queue_flip;
break;
}
}
/*
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
* resume, or other times. This quirk makes sure that's the case for
* affected systems.
*/
static void quirk_pipea_force(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
}
/*
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
*/
static void quirk_ssc_force_disable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
}
/*
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
* brightness value
*/
static void quirk_invert_brightness(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
}
struct intel_quirk {
int device;
int subsystem_vendor;
int subsystem_device;
void (*hook)(struct drm_device *dev);
};
struct intel_quirk intel_quirks[] = {
/* HP Mini needs pipe A force quirk (LP: #322104) */
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
/* Thinkpad R31 needs pipe A force quirk */
{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
{ 0x3577, 0x1014, 0x0513, quirk_pipea_force },
/* ThinkPad X40 needs pipe A force quirk */
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
/* 855 & before need to leave pipe A & dpll A up */
{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
/* Lenovo U160 cannot use SSC on LVDS */
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
/* Sony Vaio Y cannot use SSC on LVDS */
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
/* Acer Aspire 5734Z must invert backlight brightness */
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
};
static void intel_init_quirks(struct drm_device *dev)
{
struct pci_dev *d = dev->pdev;
int i;
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
struct intel_quirk *q = &intel_quirks[i];
if (d->device == q->device &&
(d->subsystem_vendor == q->subsystem_vendor ||
q->subsystem_vendor == PCI_ANY_ID) &&
(d->subsystem_device == q->subsystem_device ||
q->subsystem_device == PCI_ANY_ID))
q->hook(dev);
}
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u8 sr1;
u32 vga_reg;
if (HAS_PCH_SPLIT(dev))
vga_reg = CPU_VGACNTRL;
else
vga_reg = VGACNTRL;
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(1, VGA_SR_INDEX);
sr1 = inb(VGA_SR_DATA);
outb(sr1 | 1<<5, VGA_SR_DATA);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
POSTING_READ(vga_reg);
}
void intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i, ret;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
dev->mode_config.funcs = (void *)&intel_mode_funcs;
intel_init_quirks(dev);
intel_init_display(dev);
if (IS_GEN2(dev)) {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
} else if (IS_GEN3(dev)) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
}
dev->mode_config.fb_base = dev->agp->base;
DRM_DEBUG_KMS("%d display pipe%s available.\n",
dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
for (i = 0; i < dev_priv->num_pipe; i++) {
intel_crtc_init(dev, i);
ret = intel_plane_init(dev, i);
if (ret)
DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
}
/* Just disable it once at startup */
i915_disable_vga(dev);
intel_setup_outputs(dev);
intel_init_clock_gating(dev);
if (IS_IRONLAKE_M(dev)) {
ironlake_enable_drps(dev);
intel_init_emon(dev);
}
if (IS_GEN6(dev) || IS_GEN7(dev)) {
gen6_enable_rps(dev_priv);
gen6_update_ring_freq(dev_priv);
}
INIT_WORK(&dev_priv->idle_work, intel_idle_update);
setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
(unsigned long)dev);
}
void intel_modeset_gem_init(struct drm_device *dev)
{
if (IS_IRONLAKE_M(dev))
ironlake_enable_rc6(dev);
intel_setup_overlay(dev);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
drm_kms_helper_poll_fini(dev);
mutex_lock(&dev->struct_mutex);
intel_unregister_dsm_handler();
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
/* Skip inactive CRTCs */
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
intel_increase_pllclock(crtc);
}
intel_disable_fbc(dev);
if (IS_IRONLAKE_M(dev))
ironlake_disable_drps(dev);
if (IS_GEN6(dev) || IS_GEN7(dev))
gen6_disable_rps(dev);
if (IS_IRONLAKE_M(dev))
ironlake_disable_rc6(dev);
if (IS_VALLEYVIEW(dev))
vlv_init_dpio(dev);
mutex_unlock(&dev->struct_mutex);
/* Disable the irq before mode object teardown, for the irq might
* enqueue unpin/hotplug work. */
drm_irq_uninstall(dev);
cancel_work_sync(&dev_priv->hotplug_work);
cancel_work_sync(&dev_priv->rps_work);
/* flush any delayed tasks or pending work */
flush_scheduled_work();
/* Shut off idle work before the crtcs get freed. */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
intel_crtc = to_intel_crtc(crtc);
del_timer_sync(&intel_crtc->idle_timer);
}
del_timer_sync(&dev_priv->idle_timer);
cancel_work_sync(&dev_priv->idle_work);
drm_mode_config_cleanup(dev);
}
/*
* Return which encoder is currently attached for connector.
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
return &intel_attached_encoder(connector)->base;
}
void intel_connector_attach_encoder(struct intel_connector *connector,
struct intel_encoder *encoder)
{
connector->encoder = encoder;
drm_mode_connector_attach_encoder(&connector->base,
&encoder->base);
}
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 gmch_ctrl;
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
return 0;
}
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
struct intel_display_error_state {
struct intel_cursor_error_state {
u32 control;
u32 position;
u32 base;
u32 size;
} cursor[2];
struct intel_pipe_error_state {
u32 conf;
u32 source;
u32 htotal;
u32 hblank;
u32 hsync;
u32 vtotal;
u32 vblank;
u32 vsync;
} pipe[2];
struct intel_plane_error_state {
u32 control;
u32 stride;
u32 size;
u32 pos;
u32 addr;
u32 surface;
u32 tile_offset;
} plane[2];
};
struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_display_error_state *error;
int i;
error = kmalloc(sizeof(*error), GFP_ATOMIC);
if (error == NULL)
return NULL;
for (i = 0; i < 2; i++) {
error->cursor[i].control = I915_READ(CURCNTR(i));
error->cursor[i].position = I915_READ(CURPOS(i));
error->cursor[i].base = I915_READ(CURBASE(i));
error->plane[i].control = I915_READ(DSPCNTR(i));
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
error->plane[i].size = I915_READ(DSPSIZE(i));
error->plane[i].pos = I915_READ(DSPPOS(i));
error->plane[i].addr = I915_READ(DSPADDR(i));
if (INTEL_INFO(dev)->gen >= 4) {
error->plane[i].surface = I915_READ(DSPSURF(i));
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
}
error->pipe[i].conf = I915_READ(PIPECONF(i));
error->pipe[i].source = I915_READ(PIPESRC(i));
error->pipe[i].htotal = I915_READ(HTOTAL(i));
error->pipe[i].hblank = I915_READ(HBLANK(i));
error->pipe[i].hsync = I915_READ(HSYNC(i));
error->pipe[i].vtotal = I915_READ(VTOTAL(i));
error->pipe[i].vblank = I915_READ(VBLANK(i));
error->pipe[i].vsync = I915_READ(VSYNC(i));
}
return error;
}
void
intel_display_print_error_state(struct seq_file *m,
struct drm_device *dev,
struct intel_display_error_state *error)
{
int i;
for (i = 0; i < 2; i++) {
seq_printf(m, "Pipe [%d]:\n", i);
seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
seq_printf(m, "Plane [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
seq_printf(m, " POS: %08x\n", error->plane[i].pos);
seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
if (INTEL_INFO(dev)->gen >= 4) {
seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
}
seq_printf(m, "Cursor [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
seq_printf(m, " POS: %08x\n", error->cursor[i].position);
seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
}
}
#endif