linux_dsm_epyc7002/arch/sparc/kernel/setup_64.c
Anthony Yznaga a7159a87a3 sparc64: speed up etrap/rtrap on NG2 and later processors
For many sun4v processor types, reading or writing a privileged register
has a latency of 40 to 70 cycles.  Use a combination of the low-latency
allclean, otherw, normalw, and nop instructions in etrap and rtrap to
replace 2 rdpr and 5 wrpr instructions and improve etrap/rtrap
performance.  allclean, otherw, and normalw are available on NG2 and
later processors.

The average ticks to execute the flush windows trap ("ta 0x3") with and
without this patch on select platforms:

 CPU            Not patched     Patched    % Latency Reduction

 NG2            1762            1558            -11.58
 NG4            3619            3204            -11.47
 M7             3015            2624            -12.97
 SPARC64-X      829             770              -7.12

Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-09 20:20:11 -07:00

715 lines
17 KiB
C

/*
* linux/arch/sparc64/kernel/setup.c
*
* Copyright (C) 1995,1996 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <asm/smp.h>
#include <linux/user.h>
#include <linux/screen_info.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/inet.h>
#include <linux/console.h>
#include <linux/root_dev.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/initrd.h>
#include <linux/module.h>
#include <linux/start_kernel.h>
#include <linux/bootmem.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/oplib.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/idprom.h>
#include <asm/head.h>
#include <asm/starfire.h>
#include <asm/mmu_context.h>
#include <asm/timer.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/mmu.h>
#include <asm/ns87303.h>
#include <asm/btext.h>
#include <asm/elf.h>
#include <asm/mdesc.h>
#include <asm/cacheflush.h>
#include <asm/dma.h>
#include <asm/irq.h>
#ifdef CONFIG_IP_PNP
#include <net/ipconfig.h>
#endif
#include "entry.h"
#include "kernel.h"
/* Used to synchronize accesses to NatSemi SUPER I/O chip configure
* operations in asm/ns87303.h
*/
DEFINE_SPINLOCK(ns87303_lock);
EXPORT_SYMBOL(ns87303_lock);
struct screen_info screen_info = {
0, 0, /* orig-x, orig-y */
0, /* unused */
0, /* orig-video-page */
0, /* orig-video-mode */
128, /* orig-video-cols */
0, 0, 0, /* unused, ega_bx, unused */
54, /* orig-video-lines */
0, /* orig-video-isVGA */
16 /* orig-video-points */
};
static void
prom_console_write(struct console *con, const char *s, unsigned int n)
{
prom_write(s, n);
}
/* Exported for mm/init.c:paging_init. */
unsigned long cmdline_memory_size = 0;
static struct console prom_early_console = {
.name = "earlyprom",
.write = prom_console_write,
.flags = CON_PRINTBUFFER | CON_BOOT | CON_ANYTIME,
.index = -1,
};
/*
* Process kernel command line switches that are specific to the
* SPARC or that require special low-level processing.
*/
static void __init process_switch(char c)
{
switch (c) {
case 'd':
case 's':
break;
case 'h':
prom_printf("boot_flags_init: Halt!\n");
prom_halt();
break;
case 'p':
prom_early_console.flags &= ~CON_BOOT;
break;
case 'P':
/* Force UltraSPARC-III P-Cache on. */
if (tlb_type != cheetah) {
printk("BOOT: Ignoring P-Cache force option.\n");
break;
}
cheetah_pcache_forced_on = 1;
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
cheetah_enable_pcache();
break;
default:
printk("Unknown boot switch (-%c)\n", c);
break;
}
}
static void __init boot_flags_init(char *commands)
{
while (*commands) {
/* Move to the start of the next "argument". */
while (*commands == ' ')
commands++;
/* Process any command switches, otherwise skip it. */
if (*commands == '\0')
break;
if (*commands == '-') {
commands++;
while (*commands && *commands != ' ')
process_switch(*commands++);
continue;
}
if (!strncmp(commands, "mem=", 4))
cmdline_memory_size = memparse(commands + 4, &commands);
while (*commands && *commands != ' ')
commands++;
}
}
extern unsigned short root_flags;
extern unsigned short root_dev;
extern unsigned short ram_flags;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
extern int root_mountflags;
char reboot_command[COMMAND_LINE_SIZE];
static struct pt_regs fake_swapper_regs = { { 0, }, 0, 0, 0, 0 };
static void __init per_cpu_patch(void)
{
struct cpuid_patch_entry *p;
unsigned long ver;
int is_jbus;
if (tlb_type == spitfire && !this_is_starfire)
return;
is_jbus = 0;
if (tlb_type != hypervisor) {
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
is_jbus = ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID);
}
p = &__cpuid_patch;
while (p < &__cpuid_patch_end) {
unsigned long addr = p->addr;
unsigned int *insns;
switch (tlb_type) {
case spitfire:
insns = &p->starfire[0];
break;
case cheetah:
case cheetah_plus:
if (is_jbus)
insns = &p->cheetah_jbus[0];
else
insns = &p->cheetah_safari[0];
break;
case hypervisor:
insns = &p->sun4v[0];
break;
default:
prom_printf("Unknown cpu type, halting.\n");
prom_halt();
}
*(unsigned int *) (addr + 0) = insns[0];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 0));
*(unsigned int *) (addr + 4) = insns[1];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 4));
*(unsigned int *) (addr + 8) = insns[2];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 8));
*(unsigned int *) (addr + 12) = insns[3];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 12));
p++;
}
}
void sun4v_patch_1insn_range(struct sun4v_1insn_patch_entry *start,
struct sun4v_1insn_patch_entry *end)
{
while (start < end) {
unsigned long addr = start->addr;
*(unsigned int *) (addr + 0) = start->insn;
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 0));
start++;
}
}
void sun4v_patch_2insn_range(struct sun4v_2insn_patch_entry *start,
struct sun4v_2insn_patch_entry *end)
{
while (start < end) {
unsigned long addr = start->addr;
*(unsigned int *) (addr + 0) = start->insns[0];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 0));
*(unsigned int *) (addr + 4) = start->insns[1];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 4));
start++;
}
}
void sun_m7_patch_2insn_range(struct sun4v_2insn_patch_entry *start,
struct sun4v_2insn_patch_entry *end)
{
while (start < end) {
unsigned long addr = start->addr;
*(unsigned int *) (addr + 0) = start->insns[0];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 0));
*(unsigned int *) (addr + 4) = start->insns[1];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 4));
start++;
}
}
static void __init sun4v_patch(void)
{
extern void sun4v_hvapi_init(void);
if (tlb_type != hypervisor)
return;
sun4v_patch_1insn_range(&__sun4v_1insn_patch,
&__sun4v_1insn_patch_end);
sun4v_patch_2insn_range(&__sun4v_2insn_patch,
&__sun4v_2insn_patch_end);
switch (sun4v_chip_type) {
case SUN4V_CHIP_SPARC_M7:
case SUN4V_CHIP_SPARC_M8:
case SUN4V_CHIP_SPARC_SN:
sun_m7_patch_2insn_range(&__sun_m7_2insn_patch,
&__sun_m7_2insn_patch_end);
break;
default:
break;
}
if (sun4v_chip_type != SUN4V_CHIP_NIAGARA1) {
sun4v_patch_1insn_range(&__fast_win_ctrl_1insn_patch,
&__fast_win_ctrl_1insn_patch_end);
}
sun4v_hvapi_init();
}
static void __init popc_patch(void)
{
struct popc_3insn_patch_entry *p3;
struct popc_6insn_patch_entry *p6;
p3 = &__popc_3insn_patch;
while (p3 < &__popc_3insn_patch_end) {
unsigned long i, addr = p3->addr;
for (i = 0; i < 3; i++) {
*(unsigned int *) (addr + (i * 4)) = p3->insns[i];
wmb();
__asm__ __volatile__("flush %0"
: : "r" (addr + (i * 4)));
}
p3++;
}
p6 = &__popc_6insn_patch;
while (p6 < &__popc_6insn_patch_end) {
unsigned long i, addr = p6->addr;
for (i = 0; i < 6; i++) {
*(unsigned int *) (addr + (i * 4)) = p6->insns[i];
wmb();
__asm__ __volatile__("flush %0"
: : "r" (addr + (i * 4)));
}
p6++;
}
}
static void __init pause_patch(void)
{
struct pause_patch_entry *p;
p = &__pause_3insn_patch;
while (p < &__pause_3insn_patch_end) {
unsigned long i, addr = p->addr;
for (i = 0; i < 3; i++) {
*(unsigned int *) (addr + (i * 4)) = p->insns[i];
wmb();
__asm__ __volatile__("flush %0"
: : "r" (addr + (i * 4)));
}
p++;
}
}
void __init start_early_boot(void)
{
int cpu;
check_if_starfire();
per_cpu_patch();
sun4v_patch();
smp_init_cpu_poke();
cpu = hard_smp_processor_id();
if (cpu >= NR_CPUS) {
prom_printf("Serious problem, boot cpu id (%d) >= NR_CPUS (%d)\n",
cpu, NR_CPUS);
prom_halt();
}
current_thread_info()->cpu = cpu;
time_init_early();
prom_init_report();
start_kernel();
}
/* On Ultra, we support all of the v8 capabilities. */
unsigned long sparc64_elf_hwcap = (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV |
HWCAP_SPARC_V9);
EXPORT_SYMBOL(sparc64_elf_hwcap);
static const char *hwcaps[] = {
"flush", "stbar", "swap", "muldiv", "v9",
"ultra3", "blkinit", "n2",
/* These strings are as they appear in the machine description
* 'hwcap-list' property for cpu nodes.
*/
"mul32", "div32", "fsmuld", "v8plus", "popc", "vis", "vis2",
"ASIBlkInit", "fmaf", "vis3", "hpc", "random", "trans", "fjfmau",
"ima", "cspare", "pause", "cbcond", NULL /*reserved for crypto */,
"adp",
};
static const char *crypto_hwcaps[] = {
"aes", "des", "kasumi", "camellia", "md5", "sha1", "sha256",
"sha512", "mpmul", "montmul", "montsqr", "crc32c",
};
void cpucap_info(struct seq_file *m)
{
unsigned long caps = sparc64_elf_hwcap;
int i, printed = 0;
seq_puts(m, "cpucaps\t\t: ");
for (i = 0; i < ARRAY_SIZE(hwcaps); i++) {
unsigned long bit = 1UL << i;
if (hwcaps[i] && (caps & bit)) {
seq_printf(m, "%s%s",
printed ? "," : "", hwcaps[i]);
printed++;
}
}
if (caps & HWCAP_SPARC_CRYPTO) {
unsigned long cfr;
__asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr));
for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) {
unsigned long bit = 1UL << i;
if (cfr & bit) {
seq_printf(m, "%s%s",
printed ? "," : "", crypto_hwcaps[i]);
printed++;
}
}
}
seq_putc(m, '\n');
}
static void __init report_one_hwcap(int *printed, const char *name)
{
if ((*printed) == 0)
printk(KERN_INFO "CPU CAPS: [");
printk(KERN_CONT "%s%s",
(*printed) ? "," : "", name);
if (++(*printed) == 8) {
printk(KERN_CONT "]\n");
*printed = 0;
}
}
static void __init report_crypto_hwcaps(int *printed)
{
unsigned long cfr;
int i;
__asm__ __volatile__("rd %%asr26, %0" : "=r" (cfr));
for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) {
unsigned long bit = 1UL << i;
if (cfr & bit)
report_one_hwcap(printed, crypto_hwcaps[i]);
}
}
static void __init report_hwcaps(unsigned long caps)
{
int i, printed = 0;
for (i = 0; i < ARRAY_SIZE(hwcaps); i++) {
unsigned long bit = 1UL << i;
if (hwcaps[i] && (caps & bit))
report_one_hwcap(&printed, hwcaps[i]);
}
if (caps & HWCAP_SPARC_CRYPTO)
report_crypto_hwcaps(&printed);
if (printed != 0)
printk(KERN_CONT "]\n");
}
static unsigned long __init mdesc_cpu_hwcap_list(void)
{
struct mdesc_handle *hp;
unsigned long caps = 0;
const char *prop;
int len;
u64 pn;
hp = mdesc_grab();
if (!hp)
return 0;
pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "cpu");
if (pn == MDESC_NODE_NULL)
goto out;
prop = mdesc_get_property(hp, pn, "hwcap-list", &len);
if (!prop)
goto out;
while (len) {
int i, plen;
for (i = 0; i < ARRAY_SIZE(hwcaps); i++) {
unsigned long bit = 1UL << i;
if (hwcaps[i] && !strcmp(prop, hwcaps[i])) {
caps |= bit;
break;
}
}
for (i = 0; i < ARRAY_SIZE(crypto_hwcaps); i++) {
if (!strcmp(prop, crypto_hwcaps[i]))
caps |= HWCAP_SPARC_CRYPTO;
}
plen = strlen(prop) + 1;
prop += plen;
len -= plen;
}
out:
mdesc_release(hp);
return caps;
}
/* This yields a mask that user programs can use to figure out what
* instruction set this cpu supports.
*/
static void __init init_sparc64_elf_hwcap(void)
{
unsigned long cap = sparc64_elf_hwcap;
unsigned long mdesc_caps;
if (tlb_type == cheetah || tlb_type == cheetah_plus)
cap |= HWCAP_SPARC_ULTRA3;
else if (tlb_type == hypervisor) {
if (sun4v_chip_type == SUN4V_CHIP_NIAGARA1 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA2 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA3 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA4 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA5 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M6 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M7 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M8 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_SN ||
sun4v_chip_type == SUN4V_CHIP_SPARC64X)
cap |= HWCAP_SPARC_BLKINIT;
if (sun4v_chip_type == SUN4V_CHIP_NIAGARA2 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA3 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA4 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA5 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M6 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M7 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M8 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_SN ||
sun4v_chip_type == SUN4V_CHIP_SPARC64X)
cap |= HWCAP_SPARC_N2;
}
cap |= (AV_SPARC_MUL32 | AV_SPARC_DIV32 | AV_SPARC_V8PLUS);
mdesc_caps = mdesc_cpu_hwcap_list();
if (!mdesc_caps) {
if (tlb_type == spitfire)
cap |= AV_SPARC_VIS;
if (tlb_type == cheetah || tlb_type == cheetah_plus)
cap |= AV_SPARC_VIS | AV_SPARC_VIS2;
if (tlb_type == cheetah_plus) {
unsigned long impl, ver;
__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
impl = ((ver >> 32) & 0xffff);
if (impl == PANTHER_IMPL)
cap |= AV_SPARC_POPC;
}
if (tlb_type == hypervisor) {
if (sun4v_chip_type == SUN4V_CHIP_NIAGARA1)
cap |= AV_SPARC_ASI_BLK_INIT;
if (sun4v_chip_type == SUN4V_CHIP_NIAGARA2 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA3 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA4 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA5 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M6 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M7 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M8 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_SN ||
sun4v_chip_type == SUN4V_CHIP_SPARC64X)
cap |= (AV_SPARC_VIS | AV_SPARC_VIS2 |
AV_SPARC_ASI_BLK_INIT |
AV_SPARC_POPC);
if (sun4v_chip_type == SUN4V_CHIP_NIAGARA3 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA4 ||
sun4v_chip_type == SUN4V_CHIP_NIAGARA5 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M6 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M7 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_M8 ||
sun4v_chip_type == SUN4V_CHIP_SPARC_SN ||
sun4v_chip_type == SUN4V_CHIP_SPARC64X)
cap |= (AV_SPARC_VIS3 | AV_SPARC_HPC |
AV_SPARC_FMAF);
}
}
sparc64_elf_hwcap = cap | mdesc_caps;
report_hwcaps(sparc64_elf_hwcap);
if (sparc64_elf_hwcap & AV_SPARC_POPC)
popc_patch();
if (sparc64_elf_hwcap & AV_SPARC_PAUSE)
pause_patch();
}
void __init alloc_irqstack_bootmem(void)
{
unsigned int i, node;
for_each_possible_cpu(i) {
node = cpu_to_node(i);
softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
THREAD_SIZE,
THREAD_SIZE, 0);
hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
THREAD_SIZE,
THREAD_SIZE, 0);
}
}
void __init setup_arch(char **cmdline_p)
{
/* Initialize PROM console and command line. */
*cmdline_p = prom_getbootargs();
strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
parse_early_param();
boot_flags_init(*cmdline_p);
#ifdef CONFIG_EARLYFB
if (btext_find_display())
#endif
register_console(&prom_early_console);
if (tlb_type == hypervisor)
printk("ARCH: SUN4V\n");
else
printk("ARCH: SUN4U\n");
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
idprom_init();
if (!root_flags)
root_mountflags &= ~MS_RDONLY;
ROOT_DEV = old_decode_dev(root_dev);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = ram_flags & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((ram_flags & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((ram_flags & RAMDISK_LOAD_FLAG) != 0);
#endif
task_thread_info(&init_task)->kregs = &fake_swapper_regs;
#ifdef CONFIG_IP_PNP
if (!ic_set_manually) {
phandle chosen = prom_finddevice("/chosen");
u32 cl, sv, gw;
cl = prom_getintdefault (chosen, "client-ip", 0);
sv = prom_getintdefault (chosen, "server-ip", 0);
gw = prom_getintdefault (chosen, "gateway-ip", 0);
if (cl && sv) {
ic_myaddr = cl;
ic_servaddr = sv;
if (gw)
ic_gateway = gw;
#if defined(CONFIG_IP_PNP_BOOTP) || defined(CONFIG_IP_PNP_RARP)
ic_proto_enabled = 0;
#endif
}
}
#endif
/* Get boot processor trap_block[] setup. */
init_cur_cpu_trap(current_thread_info());
paging_init();
init_sparc64_elf_hwcap();
smp_fill_in_cpu_possible_map();
/*
* Once the OF device tree and MDESC have been setup and nr_cpus has
* been parsed, we know the list of possible cpus. Therefore we can
* allocate the IRQ stacks.
*/
alloc_irqstack_bootmem();
}
extern int stop_a_enabled;
void sun_do_break(void)
{
if (!stop_a_enabled)
return;
prom_printf("\n");
flush_user_windows();
prom_cmdline();
}
EXPORT_SYMBOL(sun_do_break);
int stop_a_enabled = 1;
EXPORT_SYMBOL(stop_a_enabled);