linux_dsm_epyc7002/drivers/media/platform/stm32/stm32-dcmi.c
Sakari Ailus 60359a28d5 media: v4l: fwnode: Initialise the V4L2 fwnode endpoints to zero
Initialise the V4L2 fwnode endpoints to zero in all drivers using
v4l2_fwnode_endpoint_parse(). This prepares for setting default endpoint
flags as well as the bus type. Setting bus type to zero will continue to
guess the bus among the guessable set (parallel, Bt.656 and CSI-2 D-PHY).

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Tested-by: Steve Longerbeam <steve_longerbeam@mentor.com>
Tested-by: Jacopo Mondi <jacopo+renesas@jmondi.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2018-10-04 16:21:02 -04:00

1885 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface
*
* Copyright (C) STMicroelectronics SA 2017
* Authors: Yannick Fertre <yannick.fertre@st.com>
* Hugues Fruchet <hugues.fruchet@st.com>
* for STMicroelectronics.
*
* This driver is based on atmel_isi.c
*
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/videodev2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-rect.h>
#include <media/videobuf2-dma-contig.h>
#define DRV_NAME "stm32-dcmi"
/* Registers offset for DCMI */
#define DCMI_CR 0x00 /* Control Register */
#define DCMI_SR 0x04 /* Status Register */
#define DCMI_RIS 0x08 /* Raw Interrupt Status register */
#define DCMI_IER 0x0C /* Interrupt Enable Register */
#define DCMI_MIS 0x10 /* Masked Interrupt Status register */
#define DCMI_ICR 0x14 /* Interrupt Clear Register */
#define DCMI_ESCR 0x18 /* Embedded Synchronization Code Register */
#define DCMI_ESUR 0x1C /* Embedded Synchronization Unmask Register */
#define DCMI_CWSTRT 0x20 /* Crop Window STaRT */
#define DCMI_CWSIZE 0x24 /* Crop Window SIZE */
#define DCMI_DR 0x28 /* Data Register */
#define DCMI_IDR 0x2C /* IDentifier Register */
/* Bits definition for control register (DCMI_CR) */
#define CR_CAPTURE BIT(0)
#define CR_CM BIT(1)
#define CR_CROP BIT(2)
#define CR_JPEG BIT(3)
#define CR_ESS BIT(4)
#define CR_PCKPOL BIT(5)
#define CR_HSPOL BIT(6)
#define CR_VSPOL BIT(7)
#define CR_FCRC_0 BIT(8)
#define CR_FCRC_1 BIT(9)
#define CR_EDM_0 BIT(10)
#define CR_EDM_1 BIT(11)
#define CR_ENABLE BIT(14)
/* Bits definition for status register (DCMI_SR) */
#define SR_HSYNC BIT(0)
#define SR_VSYNC BIT(1)
#define SR_FNE BIT(2)
/*
* Bits definition for interrupt registers
* (DCMI_RIS, DCMI_IER, DCMI_MIS, DCMI_ICR)
*/
#define IT_FRAME BIT(0)
#define IT_OVR BIT(1)
#define IT_ERR BIT(2)
#define IT_VSYNC BIT(3)
#define IT_LINE BIT(4)
enum state {
STOPPED = 0,
WAIT_FOR_BUFFER,
RUNNING,
};
#define MIN_WIDTH 16U
#define MAX_WIDTH 2592U
#define MIN_HEIGHT 16U
#define MAX_HEIGHT 2592U
#define TIMEOUT_MS 1000
struct dcmi_graph_entity {
struct device_node *node;
struct v4l2_async_subdev asd;
struct v4l2_subdev *subdev;
};
struct dcmi_format {
u32 fourcc;
u32 mbus_code;
u8 bpp;
};
struct dcmi_framesize {
u32 width;
u32 height;
};
struct dcmi_buf {
struct vb2_v4l2_buffer vb;
bool prepared;
dma_addr_t paddr;
size_t size;
struct list_head list;
};
struct stm32_dcmi {
/* Protects the access of variables shared within the interrupt */
spinlock_t irqlock;
struct device *dev;
void __iomem *regs;
struct resource *res;
struct reset_control *rstc;
int sequence;
struct list_head buffers;
struct dcmi_buf *active;
struct v4l2_device v4l2_dev;
struct video_device *vdev;
struct v4l2_async_notifier notifier;
struct dcmi_graph_entity entity;
struct v4l2_format fmt;
struct v4l2_rect crop;
bool do_crop;
const struct dcmi_format **sd_formats;
unsigned int num_of_sd_formats;
const struct dcmi_format *sd_format;
struct dcmi_framesize *sd_framesizes;
unsigned int num_of_sd_framesizes;
struct dcmi_framesize sd_framesize;
struct v4l2_rect sd_bounds;
/* Protect this data structure */
struct mutex lock;
struct vb2_queue queue;
struct v4l2_fwnode_bus_parallel bus;
struct completion complete;
struct clk *mclk;
enum state state;
struct dma_chan *dma_chan;
dma_cookie_t dma_cookie;
u32 misr;
int errors_count;
int overrun_count;
int buffers_count;
};
static inline struct stm32_dcmi *notifier_to_dcmi(struct v4l2_async_notifier *n)
{
return container_of(n, struct stm32_dcmi, notifier);
}
static inline u32 reg_read(void __iomem *base, u32 reg)
{
return readl_relaxed(base + reg);
}
static inline void reg_write(void __iomem *base, u32 reg, u32 val)
{
writel_relaxed(val, base + reg);
}
static inline void reg_set(void __iomem *base, u32 reg, u32 mask)
{
reg_write(base, reg, reg_read(base, reg) | mask);
}
static inline void reg_clear(void __iomem *base, u32 reg, u32 mask)
{
reg_write(base, reg, reg_read(base, reg) & ~mask);
}
static int dcmi_start_capture(struct stm32_dcmi *dcmi, struct dcmi_buf *buf);
static void dcmi_buffer_done(struct stm32_dcmi *dcmi,
struct dcmi_buf *buf,
size_t bytesused,
int err)
{
struct vb2_v4l2_buffer *vbuf;
if (!buf)
return;
list_del_init(&buf->list);
vbuf = &buf->vb;
vbuf->sequence = dcmi->sequence++;
vbuf->field = V4L2_FIELD_NONE;
vbuf->vb2_buf.timestamp = ktime_get_ns();
vb2_set_plane_payload(&vbuf->vb2_buf, 0, bytesused);
vb2_buffer_done(&vbuf->vb2_buf,
err ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
dev_dbg(dcmi->dev, "buffer[%d] done seq=%d, bytesused=%zu\n",
vbuf->vb2_buf.index, vbuf->sequence, bytesused);
dcmi->buffers_count++;
dcmi->active = NULL;
}
static int dcmi_restart_capture(struct stm32_dcmi *dcmi)
{
struct dcmi_buf *buf;
spin_lock_irq(&dcmi->irqlock);
if (dcmi->state != RUNNING) {
spin_unlock_irq(&dcmi->irqlock);
return -EINVAL;
}
/* Restart a new DMA transfer with next buffer */
if (list_empty(&dcmi->buffers)) {
dev_dbg(dcmi->dev, "Capture restart is deferred to next buffer queueing\n");
dcmi->state = WAIT_FOR_BUFFER;
spin_unlock_irq(&dcmi->irqlock);
return 0;
}
buf = list_entry(dcmi->buffers.next, struct dcmi_buf, list);
dcmi->active = buf;
spin_unlock_irq(&dcmi->irqlock);
return dcmi_start_capture(dcmi, buf);
}
static void dcmi_dma_callback(void *param)
{
struct stm32_dcmi *dcmi = (struct stm32_dcmi *)param;
struct dma_tx_state state;
enum dma_status status;
struct dcmi_buf *buf = dcmi->active;
spin_lock_irq(&dcmi->irqlock);
/* Check DMA status */
status = dmaengine_tx_status(dcmi->dma_chan, dcmi->dma_cookie, &state);
switch (status) {
case DMA_IN_PROGRESS:
dev_dbg(dcmi->dev, "%s: Received DMA_IN_PROGRESS\n", __func__);
break;
case DMA_PAUSED:
dev_err(dcmi->dev, "%s: Received DMA_PAUSED\n", __func__);
break;
case DMA_ERROR:
dev_err(dcmi->dev, "%s: Received DMA_ERROR\n", __func__);
/* Return buffer to V4L2 in error state */
dcmi_buffer_done(dcmi, buf, 0, -EIO);
break;
case DMA_COMPLETE:
dev_dbg(dcmi->dev, "%s: Received DMA_COMPLETE\n", __func__);
/* Return buffer to V4L2 */
dcmi_buffer_done(dcmi, buf, buf->size, 0);
spin_unlock_irq(&dcmi->irqlock);
/* Restart capture */
if (dcmi_restart_capture(dcmi))
dev_err(dcmi->dev, "%s: Cannot restart capture on DMA complete\n",
__func__);
return;
default:
dev_err(dcmi->dev, "%s: Received unknown status\n", __func__);
break;
}
spin_unlock_irq(&dcmi->irqlock);
}
static int dcmi_start_dma(struct stm32_dcmi *dcmi,
struct dcmi_buf *buf)
{
struct dma_async_tx_descriptor *desc = NULL;
struct dma_slave_config config;
int ret;
memset(&config, 0, sizeof(config));
config.src_addr = (dma_addr_t)dcmi->res->start + DCMI_DR;
config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
config.dst_maxburst = 4;
/* Configure DMA channel */
ret = dmaengine_slave_config(dcmi->dma_chan, &config);
if (ret < 0) {
dev_err(dcmi->dev, "%s: DMA channel config failed (%d)\n",
__func__, ret);
return ret;
}
/* Prepare a DMA transaction */
desc = dmaengine_prep_slave_single(dcmi->dma_chan, buf->paddr,
buf->size,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dcmi->dev, "%s: DMA dmaengine_prep_slave_single failed for buffer phy=%pad size=%zu\n",
__func__, &buf->paddr, buf->size);
return -EINVAL;
}
/* Set completion callback routine for notification */
desc->callback = dcmi_dma_callback;
desc->callback_param = dcmi;
/* Push current DMA transaction in the pending queue */
dcmi->dma_cookie = dmaengine_submit(desc);
if (dma_submit_error(dcmi->dma_cookie)) {
dev_err(dcmi->dev, "%s: DMA submission failed\n", __func__);
return -ENXIO;
}
dma_async_issue_pending(dcmi->dma_chan);
return 0;
}
static int dcmi_start_capture(struct stm32_dcmi *dcmi, struct dcmi_buf *buf)
{
int ret;
if (!buf)
return -EINVAL;
ret = dcmi_start_dma(dcmi, buf);
if (ret) {
dcmi->errors_count++;
return ret;
}
/* Enable capture */
reg_set(dcmi->regs, DCMI_CR, CR_CAPTURE);
return 0;
}
static void dcmi_set_crop(struct stm32_dcmi *dcmi)
{
u32 size, start;
/* Crop resolution */
size = ((dcmi->crop.height - 1) << 16) |
((dcmi->crop.width << 1) - 1);
reg_write(dcmi->regs, DCMI_CWSIZE, size);
/* Crop start point */
start = ((dcmi->crop.top) << 16) |
((dcmi->crop.left << 1));
reg_write(dcmi->regs, DCMI_CWSTRT, start);
dev_dbg(dcmi->dev, "Cropping to %ux%u@%u:%u\n",
dcmi->crop.width, dcmi->crop.height,
dcmi->crop.left, dcmi->crop.top);
/* Enable crop */
reg_set(dcmi->regs, DCMI_CR, CR_CROP);
}
static void dcmi_process_jpeg(struct stm32_dcmi *dcmi)
{
struct dma_tx_state state;
enum dma_status status;
struct dcmi_buf *buf = dcmi->active;
if (!buf)
return;
/*
* Because of variable JPEG buffer size sent by sensor,
* DMA transfer never completes due to transfer size never reached.
* In order to ensure that all the JPEG data are transferred
* in active buffer memory, DMA is drained.
* Then DMA tx status gives the amount of data transferred
* to memory, which is then returned to V4L2 through the active
* buffer payload.
*/
/* Drain DMA */
dmaengine_synchronize(dcmi->dma_chan);
/* Get DMA residue to get JPEG size */
status = dmaengine_tx_status(dcmi->dma_chan, dcmi->dma_cookie, &state);
if (status != DMA_ERROR && state.residue < buf->size) {
/* Return JPEG buffer to V4L2 with received JPEG buffer size */
dcmi_buffer_done(dcmi, buf, buf->size - state.residue, 0);
} else {
dcmi->errors_count++;
dev_err(dcmi->dev, "%s: Cannot get JPEG size from DMA\n",
__func__);
/* Return JPEG buffer to V4L2 in ERROR state */
dcmi_buffer_done(dcmi, buf, 0, -EIO);
}
/* Abort DMA operation */
dmaengine_terminate_all(dcmi->dma_chan);
/* Restart capture */
if (dcmi_restart_capture(dcmi))
dev_err(dcmi->dev, "%s: Cannot restart capture on JPEG received\n",
__func__);
}
static irqreturn_t dcmi_irq_thread(int irq, void *arg)
{
struct stm32_dcmi *dcmi = arg;
spin_lock_irq(&dcmi->irqlock);
if ((dcmi->misr & IT_OVR) || (dcmi->misr & IT_ERR)) {
dcmi->errors_count++;
if (dcmi->misr & IT_OVR)
dcmi->overrun_count++;
}
if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG &&
dcmi->misr & IT_FRAME) {
/* JPEG received */
spin_unlock_irq(&dcmi->irqlock);
dcmi_process_jpeg(dcmi);
return IRQ_HANDLED;
}
spin_unlock_irq(&dcmi->irqlock);
return IRQ_HANDLED;
}
static irqreturn_t dcmi_irq_callback(int irq, void *arg)
{
struct stm32_dcmi *dcmi = arg;
unsigned long flags;
spin_lock_irqsave(&dcmi->irqlock, flags);
dcmi->misr = reg_read(dcmi->regs, DCMI_MIS);
/* Clear interrupt */
reg_set(dcmi->regs, DCMI_ICR, IT_FRAME | IT_OVR | IT_ERR);
spin_unlock_irqrestore(&dcmi->irqlock, flags);
return IRQ_WAKE_THREAD;
}
static int dcmi_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers,
unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_devs[])
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
unsigned int size;
size = dcmi->fmt.fmt.pix.sizeimage;
/* Make sure the image size is large enough */
if (*nplanes)
return sizes[0] < size ? -EINVAL : 0;
*nplanes = 1;
sizes[0] = size;
dev_dbg(dcmi->dev, "Setup queue, count=%d, size=%d\n",
*nbuffers, size);
return 0;
}
static int dcmi_buf_init(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
INIT_LIST_HEAD(&buf->list);
return 0;
}
static int dcmi_buf_prepare(struct vb2_buffer *vb)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
unsigned long size;
size = dcmi->fmt.fmt.pix.sizeimage;
if (vb2_plane_size(vb, 0) < size) {
dev_err(dcmi->dev, "%s data will not fit into plane (%lu < %lu)\n",
__func__, vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, 0, size);
if (!buf->prepared) {
/* Get memory addresses */
buf->paddr =
vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
buf->size = vb2_plane_size(&buf->vb.vb2_buf, 0);
buf->prepared = true;
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, buf->size);
dev_dbg(dcmi->dev, "buffer[%d] phy=%pad size=%zu\n",
vb->index, &buf->paddr, buf->size);
}
return 0;
}
static void dcmi_buf_queue(struct vb2_buffer *vb)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vb->vb2_queue);
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct dcmi_buf *buf = container_of(vbuf, struct dcmi_buf, vb);
spin_lock_irq(&dcmi->irqlock);
/* Enqueue to video buffers list */
list_add_tail(&buf->list, &dcmi->buffers);
if (dcmi->state == WAIT_FOR_BUFFER) {
dcmi->state = RUNNING;
dcmi->active = buf;
dev_dbg(dcmi->dev, "Starting capture on buffer[%d] queued\n",
buf->vb.vb2_buf.index);
spin_unlock_irq(&dcmi->irqlock);
if (dcmi_start_capture(dcmi, buf))
dev_err(dcmi->dev, "%s: Cannot restart capture on overflow or error\n",
__func__);
return;
}
spin_unlock_irq(&dcmi->irqlock);
}
static int dcmi_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
struct dcmi_buf *buf, *node;
u32 val = 0;
int ret;
ret = pm_runtime_get_sync(dcmi->dev);
if (ret) {
dev_err(dcmi->dev, "%s: Failed to start streaming, cannot get sync\n",
__func__);
goto err_release_buffers;
}
/* Enable stream on the sub device */
ret = v4l2_subdev_call(dcmi->entity.subdev, video, s_stream, 1);
if (ret && ret != -ENOIOCTLCMD) {
dev_err(dcmi->dev, "%s: Failed to start streaming, subdev streamon error",
__func__);
goto err_pm_put;
}
spin_lock_irq(&dcmi->irqlock);
/* Set bus width */
switch (dcmi->bus.bus_width) {
case 14:
val |= CR_EDM_0 | CR_EDM_1;
break;
case 12:
val |= CR_EDM_1;
break;
case 10:
val |= CR_EDM_0;
break;
default:
/* Set bus width to 8 bits by default */
break;
}
/* Set vertical synchronization polarity */
if (dcmi->bus.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
val |= CR_VSPOL;
/* Set horizontal synchronization polarity */
if (dcmi->bus.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
val |= CR_HSPOL;
/* Set pixel clock polarity */
if (dcmi->bus.flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
val |= CR_PCKPOL;
reg_write(dcmi->regs, DCMI_CR, val);
/* Set crop */
if (dcmi->do_crop)
dcmi_set_crop(dcmi);
/* Enable jpeg capture */
if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG)
reg_set(dcmi->regs, DCMI_CR, CR_CM);/* Snapshot mode */
/* Enable dcmi */
reg_set(dcmi->regs, DCMI_CR, CR_ENABLE);
dcmi->sequence = 0;
dcmi->errors_count = 0;
dcmi->overrun_count = 0;
dcmi->buffers_count = 0;
/*
* Start transfer if at least one buffer has been queued,
* otherwise transfer is deferred at buffer queueing
*/
if (list_empty(&dcmi->buffers)) {
dev_dbg(dcmi->dev, "Start streaming is deferred to next buffer queueing\n");
dcmi->state = WAIT_FOR_BUFFER;
spin_unlock_irq(&dcmi->irqlock);
return 0;
}
buf = list_entry(dcmi->buffers.next, struct dcmi_buf, list);
dcmi->active = buf;
dcmi->state = RUNNING;
dev_dbg(dcmi->dev, "Start streaming, starting capture\n");
spin_unlock_irq(&dcmi->irqlock);
ret = dcmi_start_capture(dcmi, buf);
if (ret) {
dev_err(dcmi->dev, "%s: Start streaming failed, cannot start capture\n",
__func__);
goto err_subdev_streamoff;
}
/* Enable interruptions */
if (dcmi->sd_format->fourcc == V4L2_PIX_FMT_JPEG)
reg_set(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR);
else
reg_set(dcmi->regs, DCMI_IER, IT_OVR | IT_ERR);
return 0;
err_subdev_streamoff:
v4l2_subdev_call(dcmi->entity.subdev, video, s_stream, 0);
err_pm_put:
pm_runtime_put(dcmi->dev);
err_release_buffers:
spin_lock_irq(&dcmi->irqlock);
/*
* Return all buffers to vb2 in QUEUED state.
* This will give ownership back to userspace
*/
list_for_each_entry_safe(buf, node, &dcmi->buffers, list) {
list_del_init(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
}
dcmi->active = NULL;
spin_unlock_irq(&dcmi->irqlock);
return ret;
}
static void dcmi_stop_streaming(struct vb2_queue *vq)
{
struct stm32_dcmi *dcmi = vb2_get_drv_priv(vq);
struct dcmi_buf *buf, *node;
int ret;
/* Disable stream on the sub device */
ret = v4l2_subdev_call(dcmi->entity.subdev, video, s_stream, 0);
if (ret && ret != -ENOIOCTLCMD)
dev_err(dcmi->dev, "%s: Failed to stop streaming, subdev streamoff error (%d)\n",
__func__, ret);
spin_lock_irq(&dcmi->irqlock);
/* Disable interruptions */
reg_clear(dcmi->regs, DCMI_IER, IT_FRAME | IT_OVR | IT_ERR);
/* Disable DCMI */
reg_clear(dcmi->regs, DCMI_CR, CR_ENABLE);
/* Return all queued buffers to vb2 in ERROR state */
list_for_each_entry_safe(buf, node, &dcmi->buffers, list) {
list_del_init(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
}
dcmi->active = NULL;
dcmi->state = STOPPED;
spin_unlock_irq(&dcmi->irqlock);
/* Stop all pending DMA operations */
dmaengine_terminate_all(dcmi->dma_chan);
pm_runtime_put(dcmi->dev);
if (dcmi->errors_count)
dev_warn(dcmi->dev, "Some errors found while streaming: errors=%d (overrun=%d), buffers=%d\n",
dcmi->errors_count, dcmi->overrun_count,
dcmi->buffers_count);
dev_dbg(dcmi->dev, "Stop streaming, errors=%d (overrun=%d), buffers=%d\n",
dcmi->errors_count, dcmi->overrun_count,
dcmi->buffers_count);
}
static const struct vb2_ops dcmi_video_qops = {
.queue_setup = dcmi_queue_setup,
.buf_init = dcmi_buf_init,
.buf_prepare = dcmi_buf_prepare,
.buf_queue = dcmi_buf_queue,
.start_streaming = dcmi_start_streaming,
.stop_streaming = dcmi_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
static int dcmi_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *fmt)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
*fmt = dcmi->fmt;
return 0;
}
static const struct dcmi_format *find_format_by_fourcc(struct stm32_dcmi *dcmi,
unsigned int fourcc)
{
unsigned int num_formats = dcmi->num_of_sd_formats;
const struct dcmi_format *fmt;
unsigned int i;
for (i = 0; i < num_formats; i++) {
fmt = dcmi->sd_formats[i];
if (fmt->fourcc == fourcc)
return fmt;
}
return NULL;
}
static void __find_outer_frame_size(struct stm32_dcmi *dcmi,
struct v4l2_pix_format *pix,
struct dcmi_framesize *framesize)
{
struct dcmi_framesize *match = NULL;
unsigned int i;
unsigned int min_err = UINT_MAX;
for (i = 0; i < dcmi->num_of_sd_framesizes; i++) {
struct dcmi_framesize *fsize = &dcmi->sd_framesizes[i];
int w_err = (fsize->width - pix->width);
int h_err = (fsize->height - pix->height);
int err = w_err + h_err;
if (w_err >= 0 && h_err >= 0 && err < min_err) {
min_err = err;
match = fsize;
}
}
if (!match)
match = &dcmi->sd_framesizes[0];
*framesize = *match;
}
static int dcmi_try_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f,
const struct dcmi_format **sd_format,
struct dcmi_framesize *sd_framesize)
{
const struct dcmi_format *sd_fmt;
struct dcmi_framesize sd_fsize;
struct v4l2_pix_format *pix = &f->fmt.pix;
struct v4l2_subdev_pad_config pad_cfg;
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_TRY,
};
bool do_crop;
int ret;
sd_fmt = find_format_by_fourcc(dcmi, pix->pixelformat);
if (!sd_fmt) {
sd_fmt = dcmi->sd_formats[dcmi->num_of_sd_formats - 1];
pix->pixelformat = sd_fmt->fourcc;
}
/* Limit to hardware capabilities */
pix->width = clamp(pix->width, MIN_WIDTH, MAX_WIDTH);
pix->height = clamp(pix->height, MIN_HEIGHT, MAX_HEIGHT);
/* No crop if JPEG is requested */
do_crop = dcmi->do_crop && (pix->pixelformat != V4L2_PIX_FMT_JPEG);
if (do_crop && dcmi->num_of_sd_framesizes) {
struct dcmi_framesize outer_sd_fsize;
/*
* If crop is requested and sensor have discrete frame sizes,
* select the frame size that is just larger than request
*/
__find_outer_frame_size(dcmi, pix, &outer_sd_fsize);
pix->width = outer_sd_fsize.width;
pix->height = outer_sd_fsize.height;
}
v4l2_fill_mbus_format(&format.format, pix, sd_fmt->mbus_code);
ret = v4l2_subdev_call(dcmi->entity.subdev, pad, set_fmt,
&pad_cfg, &format);
if (ret < 0)
return ret;
/* Update pix regarding to what sensor can do */
v4l2_fill_pix_format(pix, &format.format);
/* Save resolution that sensor can actually do */
sd_fsize.width = pix->width;
sd_fsize.height = pix->height;
if (do_crop) {
struct v4l2_rect c = dcmi->crop;
struct v4l2_rect max_rect;
/*
* Adjust crop by making the intersection between
* format resolution request and crop request
*/
max_rect.top = 0;
max_rect.left = 0;
max_rect.width = pix->width;
max_rect.height = pix->height;
v4l2_rect_map_inside(&c, &max_rect);
c.top = clamp_t(s32, c.top, 0, pix->height - c.height);
c.left = clamp_t(s32, c.left, 0, pix->width - c.width);
dcmi->crop = c;
/* Adjust format resolution request to crop */
pix->width = dcmi->crop.width;
pix->height = dcmi->crop.height;
}
pix->field = V4L2_FIELD_NONE;
pix->bytesperline = pix->width * sd_fmt->bpp;
pix->sizeimage = pix->bytesperline * pix->height;
if (sd_format)
*sd_format = sd_fmt;
if (sd_framesize)
*sd_framesize = sd_fsize;
return 0;
}
static int dcmi_set_fmt(struct stm32_dcmi *dcmi, struct v4l2_format *f)
{
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
const struct dcmi_format *sd_format;
struct dcmi_framesize sd_framesize;
struct v4l2_mbus_framefmt *mf = &format.format;
struct v4l2_pix_format *pix = &f->fmt.pix;
int ret;
/*
* Try format, fmt.width/height could have been changed
* to match sensor capability or crop request
* sd_format & sd_framesize will contain what subdev
* can do for this request.
*/
ret = dcmi_try_fmt(dcmi, f, &sd_format, &sd_framesize);
if (ret)
return ret;
/* Disable crop if JPEG is requested */
if (pix->pixelformat == V4L2_PIX_FMT_JPEG)
dcmi->do_crop = false;
/* pix to mbus format */
v4l2_fill_mbus_format(mf, pix,
sd_format->mbus_code);
mf->width = sd_framesize.width;
mf->height = sd_framesize.height;
ret = v4l2_subdev_call(dcmi->entity.subdev, pad,
set_fmt, NULL, &format);
if (ret < 0)
return ret;
dev_dbg(dcmi->dev, "Sensor format set to 0x%x %ux%u\n",
mf->code, mf->width, mf->height);
dev_dbg(dcmi->dev, "Buffer format set to %4.4s %ux%u\n",
(char *)&pix->pixelformat,
pix->width, pix->height);
dcmi->fmt = *f;
dcmi->sd_format = sd_format;
dcmi->sd_framesize = sd_framesize;
return 0;
}
static int dcmi_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
if (vb2_is_streaming(&dcmi->queue))
return -EBUSY;
return dcmi_set_fmt(dcmi, f);
}
static int dcmi_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
return dcmi_try_fmt(dcmi, f, NULL, NULL);
}
static int dcmi_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
if (f->index >= dcmi->num_of_sd_formats)
return -EINVAL;
f->pixelformat = dcmi->sd_formats[f->index]->fourcc;
return 0;
}
static int dcmi_get_sensor_format(struct stm32_dcmi *dcmi,
struct v4l2_pix_format *pix)
{
struct v4l2_subdev_format fmt = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
ret = v4l2_subdev_call(dcmi->entity.subdev, pad, get_fmt, NULL, &fmt);
if (ret)
return ret;
v4l2_fill_pix_format(pix, &fmt.format);
return 0;
}
static int dcmi_set_sensor_format(struct stm32_dcmi *dcmi,
struct v4l2_pix_format *pix)
{
const struct dcmi_format *sd_fmt;
struct v4l2_subdev_format format = {
.which = V4L2_SUBDEV_FORMAT_TRY,
};
struct v4l2_subdev_pad_config pad_cfg;
int ret;
sd_fmt = find_format_by_fourcc(dcmi, pix->pixelformat);
if (!sd_fmt) {
sd_fmt = dcmi->sd_formats[dcmi->num_of_sd_formats - 1];
pix->pixelformat = sd_fmt->fourcc;
}
v4l2_fill_mbus_format(&format.format, pix, sd_fmt->mbus_code);
ret = v4l2_subdev_call(dcmi->entity.subdev, pad, set_fmt,
&pad_cfg, &format);
if (ret < 0)
return ret;
return 0;
}
static int dcmi_get_sensor_bounds(struct stm32_dcmi *dcmi,
struct v4l2_rect *r)
{
struct v4l2_subdev_selection bounds = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.target = V4L2_SEL_TGT_CROP_BOUNDS,
};
unsigned int max_width, max_height, max_pixsize;
struct v4l2_pix_format pix;
unsigned int i;
int ret;
/*
* Get sensor bounds first
*/
ret = v4l2_subdev_call(dcmi->entity.subdev, pad, get_selection,
NULL, &bounds);
if (!ret)
*r = bounds.r;
if (ret != -ENOIOCTLCMD)
return ret;
/*
* If selection is not implemented,
* fallback by enumerating sensor frame sizes
* and take the largest one
*/
max_width = 0;
max_height = 0;
max_pixsize = 0;
for (i = 0; i < dcmi->num_of_sd_framesizes; i++) {
struct dcmi_framesize *fsize = &dcmi->sd_framesizes[i];
unsigned int pixsize = fsize->width * fsize->height;
if (pixsize > max_pixsize) {
max_pixsize = pixsize;
max_width = fsize->width;
max_height = fsize->height;
}
}
if (max_pixsize > 0) {
r->top = 0;
r->left = 0;
r->width = max_width;
r->height = max_height;
return 0;
}
/*
* If frame sizes enumeration is not implemented,
* fallback by getting current sensor frame size
*/
ret = dcmi_get_sensor_format(dcmi, &pix);
if (ret)
return ret;
r->top = 0;
r->left = 0;
r->width = pix.width;
r->height = pix.height;
return 0;
}
static int dcmi_g_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
switch (s->target) {
case V4L2_SEL_TGT_CROP_DEFAULT:
case V4L2_SEL_TGT_CROP_BOUNDS:
s->r = dcmi->sd_bounds;
return 0;
case V4L2_SEL_TGT_CROP:
if (dcmi->do_crop) {
s->r = dcmi->crop;
} else {
s->r.top = 0;
s->r.left = 0;
s->r.width = dcmi->fmt.fmt.pix.width;
s->r.height = dcmi->fmt.fmt.pix.height;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int dcmi_s_selection(struct file *file, void *priv,
struct v4l2_selection *s)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
struct v4l2_rect r = s->r;
struct v4l2_rect max_rect;
struct v4l2_pix_format pix;
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE ||
s->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
/* Reset sensor resolution to max resolution */
pix.pixelformat = dcmi->fmt.fmt.pix.pixelformat;
pix.width = dcmi->sd_bounds.width;
pix.height = dcmi->sd_bounds.height;
dcmi_set_sensor_format(dcmi, &pix);
/*
* Make the intersection between
* sensor resolution
* and crop request
*/
max_rect.top = 0;
max_rect.left = 0;
max_rect.width = pix.width;
max_rect.height = pix.height;
v4l2_rect_map_inside(&r, &max_rect);
r.top = clamp_t(s32, r.top, 0, pix.height - r.height);
r.left = clamp_t(s32, r.left, 0, pix.width - r.width);
if (!(r.top == dcmi->sd_bounds.top &&
r.left == dcmi->sd_bounds.left &&
r.width == dcmi->sd_bounds.width &&
r.height == dcmi->sd_bounds.height)) {
/* Crop if request is different than sensor resolution */
dcmi->do_crop = true;
dcmi->crop = r;
dev_dbg(dcmi->dev, "s_selection: crop %ux%u@(%u,%u) from %ux%u\n",
r.width, r.height, r.left, r.top,
pix.width, pix.height);
} else {
/* Disable crop */
dcmi->do_crop = false;
dev_dbg(dcmi->dev, "s_selection: crop is disabled\n");
}
s->r = r;
return 0;
}
static int dcmi_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strscpy(cap->driver, DRV_NAME, sizeof(cap->driver));
strscpy(cap->card, "STM32 Camera Memory Interface",
sizeof(cap->card));
strscpy(cap->bus_info, "platform:dcmi", sizeof(cap->bus_info));
return 0;
}
static int dcmi_enum_input(struct file *file, void *priv,
struct v4l2_input *i)
{
if (i->index != 0)
return -EINVAL;
i->type = V4L2_INPUT_TYPE_CAMERA;
strscpy(i->name, "Camera", sizeof(i->name));
return 0;
}
static int dcmi_g_input(struct file *file, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int dcmi_s_input(struct file *file, void *priv, unsigned int i)
{
if (i > 0)
return -EINVAL;
return 0;
}
static int dcmi_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
const struct dcmi_format *sd_fmt;
struct v4l2_subdev_frame_size_enum fse = {
.index = fsize->index,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
sd_fmt = find_format_by_fourcc(dcmi, fsize->pixel_format);
if (!sd_fmt)
return -EINVAL;
fse.code = sd_fmt->mbus_code;
ret = v4l2_subdev_call(dcmi->entity.subdev, pad, enum_frame_size,
NULL, &fse);
if (ret)
return ret;
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = fse.max_width;
fsize->discrete.height = fse.max_height;
return 0;
}
static int dcmi_g_parm(struct file *file, void *priv,
struct v4l2_streamparm *p)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
return v4l2_g_parm_cap(video_devdata(file), dcmi->entity.subdev, p);
}
static int dcmi_s_parm(struct file *file, void *priv,
struct v4l2_streamparm *p)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
return v4l2_s_parm_cap(video_devdata(file), dcmi->entity.subdev, p);
}
static int dcmi_enum_frameintervals(struct file *file, void *fh,
struct v4l2_frmivalenum *fival)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
const struct dcmi_format *sd_fmt;
struct v4l2_subdev_frame_interval_enum fie = {
.index = fival->index,
.width = fival->width,
.height = fival->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
sd_fmt = find_format_by_fourcc(dcmi, fival->pixel_format);
if (!sd_fmt)
return -EINVAL;
fie.code = sd_fmt->mbus_code;
ret = v4l2_subdev_call(dcmi->entity.subdev, pad,
enum_frame_interval, NULL, &fie);
if (ret)
return ret;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = fie.interval;
return 0;
}
static const struct of_device_id stm32_dcmi_of_match[] = {
{ .compatible = "st,stm32-dcmi"},
{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_dcmi_of_match);
static int dcmi_open(struct file *file)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
struct v4l2_subdev *sd = dcmi->entity.subdev;
int ret;
if (mutex_lock_interruptible(&dcmi->lock))
return -ERESTARTSYS;
ret = v4l2_fh_open(file);
if (ret < 0)
goto unlock;
if (!v4l2_fh_is_singular_file(file))
goto fh_rel;
ret = v4l2_subdev_call(sd, core, s_power, 1);
if (ret < 0 && ret != -ENOIOCTLCMD)
goto fh_rel;
ret = dcmi_set_fmt(dcmi, &dcmi->fmt);
if (ret)
v4l2_subdev_call(sd, core, s_power, 0);
fh_rel:
if (ret)
v4l2_fh_release(file);
unlock:
mutex_unlock(&dcmi->lock);
return ret;
}
static int dcmi_release(struct file *file)
{
struct stm32_dcmi *dcmi = video_drvdata(file);
struct v4l2_subdev *sd = dcmi->entity.subdev;
bool fh_singular;
int ret;
mutex_lock(&dcmi->lock);
fh_singular = v4l2_fh_is_singular_file(file);
ret = _vb2_fop_release(file, NULL);
if (fh_singular)
v4l2_subdev_call(sd, core, s_power, 0);
mutex_unlock(&dcmi->lock);
return ret;
}
static const struct v4l2_ioctl_ops dcmi_ioctl_ops = {
.vidioc_querycap = dcmi_querycap,
.vidioc_try_fmt_vid_cap = dcmi_try_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = dcmi_g_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = dcmi_s_fmt_vid_cap,
.vidioc_enum_fmt_vid_cap = dcmi_enum_fmt_vid_cap,
.vidioc_g_selection = dcmi_g_selection,
.vidioc_s_selection = dcmi_s_selection,
.vidioc_enum_input = dcmi_enum_input,
.vidioc_g_input = dcmi_g_input,
.vidioc_s_input = dcmi_s_input,
.vidioc_g_parm = dcmi_g_parm,
.vidioc_s_parm = dcmi_s_parm,
.vidioc_enum_framesizes = dcmi_enum_framesizes,
.vidioc_enum_frameintervals = dcmi_enum_frameintervals,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_log_status = v4l2_ctrl_log_status,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static const struct v4l2_file_operations dcmi_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = video_ioctl2,
.open = dcmi_open,
.release = dcmi_release,
.poll = vb2_fop_poll,
.mmap = vb2_fop_mmap,
#ifndef CONFIG_MMU
.get_unmapped_area = vb2_fop_get_unmapped_area,
#endif
.read = vb2_fop_read,
};
static int dcmi_set_default_fmt(struct stm32_dcmi *dcmi)
{
struct v4l2_format f = {
.type = V4L2_BUF_TYPE_VIDEO_CAPTURE,
.fmt.pix = {
.width = CIF_WIDTH,
.height = CIF_HEIGHT,
.field = V4L2_FIELD_NONE,
.pixelformat = dcmi->sd_formats[0]->fourcc,
},
};
int ret;
ret = dcmi_try_fmt(dcmi, &f, NULL, NULL);
if (ret)
return ret;
dcmi->sd_format = dcmi->sd_formats[0];
dcmi->fmt = f;
return 0;
}
static const struct dcmi_format dcmi_formats[] = {
{
.fourcc = V4L2_PIX_FMT_RGB565,
.mbus_code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.mbus_code = MEDIA_BUS_FMT_UYVY8_2X8,
.bpp = 2,
}, {
.fourcc = V4L2_PIX_FMT_JPEG,
.mbus_code = MEDIA_BUS_FMT_JPEG_1X8,
.bpp = 1,
},
};
static int dcmi_formats_init(struct stm32_dcmi *dcmi)
{
const struct dcmi_format *sd_fmts[ARRAY_SIZE(dcmi_formats)];
unsigned int num_fmts = 0, i, j;
struct v4l2_subdev *subdev = dcmi->entity.subdev;
struct v4l2_subdev_mbus_code_enum mbus_code = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
while (!v4l2_subdev_call(subdev, pad, enum_mbus_code,
NULL, &mbus_code)) {
for (i = 0; i < ARRAY_SIZE(dcmi_formats); i++) {
if (dcmi_formats[i].mbus_code != mbus_code.code)
continue;
/* Code supported, have we got this fourcc yet? */
for (j = 0; j < num_fmts; j++)
if (sd_fmts[j]->fourcc ==
dcmi_formats[i].fourcc)
/* Already available */
break;
if (j == num_fmts)
/* New */
sd_fmts[num_fmts++] = dcmi_formats + i;
}
mbus_code.index++;
}
if (!num_fmts)
return -ENXIO;
dcmi->num_of_sd_formats = num_fmts;
dcmi->sd_formats = devm_kcalloc(dcmi->dev,
num_fmts, sizeof(struct dcmi_format *),
GFP_KERNEL);
if (!dcmi->sd_formats) {
dev_err(dcmi->dev, "Could not allocate memory\n");
return -ENOMEM;
}
memcpy(dcmi->sd_formats, sd_fmts,
num_fmts * sizeof(struct dcmi_format *));
dcmi->sd_format = dcmi->sd_formats[0];
return 0;
}
static int dcmi_framesizes_init(struct stm32_dcmi *dcmi)
{
unsigned int num_fsize = 0;
struct v4l2_subdev *subdev = dcmi->entity.subdev;
struct v4l2_subdev_frame_size_enum fse = {
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
.code = dcmi->sd_format->mbus_code,
};
unsigned int ret;
unsigned int i;
/* Allocate discrete framesizes array */
while (!v4l2_subdev_call(subdev, pad, enum_frame_size,
NULL, &fse))
fse.index++;
num_fsize = fse.index;
if (!num_fsize)
return 0;
dcmi->num_of_sd_framesizes = num_fsize;
dcmi->sd_framesizes = devm_kcalloc(dcmi->dev, num_fsize,
sizeof(struct dcmi_framesize),
GFP_KERNEL);
if (!dcmi->sd_framesizes) {
dev_err(dcmi->dev, "Could not allocate memory\n");
return -ENOMEM;
}
/* Fill array with sensor supported framesizes */
dev_dbg(dcmi->dev, "Sensor supports %u frame sizes:\n", num_fsize);
for (i = 0; i < dcmi->num_of_sd_framesizes; i++) {
fse.index = i;
ret = v4l2_subdev_call(subdev, pad, enum_frame_size,
NULL, &fse);
if (ret)
return ret;
dcmi->sd_framesizes[fse.index].width = fse.max_width;
dcmi->sd_framesizes[fse.index].height = fse.max_height;
dev_dbg(dcmi->dev, "%ux%u\n", fse.max_width, fse.max_height);
}
return 0;
}
static int dcmi_graph_notify_complete(struct v4l2_async_notifier *notifier)
{
struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);
int ret;
dcmi->vdev->ctrl_handler = dcmi->entity.subdev->ctrl_handler;
ret = dcmi_formats_init(dcmi);
if (ret) {
dev_err(dcmi->dev, "No supported mediabus format found\n");
return ret;
}
ret = dcmi_framesizes_init(dcmi);
if (ret) {
dev_err(dcmi->dev, "Could not initialize framesizes\n");
return ret;
}
ret = dcmi_get_sensor_bounds(dcmi, &dcmi->sd_bounds);
if (ret) {
dev_err(dcmi->dev, "Could not get sensor bounds\n");
return ret;
}
ret = dcmi_set_default_fmt(dcmi);
if (ret) {
dev_err(dcmi->dev, "Could not set default format\n");
return ret;
}
ret = video_register_device(dcmi->vdev, VFL_TYPE_GRABBER, -1);
if (ret) {
dev_err(dcmi->dev, "Failed to register video device\n");
return ret;
}
dev_dbg(dcmi->dev, "Device registered as %s\n",
video_device_node_name(dcmi->vdev));
return 0;
}
static void dcmi_graph_notify_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_subdev *asd)
{
struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);
dev_dbg(dcmi->dev, "Removing %s\n", video_device_node_name(dcmi->vdev));
/* Checks internaly if vdev has been init or not */
video_unregister_device(dcmi->vdev);
}
static int dcmi_graph_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct stm32_dcmi *dcmi = notifier_to_dcmi(notifier);
dev_dbg(dcmi->dev, "Subdev %s bound\n", subdev->name);
dcmi->entity.subdev = subdev;
return 0;
}
static const struct v4l2_async_notifier_operations dcmi_graph_notify_ops = {
.bound = dcmi_graph_notify_bound,
.unbind = dcmi_graph_notify_unbind,
.complete = dcmi_graph_notify_complete,
};
static int dcmi_graph_parse(struct stm32_dcmi *dcmi, struct device_node *node)
{
struct device_node *ep = NULL;
struct device_node *remote;
ep = of_graph_get_next_endpoint(node, ep);
if (!ep)
return -EINVAL;
remote = of_graph_get_remote_port_parent(ep);
of_node_put(ep);
if (!remote)
return -EINVAL;
/* Remote node to connect */
dcmi->entity.node = remote;
dcmi->entity.asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
dcmi->entity.asd.match.fwnode = of_fwnode_handle(remote);
return 0;
}
static int dcmi_graph_init(struct stm32_dcmi *dcmi)
{
int ret;
/* Parse the graph to extract a list of subdevice DT nodes. */
ret = dcmi_graph_parse(dcmi, dcmi->dev->of_node);
if (ret < 0) {
dev_err(dcmi->dev, "Graph parsing failed\n");
return ret;
}
v4l2_async_notifier_init(&dcmi->notifier);
ret = v4l2_async_notifier_add_subdev(&dcmi->notifier,
&dcmi->entity.asd);
if (ret) {
of_node_put(dcmi->entity.node);
return ret;
}
dcmi->notifier.ops = &dcmi_graph_notify_ops;
ret = v4l2_async_notifier_register(&dcmi->v4l2_dev, &dcmi->notifier);
if (ret < 0) {
dev_err(dcmi->dev, "Notifier registration failed\n");
v4l2_async_notifier_cleanup(&dcmi->notifier);
return ret;
}
return 0;
}
static int dcmi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *match = NULL;
struct v4l2_fwnode_endpoint ep = { .bus_type = 0 };
struct stm32_dcmi *dcmi;
struct vb2_queue *q;
struct dma_chan *chan;
struct clk *mclk;
int irq;
int ret = 0;
match = of_match_device(of_match_ptr(stm32_dcmi_of_match), &pdev->dev);
if (!match) {
dev_err(&pdev->dev, "Could not find a match in devicetree\n");
return -ENODEV;
}
dcmi = devm_kzalloc(&pdev->dev, sizeof(struct stm32_dcmi), GFP_KERNEL);
if (!dcmi)
return -ENOMEM;
dcmi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(dcmi->rstc)) {
dev_err(&pdev->dev, "Could not get reset control\n");
return -ENODEV;
}
/* Get bus characteristics from devicetree */
np = of_graph_get_next_endpoint(np, NULL);
if (!np) {
dev_err(&pdev->dev, "Could not find the endpoint\n");
of_node_put(np);
return -ENODEV;
}
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(np), &ep);
of_node_put(np);
if (ret) {
dev_err(&pdev->dev, "Could not parse the endpoint\n");
return -ENODEV;
}
if (ep.bus_type == V4L2_MBUS_CSI2_DPHY) {
dev_err(&pdev->dev, "CSI bus not supported\n");
return -ENODEV;
}
dcmi->bus.flags = ep.bus.parallel.flags;
dcmi->bus.bus_width = ep.bus.parallel.bus_width;
dcmi->bus.data_shift = ep.bus.parallel.data_shift;
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(&pdev->dev, "Could not get irq\n");
return -ENODEV;
}
dcmi->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!dcmi->res) {
dev_err(&pdev->dev, "Could not get resource\n");
return -ENODEV;
}
dcmi->regs = devm_ioremap_resource(&pdev->dev, dcmi->res);
if (IS_ERR(dcmi->regs)) {
dev_err(&pdev->dev, "Could not map registers\n");
return PTR_ERR(dcmi->regs);
}
ret = devm_request_threaded_irq(&pdev->dev, irq, dcmi_irq_callback,
dcmi_irq_thread, IRQF_ONESHOT,
dev_name(&pdev->dev), dcmi);
if (ret) {
dev_err(&pdev->dev, "Unable to request irq %d\n", irq);
return -ENODEV;
}
mclk = devm_clk_get(&pdev->dev, "mclk");
if (IS_ERR(mclk)) {
dev_err(&pdev->dev, "Unable to get mclk\n");
return PTR_ERR(mclk);
}
chan = dma_request_slave_channel(&pdev->dev, "tx");
if (!chan) {
dev_info(&pdev->dev, "Unable to request DMA channel, defer probing\n");
return -EPROBE_DEFER;
}
spin_lock_init(&dcmi->irqlock);
mutex_init(&dcmi->lock);
init_completion(&dcmi->complete);
INIT_LIST_HEAD(&dcmi->buffers);
dcmi->dev = &pdev->dev;
dcmi->mclk = mclk;
dcmi->state = STOPPED;
dcmi->dma_chan = chan;
q = &dcmi->queue;
/* Initialize the top-level structure */
ret = v4l2_device_register(&pdev->dev, &dcmi->v4l2_dev);
if (ret)
goto err_dma_release;
dcmi->vdev = video_device_alloc();
if (!dcmi->vdev) {
ret = -ENOMEM;
goto err_device_unregister;
}
/* Video node */
dcmi->vdev->fops = &dcmi_fops;
dcmi->vdev->v4l2_dev = &dcmi->v4l2_dev;
dcmi->vdev->queue = &dcmi->queue;
strscpy(dcmi->vdev->name, KBUILD_MODNAME, sizeof(dcmi->vdev->name));
dcmi->vdev->release = video_device_release;
dcmi->vdev->ioctl_ops = &dcmi_ioctl_ops;
dcmi->vdev->lock = &dcmi->lock;
dcmi->vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING |
V4L2_CAP_READWRITE;
video_set_drvdata(dcmi->vdev, dcmi);
/* Buffer queue */
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
q->io_modes = VB2_MMAP | VB2_READ | VB2_DMABUF;
q->lock = &dcmi->lock;
q->drv_priv = dcmi;
q->buf_struct_size = sizeof(struct dcmi_buf);
q->ops = &dcmi_video_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->min_buffers_needed = 2;
q->dev = &pdev->dev;
ret = vb2_queue_init(q);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to initialize vb2 queue\n");
goto err_device_release;
}
ret = dcmi_graph_init(dcmi);
if (ret < 0)
goto err_device_release;
/* Reset device */
ret = reset_control_assert(dcmi->rstc);
if (ret) {
dev_err(&pdev->dev, "Failed to assert the reset line\n");
goto err_cleanup;
}
usleep_range(3000, 5000);
ret = reset_control_deassert(dcmi->rstc);
if (ret) {
dev_err(&pdev->dev, "Failed to deassert the reset line\n");
goto err_cleanup;
}
dev_info(&pdev->dev, "Probe done\n");
platform_set_drvdata(pdev, dcmi);
pm_runtime_enable(&pdev->dev);
return 0;
err_cleanup:
v4l2_async_notifier_cleanup(&dcmi->notifier);
err_device_release:
video_device_release(dcmi->vdev);
err_device_unregister:
v4l2_device_unregister(&dcmi->v4l2_dev);
err_dma_release:
dma_release_channel(dcmi->dma_chan);
return ret;
}
static int dcmi_remove(struct platform_device *pdev)
{
struct stm32_dcmi *dcmi = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
v4l2_async_notifier_unregister(&dcmi->notifier);
v4l2_async_notifier_cleanup(&dcmi->notifier);
v4l2_device_unregister(&dcmi->v4l2_dev);
dma_release_channel(dcmi->dma_chan);
return 0;
}
static __maybe_unused int dcmi_runtime_suspend(struct device *dev)
{
struct stm32_dcmi *dcmi = dev_get_drvdata(dev);
clk_disable_unprepare(dcmi->mclk);
return 0;
}
static __maybe_unused int dcmi_runtime_resume(struct device *dev)
{
struct stm32_dcmi *dcmi = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(dcmi->mclk);
if (ret)
dev_err(dev, "%s: Failed to prepare_enable clock\n", __func__);
return ret;
}
static __maybe_unused int dcmi_suspend(struct device *dev)
{
/* disable clock */
pm_runtime_force_suspend(dev);
/* change pinctrl state */
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static __maybe_unused int dcmi_resume(struct device *dev)
{
/* restore pinctl default state */
pinctrl_pm_select_default_state(dev);
/* clock enable */
pm_runtime_force_resume(dev);
return 0;
}
static const struct dev_pm_ops dcmi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(dcmi_suspend, dcmi_resume)
SET_RUNTIME_PM_OPS(dcmi_runtime_suspend,
dcmi_runtime_resume, NULL)
};
static struct platform_driver stm32_dcmi_driver = {
.probe = dcmi_probe,
.remove = dcmi_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(stm32_dcmi_of_match),
.pm = &dcmi_pm_ops,
},
};
module_platform_driver(stm32_dcmi_driver);
MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>");
MODULE_AUTHOR("Hugues Fruchet <hugues.fruchet@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 Digital Camera Memory Interface driver");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("video");