mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 00:16:18 +07:00
2a51c1e8ec
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
579 lines
14 KiB
C
579 lines
14 KiB
C
/*
|
|
* net/sched/sch_tbf.c Token Bucket Filter queue.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
* Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
|
|
* original idea by Martin Devera
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/skbuff.h>
|
|
#include <net/netlink.h>
|
|
#include <net/sch_generic.h>
|
|
#include <net/pkt_sched.h>
|
|
|
|
|
|
/* Simple Token Bucket Filter.
|
|
=======================================
|
|
|
|
SOURCE.
|
|
-------
|
|
|
|
None.
|
|
|
|
Description.
|
|
------------
|
|
|
|
A data flow obeys TBF with rate R and depth B, if for any
|
|
time interval t_i...t_f the number of transmitted bits
|
|
does not exceed B + R*(t_f-t_i).
|
|
|
|
Packetized version of this definition:
|
|
The sequence of packets of sizes s_i served at moments t_i
|
|
obeys TBF, if for any i<=k:
|
|
|
|
s_i+....+s_k <= B + R*(t_k - t_i)
|
|
|
|
Algorithm.
|
|
----------
|
|
|
|
Let N(t_i) be B/R initially and N(t) grow continuously with time as:
|
|
|
|
N(t+delta) = min{B/R, N(t) + delta}
|
|
|
|
If the first packet in queue has length S, it may be
|
|
transmitted only at the time t_* when S/R <= N(t_*),
|
|
and in this case N(t) jumps:
|
|
|
|
N(t_* + 0) = N(t_* - 0) - S/R.
|
|
|
|
|
|
|
|
Actually, QoS requires two TBF to be applied to a data stream.
|
|
One of them controls steady state burst size, another
|
|
one with rate P (peak rate) and depth M (equal to link MTU)
|
|
limits bursts at a smaller time scale.
|
|
|
|
It is easy to see that P>R, and B>M. If P is infinity, this double
|
|
TBF is equivalent to a single one.
|
|
|
|
When TBF works in reshaping mode, latency is estimated as:
|
|
|
|
lat = max ((L-B)/R, (L-M)/P)
|
|
|
|
|
|
NOTES.
|
|
------
|
|
|
|
If TBF throttles, it starts a watchdog timer, which will wake it up
|
|
when it is ready to transmit.
|
|
Note that the minimal timer resolution is 1/HZ.
|
|
If no new packets arrive during this period,
|
|
or if the device is not awaken by EOI for some previous packet,
|
|
TBF can stop its activity for 1/HZ.
|
|
|
|
|
|
This means, that with depth B, the maximal rate is
|
|
|
|
R_crit = B*HZ
|
|
|
|
F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
|
|
|
|
Note that the peak rate TBF is much more tough: with MTU 1500
|
|
P_crit = 150Kbytes/sec. So, if you need greater peak
|
|
rates, use alpha with HZ=1000 :-)
|
|
|
|
With classful TBF, limit is just kept for backwards compatibility.
|
|
It is passed to the default bfifo qdisc - if the inner qdisc is
|
|
changed the limit is not effective anymore.
|
|
*/
|
|
|
|
struct tbf_sched_data {
|
|
/* Parameters */
|
|
u32 limit; /* Maximal length of backlog: bytes */
|
|
u32 max_size;
|
|
s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
|
|
s64 mtu;
|
|
struct psched_ratecfg rate;
|
|
struct psched_ratecfg peak;
|
|
|
|
/* Variables */
|
|
s64 tokens; /* Current number of B tokens */
|
|
s64 ptokens; /* Current number of P tokens */
|
|
s64 t_c; /* Time check-point */
|
|
struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
|
|
struct qdisc_watchdog watchdog; /* Watchdog timer */
|
|
};
|
|
|
|
|
|
/* Time to Length, convert time in ns to length in bytes
|
|
* to determinate how many bytes can be sent in given time.
|
|
*/
|
|
static u64 psched_ns_t2l(const struct psched_ratecfg *r,
|
|
u64 time_in_ns)
|
|
{
|
|
/* The formula is :
|
|
* len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
|
|
*/
|
|
u64 len = time_in_ns * r->rate_bytes_ps;
|
|
|
|
do_div(len, NSEC_PER_SEC);
|
|
|
|
if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
|
|
do_div(len, 53);
|
|
len = len * 48;
|
|
}
|
|
|
|
if (len > r->overhead)
|
|
len -= r->overhead;
|
|
else
|
|
len = 0;
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* Return length of individual segments of a gso packet,
|
|
* including all headers (MAC, IP, TCP/UDP)
|
|
*/
|
|
static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
|
|
{
|
|
unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
|
|
return hdr_len + skb_gso_transport_seglen(skb);
|
|
}
|
|
|
|
/* GSO packet is too big, segment it so that tbf can transmit
|
|
* each segment in time
|
|
*/
|
|
static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *segs, *nskb;
|
|
netdev_features_t features = netif_skb_features(skb);
|
|
unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
|
|
int ret, nb;
|
|
|
|
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
|
|
|
|
if (IS_ERR_OR_NULL(segs))
|
|
return qdisc_reshape_fail(skb, sch);
|
|
|
|
nb = 0;
|
|
while (segs) {
|
|
nskb = segs->next;
|
|
segs->next = NULL;
|
|
qdisc_skb_cb(segs)->pkt_len = segs->len;
|
|
len += segs->len;
|
|
ret = qdisc_enqueue(segs, q->qdisc);
|
|
if (ret != NET_XMIT_SUCCESS) {
|
|
if (net_xmit_drop_count(ret))
|
|
qdisc_qstats_drop(sch);
|
|
} else {
|
|
nb++;
|
|
}
|
|
segs = nskb;
|
|
}
|
|
sch->q.qlen += nb;
|
|
if (nb > 1)
|
|
qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
|
|
consume_skb(skb);
|
|
return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
|
|
}
|
|
|
|
static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
int ret;
|
|
|
|
if (qdisc_pkt_len(skb) > q->max_size) {
|
|
if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
|
|
return tbf_segment(skb, sch);
|
|
return qdisc_reshape_fail(skb, sch);
|
|
}
|
|
ret = qdisc_enqueue(skb, q->qdisc);
|
|
if (ret != NET_XMIT_SUCCESS) {
|
|
if (net_xmit_drop_count(ret))
|
|
qdisc_qstats_drop(sch);
|
|
return ret;
|
|
}
|
|
|
|
sch->q.qlen++;
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static unsigned int tbf_drop(struct Qdisc *sch)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
unsigned int len = 0;
|
|
|
|
if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
|
|
sch->q.qlen--;
|
|
qdisc_qstats_drop(sch);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static bool tbf_peak_present(const struct tbf_sched_data *q)
|
|
{
|
|
return q->peak.rate_bytes_ps;
|
|
}
|
|
|
|
static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb;
|
|
|
|
skb = q->qdisc->ops->peek(q->qdisc);
|
|
|
|
if (skb) {
|
|
s64 now;
|
|
s64 toks;
|
|
s64 ptoks = 0;
|
|
unsigned int len = qdisc_pkt_len(skb);
|
|
|
|
now = ktime_get_ns();
|
|
toks = min_t(s64, now - q->t_c, q->buffer);
|
|
|
|
if (tbf_peak_present(q)) {
|
|
ptoks = toks + q->ptokens;
|
|
if (ptoks > q->mtu)
|
|
ptoks = q->mtu;
|
|
ptoks -= (s64) psched_l2t_ns(&q->peak, len);
|
|
}
|
|
toks += q->tokens;
|
|
if (toks > q->buffer)
|
|
toks = q->buffer;
|
|
toks -= (s64) psched_l2t_ns(&q->rate, len);
|
|
|
|
if ((toks|ptoks) >= 0) {
|
|
skb = qdisc_dequeue_peeked(q->qdisc);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
q->t_c = now;
|
|
q->tokens = toks;
|
|
q->ptokens = ptoks;
|
|
sch->q.qlen--;
|
|
qdisc_unthrottled(sch);
|
|
qdisc_bstats_update(sch, skb);
|
|
return skb;
|
|
}
|
|
|
|
qdisc_watchdog_schedule_ns(&q->watchdog,
|
|
now + max_t(long, -toks, -ptoks),
|
|
true);
|
|
|
|
/* Maybe we have a shorter packet in the queue,
|
|
which can be sent now. It sounds cool,
|
|
but, however, this is wrong in principle.
|
|
We MUST NOT reorder packets under these circumstances.
|
|
|
|
Really, if we split the flow into independent
|
|
subflows, it would be a very good solution.
|
|
This is the main idea of all FQ algorithms
|
|
(cf. CSZ, HPFQ, HFSC)
|
|
*/
|
|
|
|
qdisc_qstats_overlimit(sch);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void tbf_reset(struct Qdisc *sch)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
|
|
qdisc_reset(q->qdisc);
|
|
sch->q.qlen = 0;
|
|
q->t_c = ktime_get_ns();
|
|
q->tokens = q->buffer;
|
|
q->ptokens = q->mtu;
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
}
|
|
|
|
static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
|
|
[TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
|
|
[TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
|
|
[TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
|
|
[TCA_TBF_RATE64] = { .type = NLA_U64 },
|
|
[TCA_TBF_PRATE64] = { .type = NLA_U64 },
|
|
[TCA_TBF_BURST] = { .type = NLA_U32 },
|
|
[TCA_TBF_PBURST] = { .type = NLA_U32 },
|
|
};
|
|
|
|
static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
int err;
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *tb[TCA_TBF_MAX + 1];
|
|
struct tc_tbf_qopt *qopt;
|
|
struct Qdisc *child = NULL;
|
|
struct psched_ratecfg rate;
|
|
struct psched_ratecfg peak;
|
|
u64 max_size;
|
|
s64 buffer, mtu;
|
|
u64 rate64 = 0, prate64 = 0;
|
|
|
|
err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = -EINVAL;
|
|
if (tb[TCA_TBF_PARMS] == NULL)
|
|
goto done;
|
|
|
|
qopt = nla_data(tb[TCA_TBF_PARMS]);
|
|
if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
|
|
qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
|
|
tb[TCA_TBF_RTAB]));
|
|
|
|
if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
|
|
qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
|
|
tb[TCA_TBF_PTAB]));
|
|
|
|
buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
|
|
mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
|
|
|
|
if (tb[TCA_TBF_RATE64])
|
|
rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
|
|
psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
|
|
|
|
if (tb[TCA_TBF_BURST]) {
|
|
max_size = nla_get_u32(tb[TCA_TBF_BURST]);
|
|
buffer = psched_l2t_ns(&rate, max_size);
|
|
} else {
|
|
max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
|
|
}
|
|
|
|
if (qopt->peakrate.rate) {
|
|
if (tb[TCA_TBF_PRATE64])
|
|
prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
|
|
psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
|
|
if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
|
|
pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
|
|
peak.rate_bytes_ps, rate.rate_bytes_ps);
|
|
err = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
if (tb[TCA_TBF_PBURST]) {
|
|
u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
|
|
max_size = min_t(u32, max_size, pburst);
|
|
mtu = psched_l2t_ns(&peak, pburst);
|
|
} else {
|
|
max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
|
|
}
|
|
} else {
|
|
memset(&peak, 0, sizeof(peak));
|
|
}
|
|
|
|
if (max_size < psched_mtu(qdisc_dev(sch)))
|
|
pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
|
|
max_size, qdisc_dev(sch)->name,
|
|
psched_mtu(qdisc_dev(sch)));
|
|
|
|
if (!max_size) {
|
|
err = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
if (q->qdisc != &noop_qdisc) {
|
|
err = fifo_set_limit(q->qdisc, qopt->limit);
|
|
if (err)
|
|
goto done;
|
|
} else if (qopt->limit > 0) {
|
|
child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
|
|
if (IS_ERR(child)) {
|
|
err = PTR_ERR(child);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
sch_tree_lock(sch);
|
|
if (child) {
|
|
qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
|
|
q->qdisc->qstats.backlog);
|
|
qdisc_destroy(q->qdisc);
|
|
q->qdisc = child;
|
|
}
|
|
q->limit = qopt->limit;
|
|
if (tb[TCA_TBF_PBURST])
|
|
q->mtu = mtu;
|
|
else
|
|
q->mtu = PSCHED_TICKS2NS(qopt->mtu);
|
|
q->max_size = max_size;
|
|
if (tb[TCA_TBF_BURST])
|
|
q->buffer = buffer;
|
|
else
|
|
q->buffer = PSCHED_TICKS2NS(qopt->buffer);
|
|
q->tokens = q->buffer;
|
|
q->ptokens = q->mtu;
|
|
|
|
memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
|
|
memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
|
|
|
|
sch_tree_unlock(sch);
|
|
err = 0;
|
|
done:
|
|
return err;
|
|
}
|
|
|
|
static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
|
|
if (opt == NULL)
|
|
return -EINVAL;
|
|
|
|
q->t_c = ktime_get_ns();
|
|
qdisc_watchdog_init(&q->watchdog, sch);
|
|
q->qdisc = &noop_qdisc;
|
|
|
|
return tbf_change(sch, opt);
|
|
}
|
|
|
|
static void tbf_destroy(struct Qdisc *sch)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
qdisc_destroy(q->qdisc);
|
|
}
|
|
|
|
static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *nest;
|
|
struct tc_tbf_qopt opt;
|
|
|
|
sch->qstats.backlog = q->qdisc->qstats.backlog;
|
|
nest = nla_nest_start(skb, TCA_OPTIONS);
|
|
if (nest == NULL)
|
|
goto nla_put_failure;
|
|
|
|
opt.limit = q->limit;
|
|
psched_ratecfg_getrate(&opt.rate, &q->rate);
|
|
if (tbf_peak_present(q))
|
|
psched_ratecfg_getrate(&opt.peakrate, &q->peak);
|
|
else
|
|
memset(&opt.peakrate, 0, sizeof(opt.peakrate));
|
|
opt.mtu = PSCHED_NS2TICKS(q->mtu);
|
|
opt.buffer = PSCHED_NS2TICKS(q->buffer);
|
|
if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
|
|
goto nla_put_failure;
|
|
if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
|
|
nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
|
|
TCA_TBF_PAD))
|
|
goto nla_put_failure;
|
|
if (tbf_peak_present(q) &&
|
|
q->peak.rate_bytes_ps >= (1ULL << 32) &&
|
|
nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
|
|
TCA_TBF_PAD))
|
|
goto nla_put_failure;
|
|
|
|
return nla_nest_end(skb, nest);
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(skb, nest);
|
|
return -1;
|
|
}
|
|
|
|
static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
|
|
struct sk_buff *skb, struct tcmsg *tcm)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
|
|
tcm->tcm_handle |= TC_H_MIN(1);
|
|
tcm->tcm_info = q->qdisc->handle;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
|
|
struct Qdisc **old)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
|
|
if (new == NULL)
|
|
new = &noop_qdisc;
|
|
|
|
*old = qdisc_replace(sch, new, &q->qdisc);
|
|
return 0;
|
|
}
|
|
|
|
static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct tbf_sched_data *q = qdisc_priv(sch);
|
|
return q->qdisc;
|
|
}
|
|
|
|
static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static void tbf_put(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
}
|
|
|
|
static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
|
|
{
|
|
if (!walker->stop) {
|
|
if (walker->count >= walker->skip)
|
|
if (walker->fn(sch, 1, walker) < 0) {
|
|
walker->stop = 1;
|
|
return;
|
|
}
|
|
walker->count++;
|
|
}
|
|
}
|
|
|
|
static const struct Qdisc_class_ops tbf_class_ops = {
|
|
.graft = tbf_graft,
|
|
.leaf = tbf_leaf,
|
|
.get = tbf_get,
|
|
.put = tbf_put,
|
|
.walk = tbf_walk,
|
|
.dump = tbf_dump_class,
|
|
};
|
|
|
|
static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
|
|
.next = NULL,
|
|
.cl_ops = &tbf_class_ops,
|
|
.id = "tbf",
|
|
.priv_size = sizeof(struct tbf_sched_data),
|
|
.enqueue = tbf_enqueue,
|
|
.dequeue = tbf_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.drop = tbf_drop,
|
|
.init = tbf_init,
|
|
.reset = tbf_reset,
|
|
.destroy = tbf_destroy,
|
|
.change = tbf_change,
|
|
.dump = tbf_dump,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init tbf_module_init(void)
|
|
{
|
|
return register_qdisc(&tbf_qdisc_ops);
|
|
}
|
|
|
|
static void __exit tbf_module_exit(void)
|
|
{
|
|
unregister_qdisc(&tbf_qdisc_ops);
|
|
}
|
|
module_init(tbf_module_init)
|
|
module_exit(tbf_module_exit)
|
|
MODULE_LICENSE("GPL");
|