mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 00:12:13 +07:00
3370b69eb0
- x86: work around two nasty cases where a benign exception occurs while another is being delivered. The endless stream of exceptions causes an infinite loop in the processor, which not even NMIs or SMIs can interrupt; in the virt case, there is no possibility to exit to the host either. - x86: support for Skylake per-guest TSC rate. Long supported by AMD, the patches mostly move things from there to common arch/x86/kvm/ code. - generic: remove local_irq_save/restore from the guest entry and exit paths when context tracking is enabled. The patches are a few months old, but we discussed them again at kernel summit. Andy will pick up from here and, in 4.5, try to remove it from the user entry/exit paths. - PPC: Two bug fixes, see merge commit370289756b
for details. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJWRFb0AAoJEL/70l94x66DjjMH/31jr8d119MW0uv2x+03+wRq 6dbJ8tjQ8grvBRExKvLsUVjDmHlhCa1BQl5qjCsyYhX9UeAf4NQOmoEFpq+YTLxh Ctveyn+yiZWC7qxbQDmauiQ4JCOp+W9ial782iqw5+ouQMajGOffq5WrojCa2ZNF jI278JgdHJLrKj/uie//WBu3V7MJY5Apc3p4zatnSYFSQ3MA0sxl4r4zIrwOa5qs 23ZeeoqbP4sHh4X5wL/30Y6XFSCHj0qoYHHyAgzLi0PCMvBdt4DrAFUPDG/Rhlv6 o1WB/kcUfcz3DtBX85wfSOMuw0nF6patWhWv07R/3EIbYoz3dKvp9d6ORYgXqlY= =Um9M -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull second batch of kvm updates from Paolo Bonzini: "Four changes: - x86: work around two nasty cases where a benign exception occurs while another is being delivered. The endless stream of exceptions causes an infinite loop in the processor, which not even NMIs or SMIs can interrupt; in the virt case, there is no possibility to exit to the host either. - x86: support for Skylake per-guest TSC rate. Long supported by AMD, the patches mostly move things from there to common arch/x86/kvm/ code. - generic: remove local_irq_save/restore from the guest entry and exit paths when context tracking is enabled. The patches are a few months old, but we discussed them again at kernel summit. Andy will pick up from here and, in 4.5, try to remove it from the user entry/exit paths. - PPC: Two bug fixes, see merge commit370289756b
for details" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (21 commits) KVM: x86: rename update_db_bp_intercept to update_bp_intercept KVM: svm: unconditionally intercept #DB KVM: x86: work around infinite loop in microcode when #AC is delivered context_tracking: avoid irq_save/irq_restore on guest entry and exit context_tracking: remove duplicate enabled check KVM: VMX: Dump TSC multiplier in dump_vmcs() KVM: VMX: Use a scaled host TSC for guest readings of MSR_IA32_TSC KVM: VMX: Setup TSC scaling ratio when a vcpu is loaded KVM: VMX: Enable and initialize VMX TSC scaling KVM: x86: Use the correct vcpu's TSC rate to compute time scale KVM: x86: Move TSC scaling logic out of call-back read_l1_tsc() KVM: x86: Move TSC scaling logic out of call-back adjust_tsc_offset() KVM: x86: Replace call-back compute_tsc_offset() with a common function KVM: x86: Replace call-back set_tsc_khz() with a common function KVM: x86: Add a common TSC scaling function KVM: x86: Add a common TSC scaling ratio field in kvm_vcpu_arch KVM: x86: Collect information for setting TSC scaling ratio KVM: x86: declare a few variables as __read_mostly KVM: x86: merge handle_mmio_page_fault and handle_mmio_page_fault_common KVM: PPC: Book3S HV: Don't dynamically split core when already split ...
3223 lines
82 KiB
C
3223 lines
82 KiB
C
/*
|
|
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
|
|
*
|
|
* Authors:
|
|
* Paul Mackerras <paulus@au1.ibm.com>
|
|
* Alexander Graf <agraf@suse.de>
|
|
* Kevin Wolf <mail@kevin-wolf.de>
|
|
*
|
|
* Description: KVM functions specific to running on Book 3S
|
|
* processors in hypervisor mode (specifically POWER7 and later).
|
|
*
|
|
* This file is derived from arch/powerpc/kvm/book3s.c,
|
|
* by Alexander Graf <agraf@suse.de>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <asm/reg.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/lppaca.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cputhreads.h>
|
|
#include <asm/page.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/dbell.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/module.h>
|
|
|
|
#include "book3s.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace_hv.h"
|
|
|
|
/* #define EXIT_DEBUG */
|
|
/* #define EXIT_DEBUG_SIMPLE */
|
|
/* #define EXIT_DEBUG_INT */
|
|
|
|
/* Used to indicate that a guest page fault needs to be handled */
|
|
#define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
|
|
|
|
/* Used as a "null" value for timebase values */
|
|
#define TB_NIL (~(u64)0)
|
|
|
|
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
|
|
|
|
static int dynamic_mt_modes = 6;
|
|
module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
|
|
static int target_smt_mode;
|
|
module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
|
|
|
|
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
|
|
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
|
|
|
|
static bool kvmppc_ipi_thread(int cpu)
|
|
{
|
|
/* On POWER8 for IPIs to threads in the same core, use msgsnd */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
preempt_disable();
|
|
if (cpu_first_thread_sibling(cpu) ==
|
|
cpu_first_thread_sibling(smp_processor_id())) {
|
|
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
|
|
msg |= cpu_thread_in_core(cpu);
|
|
smp_mb();
|
|
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
|
|
preempt_enable();
|
|
return true;
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
|
|
if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
|
|
xics_wake_cpu(cpu);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu;
|
|
wait_queue_head_t *wqp;
|
|
|
|
wqp = kvm_arch_vcpu_wq(vcpu);
|
|
if (waitqueue_active(wqp)) {
|
|
wake_up_interruptible(wqp);
|
|
++vcpu->stat.halt_wakeup;
|
|
}
|
|
|
|
if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
|
|
return;
|
|
|
|
/* CPU points to the first thread of the core */
|
|
cpu = vcpu->cpu;
|
|
if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
|
|
smp_send_reschedule(cpu);
|
|
}
|
|
|
|
/*
|
|
* We use the vcpu_load/put functions to measure stolen time.
|
|
* Stolen time is counted as time when either the vcpu is able to
|
|
* run as part of a virtual core, but the task running the vcore
|
|
* is preempted or sleeping, or when the vcpu needs something done
|
|
* in the kernel by the task running the vcpu, but that task is
|
|
* preempted or sleeping. Those two things have to be counted
|
|
* separately, since one of the vcpu tasks will take on the job
|
|
* of running the core, and the other vcpu tasks in the vcore will
|
|
* sleep waiting for it to do that, but that sleep shouldn't count
|
|
* as stolen time.
|
|
*
|
|
* Hence we accumulate stolen time when the vcpu can run as part of
|
|
* a vcore using vc->stolen_tb, and the stolen time when the vcpu
|
|
* needs its task to do other things in the kernel (for example,
|
|
* service a page fault) in busy_stolen. We don't accumulate
|
|
* stolen time for a vcore when it is inactive, or for a vcpu
|
|
* when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
|
|
* a misnomer; it means that the vcpu task is not executing in
|
|
* the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
|
|
* the kernel. We don't have any way of dividing up that time
|
|
* between time that the vcpu is genuinely stopped, time that
|
|
* the task is actively working on behalf of the vcpu, and time
|
|
* that the task is preempted, so we don't count any of it as
|
|
* stolen.
|
|
*
|
|
* Updates to busy_stolen are protected by arch.tbacct_lock;
|
|
* updates to vc->stolen_tb are protected by the vcore->stoltb_lock
|
|
* lock. The stolen times are measured in units of timebase ticks.
|
|
* (Note that the != TB_NIL checks below are purely defensive;
|
|
* they should never fail.)
|
|
*/
|
|
|
|
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vc->stoltb_lock, flags);
|
|
vc->preempt_tb = mftb();
|
|
spin_unlock_irqrestore(&vc->stoltb_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vc->stoltb_lock, flags);
|
|
if (vc->preempt_tb != TB_NIL) {
|
|
vc->stolen_tb += mftb() - vc->preempt_tb;
|
|
vc->preempt_tb = TB_NIL;
|
|
}
|
|
spin_unlock_irqrestore(&vc->stoltb_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* We can test vc->runner without taking the vcore lock,
|
|
* because only this task ever sets vc->runner to this
|
|
* vcpu, and once it is set to this vcpu, only this task
|
|
* ever sets it to NULL.
|
|
*/
|
|
if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
|
|
kvmppc_core_end_stolen(vc);
|
|
|
|
spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
|
|
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
|
|
vcpu->arch.busy_preempt != TB_NIL) {
|
|
vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
|
|
vcpu->arch.busy_preempt = TB_NIL;
|
|
}
|
|
spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
unsigned long flags;
|
|
|
|
if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
|
|
kvmppc_core_start_stolen(vc);
|
|
|
|
spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
|
|
if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
|
|
vcpu->arch.busy_preempt = mftb();
|
|
spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
|
|
}
|
|
|
|
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
|
|
{
|
|
vcpu->arch.shregs.msr = msr;
|
|
kvmppc_end_cede(vcpu);
|
|
}
|
|
|
|
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
|
|
{
|
|
vcpu->arch.pvr = pvr;
|
|
}
|
|
|
|
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
|
|
{
|
|
unsigned long pcr = 0;
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
|
|
if (arch_compat) {
|
|
switch (arch_compat) {
|
|
case PVR_ARCH_205:
|
|
/*
|
|
* If an arch bit is set in PCR, all the defined
|
|
* higher-order arch bits also have to be set.
|
|
*/
|
|
pcr = PCR_ARCH_206 | PCR_ARCH_205;
|
|
break;
|
|
case PVR_ARCH_206:
|
|
case PVR_ARCH_206p:
|
|
pcr = PCR_ARCH_206;
|
|
break;
|
|
case PVR_ARCH_207:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
/* POWER7 can't emulate POWER8 */
|
|
if (!(pcr & PCR_ARCH_206))
|
|
return -EINVAL;
|
|
pcr &= ~PCR_ARCH_206;
|
|
}
|
|
}
|
|
|
|
spin_lock(&vc->lock);
|
|
vc->arch_compat = arch_compat;
|
|
vc->pcr = pcr;
|
|
spin_unlock(&vc->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
|
|
pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
|
|
vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
|
|
for (r = 0; r < 16; ++r)
|
|
pr_err("r%2d = %.16lx r%d = %.16lx\n",
|
|
r, kvmppc_get_gpr(vcpu, r),
|
|
r+16, kvmppc_get_gpr(vcpu, r+16));
|
|
pr_err("ctr = %.16lx lr = %.16lx\n",
|
|
vcpu->arch.ctr, vcpu->arch.lr);
|
|
pr_err("srr0 = %.16llx srr1 = %.16llx\n",
|
|
vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
|
|
pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
|
|
vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
|
|
pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
|
|
vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
|
|
pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
|
|
vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
|
|
pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
|
|
pr_err("fault dar = %.16lx dsisr = %.8x\n",
|
|
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
|
|
pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
|
|
for (r = 0; r < vcpu->arch.slb_max; ++r)
|
|
pr_err(" ESID = %.16llx VSID = %.16llx\n",
|
|
vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
|
|
pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
|
|
vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
|
|
vcpu->arch.last_inst);
|
|
}
|
|
|
|
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
|
|
{
|
|
int r;
|
|
struct kvm_vcpu *v, *ret = NULL;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
kvm_for_each_vcpu(r, v, kvm) {
|
|
if (v->vcpu_id == id) {
|
|
ret = v;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
|
|
{
|
|
vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
|
|
vpa->yield_count = cpu_to_be32(1);
|
|
}
|
|
|
|
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
|
|
unsigned long addr, unsigned long len)
|
|
{
|
|
/* check address is cacheline aligned */
|
|
if (addr & (L1_CACHE_BYTES - 1))
|
|
return -EINVAL;
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
if (v->next_gpa != addr || v->len != len) {
|
|
v->next_gpa = addr;
|
|
v->len = addr ? len : 0;
|
|
v->update_pending = 1;
|
|
}
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
|
|
struct reg_vpa {
|
|
u32 dummy;
|
|
union {
|
|
__be16 hword;
|
|
__be32 word;
|
|
} length;
|
|
};
|
|
|
|
static int vpa_is_registered(struct kvmppc_vpa *vpap)
|
|
{
|
|
if (vpap->update_pending)
|
|
return vpap->next_gpa != 0;
|
|
return vpap->pinned_addr != NULL;
|
|
}
|
|
|
|
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
|
|
unsigned long flags,
|
|
unsigned long vcpuid, unsigned long vpa)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long len, nb;
|
|
void *va;
|
|
struct kvm_vcpu *tvcpu;
|
|
int err;
|
|
int subfunc;
|
|
struct kvmppc_vpa *vpap;
|
|
|
|
tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
|
|
if (!tvcpu)
|
|
return H_PARAMETER;
|
|
|
|
subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
|
|
if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
|
|
subfunc == H_VPA_REG_SLB) {
|
|
/* Registering new area - address must be cache-line aligned */
|
|
if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
|
|
return H_PARAMETER;
|
|
|
|
/* convert logical addr to kernel addr and read length */
|
|
va = kvmppc_pin_guest_page(kvm, vpa, &nb);
|
|
if (va == NULL)
|
|
return H_PARAMETER;
|
|
if (subfunc == H_VPA_REG_VPA)
|
|
len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
|
|
else
|
|
len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
|
|
kvmppc_unpin_guest_page(kvm, va, vpa, false);
|
|
|
|
/* Check length */
|
|
if (len > nb || len < sizeof(struct reg_vpa))
|
|
return H_PARAMETER;
|
|
} else {
|
|
vpa = 0;
|
|
len = 0;
|
|
}
|
|
|
|
err = H_PARAMETER;
|
|
vpap = NULL;
|
|
spin_lock(&tvcpu->arch.vpa_update_lock);
|
|
|
|
switch (subfunc) {
|
|
case H_VPA_REG_VPA: /* register VPA */
|
|
if (len < sizeof(struct lppaca))
|
|
break;
|
|
vpap = &tvcpu->arch.vpa;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_REG_DTL: /* register DTL */
|
|
if (len < sizeof(struct dtl_entry))
|
|
break;
|
|
len -= len % sizeof(struct dtl_entry);
|
|
|
|
/* Check that they have previously registered a VPA */
|
|
err = H_RESOURCE;
|
|
if (!vpa_is_registered(&tvcpu->arch.vpa))
|
|
break;
|
|
|
|
vpap = &tvcpu->arch.dtl;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_REG_SLB: /* register SLB shadow buffer */
|
|
/* Check that they have previously registered a VPA */
|
|
err = H_RESOURCE;
|
|
if (!vpa_is_registered(&tvcpu->arch.vpa))
|
|
break;
|
|
|
|
vpap = &tvcpu->arch.slb_shadow;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_DEREG_VPA: /* deregister VPA */
|
|
/* Check they don't still have a DTL or SLB buf registered */
|
|
err = H_RESOURCE;
|
|
if (vpa_is_registered(&tvcpu->arch.dtl) ||
|
|
vpa_is_registered(&tvcpu->arch.slb_shadow))
|
|
break;
|
|
|
|
vpap = &tvcpu->arch.vpa;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_DEREG_DTL: /* deregister DTL */
|
|
vpap = &tvcpu->arch.dtl;
|
|
err = 0;
|
|
break;
|
|
|
|
case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
|
|
vpap = &tvcpu->arch.slb_shadow;
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
if (vpap) {
|
|
vpap->next_gpa = vpa;
|
|
vpap->len = len;
|
|
vpap->update_pending = 1;
|
|
}
|
|
|
|
spin_unlock(&tvcpu->arch.vpa_update_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
void *va;
|
|
unsigned long nb;
|
|
unsigned long gpa;
|
|
|
|
/*
|
|
* We need to pin the page pointed to by vpap->next_gpa,
|
|
* but we can't call kvmppc_pin_guest_page under the lock
|
|
* as it does get_user_pages() and down_read(). So we
|
|
* have to drop the lock, pin the page, then get the lock
|
|
* again and check that a new area didn't get registered
|
|
* in the meantime.
|
|
*/
|
|
for (;;) {
|
|
gpa = vpap->next_gpa;
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
va = NULL;
|
|
nb = 0;
|
|
if (gpa)
|
|
va = kvmppc_pin_guest_page(kvm, gpa, &nb);
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
if (gpa == vpap->next_gpa)
|
|
break;
|
|
/* sigh... unpin that one and try again */
|
|
if (va)
|
|
kvmppc_unpin_guest_page(kvm, va, gpa, false);
|
|
}
|
|
|
|
vpap->update_pending = 0;
|
|
if (va && nb < vpap->len) {
|
|
/*
|
|
* If it's now too short, it must be that userspace
|
|
* has changed the mappings underlying guest memory,
|
|
* so unregister the region.
|
|
*/
|
|
kvmppc_unpin_guest_page(kvm, va, gpa, false);
|
|
va = NULL;
|
|
}
|
|
if (vpap->pinned_addr)
|
|
kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
|
|
vpap->dirty);
|
|
vpap->gpa = gpa;
|
|
vpap->pinned_addr = va;
|
|
vpap->dirty = false;
|
|
if (va)
|
|
vpap->pinned_end = va + vpap->len;
|
|
}
|
|
|
|
static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.vpa.update_pending ||
|
|
vcpu->arch.slb_shadow.update_pending ||
|
|
vcpu->arch.dtl.update_pending))
|
|
return;
|
|
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
if (vcpu->arch.vpa.update_pending) {
|
|
kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
|
|
if (vcpu->arch.vpa.pinned_addr)
|
|
init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
|
|
}
|
|
if (vcpu->arch.dtl.update_pending) {
|
|
kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
|
|
vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
|
|
vcpu->arch.dtl_index = 0;
|
|
}
|
|
if (vcpu->arch.slb_shadow.update_pending)
|
|
kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
}
|
|
|
|
/*
|
|
* Return the accumulated stolen time for the vcore up until `now'.
|
|
* The caller should hold the vcore lock.
|
|
*/
|
|
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
|
|
{
|
|
u64 p;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vc->stoltb_lock, flags);
|
|
p = vc->stolen_tb;
|
|
if (vc->vcore_state != VCORE_INACTIVE &&
|
|
vc->preempt_tb != TB_NIL)
|
|
p += now - vc->preempt_tb;
|
|
spin_unlock_irqrestore(&vc->stoltb_lock, flags);
|
|
return p;
|
|
}
|
|
|
|
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
|
|
struct kvmppc_vcore *vc)
|
|
{
|
|
struct dtl_entry *dt;
|
|
struct lppaca *vpa;
|
|
unsigned long stolen;
|
|
unsigned long core_stolen;
|
|
u64 now;
|
|
|
|
dt = vcpu->arch.dtl_ptr;
|
|
vpa = vcpu->arch.vpa.pinned_addr;
|
|
now = mftb();
|
|
core_stolen = vcore_stolen_time(vc, now);
|
|
stolen = core_stolen - vcpu->arch.stolen_logged;
|
|
vcpu->arch.stolen_logged = core_stolen;
|
|
spin_lock_irq(&vcpu->arch.tbacct_lock);
|
|
stolen += vcpu->arch.busy_stolen;
|
|
vcpu->arch.busy_stolen = 0;
|
|
spin_unlock_irq(&vcpu->arch.tbacct_lock);
|
|
if (!dt || !vpa)
|
|
return;
|
|
memset(dt, 0, sizeof(struct dtl_entry));
|
|
dt->dispatch_reason = 7;
|
|
dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
|
|
dt->timebase = cpu_to_be64(now + vc->tb_offset);
|
|
dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
|
|
dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
|
|
dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
|
|
++dt;
|
|
if (dt == vcpu->arch.dtl.pinned_end)
|
|
dt = vcpu->arch.dtl.pinned_addr;
|
|
vcpu->arch.dtl_ptr = dt;
|
|
/* order writing *dt vs. writing vpa->dtl_idx */
|
|
smp_wmb();
|
|
vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
|
|
vcpu->arch.dtl.dirty = true;
|
|
}
|
|
|
|
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
|
|
return true;
|
|
if ((!vcpu->arch.vcore->arch_compat) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
|
|
unsigned long resource, unsigned long value1,
|
|
unsigned long value2)
|
|
{
|
|
switch (resource) {
|
|
case H_SET_MODE_RESOURCE_SET_CIABR:
|
|
if (!kvmppc_power8_compatible(vcpu))
|
|
return H_P2;
|
|
if (value2)
|
|
return H_P4;
|
|
if (mflags)
|
|
return H_UNSUPPORTED_FLAG_START;
|
|
/* Guests can't breakpoint the hypervisor */
|
|
if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
|
|
return H_P3;
|
|
vcpu->arch.ciabr = value1;
|
|
return H_SUCCESS;
|
|
case H_SET_MODE_RESOURCE_SET_DAWR:
|
|
if (!kvmppc_power8_compatible(vcpu))
|
|
return H_P2;
|
|
if (mflags)
|
|
return H_UNSUPPORTED_FLAG_START;
|
|
if (value2 & DABRX_HYP)
|
|
return H_P4;
|
|
vcpu->arch.dawr = value1;
|
|
vcpu->arch.dawrx = value2;
|
|
return H_SUCCESS;
|
|
default:
|
|
return H_TOO_HARD;
|
|
}
|
|
}
|
|
|
|
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
|
|
{
|
|
struct kvmppc_vcore *vcore = target->arch.vcore;
|
|
|
|
/*
|
|
* We expect to have been called by the real mode handler
|
|
* (kvmppc_rm_h_confer()) which would have directly returned
|
|
* H_SUCCESS if the source vcore wasn't idle (e.g. if it may
|
|
* have useful work to do and should not confer) so we don't
|
|
* recheck that here.
|
|
*/
|
|
|
|
spin_lock(&vcore->lock);
|
|
if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
|
|
vcore->vcore_state != VCORE_INACTIVE &&
|
|
vcore->runner)
|
|
target = vcore->runner;
|
|
spin_unlock(&vcore->lock);
|
|
|
|
return kvm_vcpu_yield_to(target);
|
|
}
|
|
|
|
static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
|
|
{
|
|
int yield_count = 0;
|
|
struct lppaca *lppaca;
|
|
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
|
|
if (lppaca)
|
|
yield_count = be32_to_cpu(lppaca->yield_count);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
return yield_count;
|
|
}
|
|
|
|
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long req = kvmppc_get_gpr(vcpu, 3);
|
|
unsigned long target, ret = H_SUCCESS;
|
|
int yield_count;
|
|
struct kvm_vcpu *tvcpu;
|
|
int idx, rc;
|
|
|
|
if (req <= MAX_HCALL_OPCODE &&
|
|
!test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
|
|
return RESUME_HOST;
|
|
|
|
switch (req) {
|
|
case H_CEDE:
|
|
break;
|
|
case H_PROD:
|
|
target = kvmppc_get_gpr(vcpu, 4);
|
|
tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
|
|
if (!tvcpu) {
|
|
ret = H_PARAMETER;
|
|
break;
|
|
}
|
|
tvcpu->arch.prodded = 1;
|
|
smp_mb();
|
|
if (vcpu->arch.ceded) {
|
|
if (waitqueue_active(&vcpu->wq)) {
|
|
wake_up_interruptible(&vcpu->wq);
|
|
vcpu->stat.halt_wakeup++;
|
|
}
|
|
}
|
|
break;
|
|
case H_CONFER:
|
|
target = kvmppc_get_gpr(vcpu, 4);
|
|
if (target == -1)
|
|
break;
|
|
tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
|
|
if (!tvcpu) {
|
|
ret = H_PARAMETER;
|
|
break;
|
|
}
|
|
yield_count = kvmppc_get_gpr(vcpu, 5);
|
|
if (kvmppc_get_yield_count(tvcpu) != yield_count)
|
|
break;
|
|
kvm_arch_vcpu_yield_to(tvcpu);
|
|
break;
|
|
case H_REGISTER_VPA:
|
|
ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6));
|
|
break;
|
|
case H_RTAS:
|
|
if (list_empty(&vcpu->kvm->arch.rtas_tokens))
|
|
return RESUME_HOST;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
rc = kvmppc_rtas_hcall(vcpu);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
|
|
if (rc == -ENOENT)
|
|
return RESUME_HOST;
|
|
else if (rc == 0)
|
|
break;
|
|
|
|
/* Send the error out to userspace via KVM_RUN */
|
|
return rc;
|
|
case H_LOGICAL_CI_LOAD:
|
|
ret = kvmppc_h_logical_ci_load(vcpu);
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_LOGICAL_CI_STORE:
|
|
ret = kvmppc_h_logical_ci_store(vcpu);
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_SET_MODE:
|
|
ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
|
|
kvmppc_get_gpr(vcpu, 5),
|
|
kvmppc_get_gpr(vcpu, 6),
|
|
kvmppc_get_gpr(vcpu, 7));
|
|
if (ret == H_TOO_HARD)
|
|
return RESUME_HOST;
|
|
break;
|
|
case H_XIRR:
|
|
case H_CPPR:
|
|
case H_EOI:
|
|
case H_IPI:
|
|
case H_IPOLL:
|
|
case H_XIRR_X:
|
|
if (kvmppc_xics_enabled(vcpu)) {
|
|
ret = kvmppc_xics_hcall(vcpu, req);
|
|
break;
|
|
} /* fallthrough */
|
|
default:
|
|
return RESUME_HOST;
|
|
}
|
|
kvmppc_set_gpr(vcpu, 3, ret);
|
|
vcpu->arch.hcall_needed = 0;
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
static int kvmppc_hcall_impl_hv(unsigned long cmd)
|
|
{
|
|
switch (cmd) {
|
|
case H_CEDE:
|
|
case H_PROD:
|
|
case H_CONFER:
|
|
case H_REGISTER_VPA:
|
|
case H_SET_MODE:
|
|
case H_LOGICAL_CI_LOAD:
|
|
case H_LOGICAL_CI_STORE:
|
|
#ifdef CONFIG_KVM_XICS
|
|
case H_XIRR:
|
|
case H_CPPR:
|
|
case H_EOI:
|
|
case H_IPI:
|
|
case H_IPOLL:
|
|
case H_XIRR_X:
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/* See if it's in the real-mode table */
|
|
return kvmppc_hcall_impl_hv_realmode(cmd);
|
|
}
|
|
|
|
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 last_inst;
|
|
|
|
if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
|
|
EMULATE_DONE) {
|
|
/*
|
|
* Fetch failed, so return to guest and
|
|
* try executing it again.
|
|
*/
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
|
|
run->exit_reason = KVM_EXIT_DEBUG;
|
|
run->debug.arch.address = kvmppc_get_pc(vcpu);
|
|
return RESUME_HOST;
|
|
} else {
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
|
|
return RESUME_GUEST;
|
|
}
|
|
}
|
|
|
|
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
struct task_struct *tsk)
|
|
{
|
|
int r = RESUME_HOST;
|
|
|
|
vcpu->stat.sum_exits++;
|
|
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
run->ready_for_interrupt_injection = 1;
|
|
switch (vcpu->arch.trap) {
|
|
/* We're good on these - the host merely wanted to get our attention */
|
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
|
vcpu->stat.dec_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
|
case BOOK3S_INTERRUPT_H_DOORBELL:
|
|
vcpu->stat.ext_intr_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
|
|
case BOOK3S_INTERRUPT_HMI:
|
|
case BOOK3S_INTERRUPT_PERFMON:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_MACHINE_CHECK:
|
|
/*
|
|
* Deliver a machine check interrupt to the guest.
|
|
* We have to do this, even if the host has handled the
|
|
* machine check, because machine checks use SRR0/1 and
|
|
* the interrupt might have trashed guest state in them.
|
|
*/
|
|
kvmppc_book3s_queue_irqprio(vcpu,
|
|
BOOK3S_INTERRUPT_MACHINE_CHECK);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_PROGRAM:
|
|
{
|
|
ulong flags;
|
|
/*
|
|
* Normally program interrupts are delivered directly
|
|
* to the guest by the hardware, but we can get here
|
|
* as a result of a hypervisor emulation interrupt
|
|
* (e40) getting turned into a 700 by BML RTAS.
|
|
*/
|
|
flags = vcpu->arch.shregs.msr & 0x1f0000ull;
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_SYSCALL:
|
|
{
|
|
/* hcall - punt to userspace */
|
|
int i;
|
|
|
|
/* hypercall with MSR_PR has already been handled in rmode,
|
|
* and never reaches here.
|
|
*/
|
|
|
|
run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
|
|
for (i = 0; i < 9; ++i)
|
|
run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
|
|
run->exit_reason = KVM_EXIT_PAPR_HCALL;
|
|
vcpu->arch.hcall_needed = 1;
|
|
r = RESUME_HOST;
|
|
break;
|
|
}
|
|
/*
|
|
* We get these next two if the guest accesses a page which it thinks
|
|
* it has mapped but which is not actually present, either because
|
|
* it is for an emulated I/O device or because the corresonding
|
|
* host page has been paged out. Any other HDSI/HISI interrupts
|
|
* have been handled already.
|
|
*/
|
|
case BOOK3S_INTERRUPT_H_DATA_STORAGE:
|
|
r = RESUME_PAGE_FAULT;
|
|
break;
|
|
case BOOK3S_INTERRUPT_H_INST_STORAGE:
|
|
vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
|
|
vcpu->arch.fault_dsisr = 0;
|
|
r = RESUME_PAGE_FAULT;
|
|
break;
|
|
/*
|
|
* This occurs if the guest executes an illegal instruction.
|
|
* If the guest debug is disabled, generate a program interrupt
|
|
* to the guest. If guest debug is enabled, we need to check
|
|
* whether the instruction is a software breakpoint instruction.
|
|
* Accordingly return to Guest or Host.
|
|
*/
|
|
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
|
|
if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
|
|
vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
|
|
swab32(vcpu->arch.emul_inst) :
|
|
vcpu->arch.emul_inst;
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
|
|
r = kvmppc_emulate_debug_inst(run, vcpu);
|
|
} else {
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
/*
|
|
* This occurs if the guest (kernel or userspace), does something that
|
|
* is prohibited by HFSCR. We just generate a program interrupt to
|
|
* the guest.
|
|
*/
|
|
case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
default:
|
|
kvmppc_dump_regs(vcpu);
|
|
printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
|
|
vcpu->arch.trap, kvmppc_get_pc(vcpu),
|
|
vcpu->arch.shregs.msr);
|
|
run->hw.hardware_exit_reason = vcpu->arch.trap;
|
|
r = RESUME_HOST;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
int i;
|
|
|
|
memset(sregs, 0, sizeof(struct kvm_sregs));
|
|
sregs->pvr = vcpu->arch.pvr;
|
|
for (i = 0; i < vcpu->arch.slb_max; i++) {
|
|
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
|
|
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
int i, j;
|
|
|
|
/* Only accept the same PVR as the host's, since we can't spoof it */
|
|
if (sregs->pvr != vcpu->arch.pvr)
|
|
return -EINVAL;
|
|
|
|
j = 0;
|
|
for (i = 0; i < vcpu->arch.slb_nr; i++) {
|
|
if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
|
|
vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
|
|
vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
|
|
++j;
|
|
}
|
|
}
|
|
vcpu->arch.slb_max = j;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
|
|
bool preserve_top32)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvmppc_vcore *vc = vcpu->arch.vcore;
|
|
u64 mask;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
spin_lock(&vc->lock);
|
|
/*
|
|
* If ILE (interrupt little-endian) has changed, update the
|
|
* MSR_LE bit in the intr_msr for each vcpu in this vcore.
|
|
*/
|
|
if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->arch.vcore != vc)
|
|
continue;
|
|
if (new_lpcr & LPCR_ILE)
|
|
vcpu->arch.intr_msr |= MSR_LE;
|
|
else
|
|
vcpu->arch.intr_msr &= ~MSR_LE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Userspace can only modify DPFD (default prefetch depth),
|
|
* ILE (interrupt little-endian) and TC (translation control).
|
|
* On POWER8 userspace can also modify AIL (alt. interrupt loc.)
|
|
*/
|
|
mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
mask |= LPCR_AIL;
|
|
|
|
/* Broken 32-bit version of LPCR must not clear top bits */
|
|
if (preserve_top32)
|
|
mask &= 0xFFFFFFFF;
|
|
vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
|
|
spin_unlock(&vc->lock);
|
|
mutex_unlock(&kvm->lock);
|
|
}
|
|
|
|
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
|
|
union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
long int i;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_DEBUG_INST:
|
|
*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
|
|
break;
|
|
case KVM_REG_PPC_HIOR:
|
|
*val = get_reg_val(id, 0);
|
|
break;
|
|
case KVM_REG_PPC_DABR:
|
|
*val = get_reg_val(id, vcpu->arch.dabr);
|
|
break;
|
|
case KVM_REG_PPC_DABRX:
|
|
*val = get_reg_val(id, vcpu->arch.dabrx);
|
|
break;
|
|
case KVM_REG_PPC_DSCR:
|
|
*val = get_reg_val(id, vcpu->arch.dscr);
|
|
break;
|
|
case KVM_REG_PPC_PURR:
|
|
*val = get_reg_val(id, vcpu->arch.purr);
|
|
break;
|
|
case KVM_REG_PPC_SPURR:
|
|
*val = get_reg_val(id, vcpu->arch.spurr);
|
|
break;
|
|
case KVM_REG_PPC_AMR:
|
|
*val = get_reg_val(id, vcpu->arch.amr);
|
|
break;
|
|
case KVM_REG_PPC_UAMOR:
|
|
*val = get_reg_val(id, vcpu->arch.uamor);
|
|
break;
|
|
case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
|
|
i = id - KVM_REG_PPC_MMCR0;
|
|
*val = get_reg_val(id, vcpu->arch.mmcr[i]);
|
|
break;
|
|
case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
|
|
i = id - KVM_REG_PPC_PMC1;
|
|
*val = get_reg_val(id, vcpu->arch.pmc[i]);
|
|
break;
|
|
case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
|
|
i = id - KVM_REG_PPC_SPMC1;
|
|
*val = get_reg_val(id, vcpu->arch.spmc[i]);
|
|
break;
|
|
case KVM_REG_PPC_SIAR:
|
|
*val = get_reg_val(id, vcpu->arch.siar);
|
|
break;
|
|
case KVM_REG_PPC_SDAR:
|
|
*val = get_reg_val(id, vcpu->arch.sdar);
|
|
break;
|
|
case KVM_REG_PPC_SIER:
|
|
*val = get_reg_val(id, vcpu->arch.sier);
|
|
break;
|
|
case KVM_REG_PPC_IAMR:
|
|
*val = get_reg_val(id, vcpu->arch.iamr);
|
|
break;
|
|
case KVM_REG_PPC_PSPB:
|
|
*val = get_reg_val(id, vcpu->arch.pspb);
|
|
break;
|
|
case KVM_REG_PPC_DPDES:
|
|
*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
|
|
break;
|
|
case KVM_REG_PPC_DAWR:
|
|
*val = get_reg_val(id, vcpu->arch.dawr);
|
|
break;
|
|
case KVM_REG_PPC_DAWRX:
|
|
*val = get_reg_val(id, vcpu->arch.dawrx);
|
|
break;
|
|
case KVM_REG_PPC_CIABR:
|
|
*val = get_reg_val(id, vcpu->arch.ciabr);
|
|
break;
|
|
case KVM_REG_PPC_CSIGR:
|
|
*val = get_reg_val(id, vcpu->arch.csigr);
|
|
break;
|
|
case KVM_REG_PPC_TACR:
|
|
*val = get_reg_val(id, vcpu->arch.tacr);
|
|
break;
|
|
case KVM_REG_PPC_TCSCR:
|
|
*val = get_reg_val(id, vcpu->arch.tcscr);
|
|
break;
|
|
case KVM_REG_PPC_PID:
|
|
*val = get_reg_val(id, vcpu->arch.pid);
|
|
break;
|
|
case KVM_REG_PPC_ACOP:
|
|
*val = get_reg_val(id, vcpu->arch.acop);
|
|
break;
|
|
case KVM_REG_PPC_WORT:
|
|
*val = get_reg_val(id, vcpu->arch.wort);
|
|
break;
|
|
case KVM_REG_PPC_VPA_ADDR:
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
break;
|
|
case KVM_REG_PPC_VPA_SLB:
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
|
|
val->vpaval.length = vcpu->arch.slb_shadow.len;
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
break;
|
|
case KVM_REG_PPC_VPA_DTL:
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
val->vpaval.addr = vcpu->arch.dtl.next_gpa;
|
|
val->vpaval.length = vcpu->arch.dtl.len;
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
break;
|
|
case KVM_REG_PPC_TB_OFFSET:
|
|
*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
|
|
break;
|
|
case KVM_REG_PPC_LPCR:
|
|
case KVM_REG_PPC_LPCR_64:
|
|
*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
|
|
break;
|
|
case KVM_REG_PPC_PPR:
|
|
*val = get_reg_val(id, vcpu->arch.ppr);
|
|
break;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
case KVM_REG_PPC_TFHAR:
|
|
*val = get_reg_val(id, vcpu->arch.tfhar);
|
|
break;
|
|
case KVM_REG_PPC_TFIAR:
|
|
*val = get_reg_val(id, vcpu->arch.tfiar);
|
|
break;
|
|
case KVM_REG_PPC_TEXASR:
|
|
*val = get_reg_val(id, vcpu->arch.texasr);
|
|
break;
|
|
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
|
|
i = id - KVM_REG_PPC_TM_GPR0;
|
|
*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
|
|
{
|
|
int j;
|
|
i = id - KVM_REG_PPC_TM_VSR0;
|
|
if (i < 32)
|
|
for (j = 0; j < TS_FPRWIDTH; j++)
|
|
val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
|
|
else {
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
val->vval = vcpu->arch.vr_tm.vr[i-32];
|
|
else
|
|
r = -ENXIO;
|
|
}
|
|
break;
|
|
}
|
|
case KVM_REG_PPC_TM_CR:
|
|
*val = get_reg_val(id, vcpu->arch.cr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_LR:
|
|
*val = get_reg_val(id, vcpu->arch.lr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_CTR:
|
|
*val = get_reg_val(id, vcpu->arch.ctr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_FPSCR:
|
|
*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
|
|
break;
|
|
case KVM_REG_PPC_TM_AMR:
|
|
*val = get_reg_val(id, vcpu->arch.amr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_PPR:
|
|
*val = get_reg_val(id, vcpu->arch.ppr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_VRSAVE:
|
|
*val = get_reg_val(id, vcpu->arch.vrsave_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSCR:
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
|
|
else
|
|
r = -ENXIO;
|
|
break;
|
|
case KVM_REG_PPC_TM_DSCR:
|
|
*val = get_reg_val(id, vcpu->arch.dscr_tm);
|
|
break;
|
|
case KVM_REG_PPC_TM_TAR:
|
|
*val = get_reg_val(id, vcpu->arch.tar_tm);
|
|
break;
|
|
#endif
|
|
case KVM_REG_PPC_ARCH_COMPAT:
|
|
*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
|
|
union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
long int i;
|
|
unsigned long addr, len;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
/* Only allow this to be set to zero */
|
|
if (set_reg_val(id, *val))
|
|
r = -EINVAL;
|
|
break;
|
|
case KVM_REG_PPC_DABR:
|
|
vcpu->arch.dabr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_DABRX:
|
|
vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
|
|
break;
|
|
case KVM_REG_PPC_DSCR:
|
|
vcpu->arch.dscr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_PURR:
|
|
vcpu->arch.purr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_SPURR:
|
|
vcpu->arch.spurr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_AMR:
|
|
vcpu->arch.amr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_UAMOR:
|
|
vcpu->arch.uamor = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
|
|
i = id - KVM_REG_PPC_MMCR0;
|
|
vcpu->arch.mmcr[i] = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
|
|
i = id - KVM_REG_PPC_PMC1;
|
|
vcpu->arch.pmc[i] = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
|
|
i = id - KVM_REG_PPC_SPMC1;
|
|
vcpu->arch.spmc[i] = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_SIAR:
|
|
vcpu->arch.siar = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_SDAR:
|
|
vcpu->arch.sdar = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_SIER:
|
|
vcpu->arch.sier = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_IAMR:
|
|
vcpu->arch.iamr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_PSPB:
|
|
vcpu->arch.pspb = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_DPDES:
|
|
vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_DAWR:
|
|
vcpu->arch.dawr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_DAWRX:
|
|
vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
|
|
break;
|
|
case KVM_REG_PPC_CIABR:
|
|
vcpu->arch.ciabr = set_reg_val(id, *val);
|
|
/* Don't allow setting breakpoints in hypervisor code */
|
|
if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
|
|
vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
|
|
break;
|
|
case KVM_REG_PPC_CSIGR:
|
|
vcpu->arch.csigr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TACR:
|
|
vcpu->arch.tacr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TCSCR:
|
|
vcpu->arch.tcscr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_PID:
|
|
vcpu->arch.pid = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_ACOP:
|
|
vcpu->arch.acop = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_WORT:
|
|
vcpu->arch.wort = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_VPA_ADDR:
|
|
addr = set_reg_val(id, *val);
|
|
r = -EINVAL;
|
|
if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
|
|
vcpu->arch.dtl.next_gpa))
|
|
break;
|
|
r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
|
|
break;
|
|
case KVM_REG_PPC_VPA_SLB:
|
|
addr = val->vpaval.addr;
|
|
len = val->vpaval.length;
|
|
r = -EINVAL;
|
|
if (addr && !vcpu->arch.vpa.next_gpa)
|
|
break;
|
|
r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
|
|
break;
|
|
case KVM_REG_PPC_VPA_DTL:
|
|
addr = val->vpaval.addr;
|
|
len = val->vpaval.length;
|
|
r = -EINVAL;
|
|
if (addr && (len < sizeof(struct dtl_entry) ||
|
|
!vcpu->arch.vpa.next_gpa))
|
|
break;
|
|
len -= len % sizeof(struct dtl_entry);
|
|
r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
|
|
break;
|
|
case KVM_REG_PPC_TB_OFFSET:
|
|
/* round up to multiple of 2^24 */
|
|
vcpu->arch.vcore->tb_offset =
|
|
ALIGN(set_reg_val(id, *val), 1UL << 24);
|
|
break;
|
|
case KVM_REG_PPC_LPCR:
|
|
kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
|
|
break;
|
|
case KVM_REG_PPC_LPCR_64:
|
|
kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
|
|
break;
|
|
case KVM_REG_PPC_PPR:
|
|
vcpu->arch.ppr = set_reg_val(id, *val);
|
|
break;
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
case KVM_REG_PPC_TFHAR:
|
|
vcpu->arch.tfhar = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TFIAR:
|
|
vcpu->arch.tfiar = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TEXASR:
|
|
vcpu->arch.texasr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
|
|
i = id - KVM_REG_PPC_TM_GPR0;
|
|
vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
|
|
{
|
|
int j;
|
|
i = id - KVM_REG_PPC_TM_VSR0;
|
|
if (i < 32)
|
|
for (j = 0; j < TS_FPRWIDTH; j++)
|
|
vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
|
|
else
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
vcpu->arch.vr_tm.vr[i-32] = val->vval;
|
|
else
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
case KVM_REG_PPC_TM_CR:
|
|
vcpu->arch.cr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_LR:
|
|
vcpu->arch.lr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_CTR:
|
|
vcpu->arch.ctr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_FPSCR:
|
|
vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_AMR:
|
|
vcpu->arch.amr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_PPR:
|
|
vcpu->arch.ppr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_VRSAVE:
|
|
vcpu->arch.vrsave_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_VSCR:
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
|
|
else
|
|
r = - ENXIO;
|
|
break;
|
|
case KVM_REG_PPC_TM_DSCR:
|
|
vcpu->arch.dscr_tm = set_reg_val(id, *val);
|
|
break;
|
|
case KVM_REG_PPC_TM_TAR:
|
|
vcpu->arch.tar_tm = set_reg_val(id, *val);
|
|
break;
|
|
#endif
|
|
case KVM_REG_PPC_ARCH_COMPAT:
|
|
r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
|
|
{
|
|
struct kvmppc_vcore *vcore;
|
|
|
|
vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
|
|
|
|
if (vcore == NULL)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&vcore->runnable_threads);
|
|
spin_lock_init(&vcore->lock);
|
|
spin_lock_init(&vcore->stoltb_lock);
|
|
init_waitqueue_head(&vcore->wq);
|
|
vcore->preempt_tb = TB_NIL;
|
|
vcore->lpcr = kvm->arch.lpcr;
|
|
vcore->first_vcpuid = core * threads_per_subcore;
|
|
vcore->kvm = kvm;
|
|
INIT_LIST_HEAD(&vcore->preempt_list);
|
|
|
|
return vcore;
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
|
|
static struct debugfs_timings_element {
|
|
const char *name;
|
|
size_t offset;
|
|
} timings[] = {
|
|
{"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
|
|
{"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
|
|
{"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
|
|
{"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
|
|
{"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
|
|
};
|
|
|
|
#define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
|
|
|
|
struct debugfs_timings_state {
|
|
struct kvm_vcpu *vcpu;
|
|
unsigned int buflen;
|
|
char buf[N_TIMINGS * 100];
|
|
};
|
|
|
|
static int debugfs_timings_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct kvm_vcpu *vcpu = inode->i_private;
|
|
struct debugfs_timings_state *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
kvm_get_kvm(vcpu->kvm);
|
|
p->vcpu = vcpu;
|
|
file->private_data = p;
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static int debugfs_timings_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct debugfs_timings_state *p = file->private_data;
|
|
|
|
kvm_put_kvm(p->vcpu->kvm);
|
|
kfree(p);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
struct debugfs_timings_state *p = file->private_data;
|
|
struct kvm_vcpu *vcpu = p->vcpu;
|
|
char *s, *buf_end;
|
|
struct kvmhv_tb_accumulator tb;
|
|
u64 count;
|
|
loff_t pos;
|
|
ssize_t n;
|
|
int i, loops;
|
|
bool ok;
|
|
|
|
if (!p->buflen) {
|
|
s = p->buf;
|
|
buf_end = s + sizeof(p->buf);
|
|
for (i = 0; i < N_TIMINGS; ++i) {
|
|
struct kvmhv_tb_accumulator *acc;
|
|
|
|
acc = (struct kvmhv_tb_accumulator *)
|
|
((unsigned long)vcpu + timings[i].offset);
|
|
ok = false;
|
|
for (loops = 0; loops < 1000; ++loops) {
|
|
count = acc->seqcount;
|
|
if (!(count & 1)) {
|
|
smp_rmb();
|
|
tb = *acc;
|
|
smp_rmb();
|
|
if (count == acc->seqcount) {
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
udelay(1);
|
|
}
|
|
if (!ok)
|
|
snprintf(s, buf_end - s, "%s: stuck\n",
|
|
timings[i].name);
|
|
else
|
|
snprintf(s, buf_end - s,
|
|
"%s: %llu %llu %llu %llu\n",
|
|
timings[i].name, count / 2,
|
|
tb_to_ns(tb.tb_total),
|
|
tb_to_ns(tb.tb_min),
|
|
tb_to_ns(tb.tb_max));
|
|
s += strlen(s);
|
|
}
|
|
p->buflen = s - p->buf;
|
|
}
|
|
|
|
pos = *ppos;
|
|
if (pos >= p->buflen)
|
|
return 0;
|
|
if (len > p->buflen - pos)
|
|
len = p->buflen - pos;
|
|
n = copy_to_user(buf, p->buf + pos, len);
|
|
if (n) {
|
|
if (n == len)
|
|
return -EFAULT;
|
|
len -= n;
|
|
}
|
|
*ppos = pos + len;
|
|
return len;
|
|
}
|
|
|
|
static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
return -EACCES;
|
|
}
|
|
|
|
static const struct file_operations debugfs_timings_ops = {
|
|
.owner = THIS_MODULE,
|
|
.open = debugfs_timings_open,
|
|
.release = debugfs_timings_release,
|
|
.read = debugfs_timings_read,
|
|
.write = debugfs_timings_write,
|
|
.llseek = generic_file_llseek,
|
|
};
|
|
|
|
/* Create a debugfs directory for the vcpu */
|
|
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
|
|
{
|
|
char buf[16];
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
snprintf(buf, sizeof(buf), "vcpu%u", id);
|
|
if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
|
|
return;
|
|
vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
|
|
if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
|
|
return;
|
|
vcpu->arch.debugfs_timings =
|
|
debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
|
|
vcpu, &debugfs_timings_ops);
|
|
}
|
|
|
|
#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
|
|
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
|
|
{
|
|
}
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
|
|
|
|
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
|
|
unsigned int id)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int err = -EINVAL;
|
|
int core;
|
|
struct kvmppc_vcore *vcore;
|
|
|
|
core = id / threads_per_subcore;
|
|
if (core >= KVM_MAX_VCORES)
|
|
goto out;
|
|
|
|
err = -ENOMEM;
|
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!vcpu)
|
|
goto out;
|
|
|
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
|
if (err)
|
|
goto free_vcpu;
|
|
|
|
vcpu->arch.shared = &vcpu->arch.shregs;
|
|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
|
|
/*
|
|
* The shared struct is never shared on HV,
|
|
* so we can always use host endianness
|
|
*/
|
|
#ifdef __BIG_ENDIAN__
|
|
vcpu->arch.shared_big_endian = true;
|
|
#else
|
|
vcpu->arch.shared_big_endian = false;
|
|
#endif
|
|
#endif
|
|
vcpu->arch.mmcr[0] = MMCR0_FC;
|
|
vcpu->arch.ctrl = CTRL_RUNLATCH;
|
|
/* default to host PVR, since we can't spoof it */
|
|
kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
|
|
spin_lock_init(&vcpu->arch.vpa_update_lock);
|
|
spin_lock_init(&vcpu->arch.tbacct_lock);
|
|
vcpu->arch.busy_preempt = TB_NIL;
|
|
vcpu->arch.intr_msr = MSR_SF | MSR_ME;
|
|
|
|
kvmppc_mmu_book3s_hv_init(vcpu);
|
|
|
|
vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
|
|
|
|
init_waitqueue_head(&vcpu->arch.cpu_run);
|
|
|
|
mutex_lock(&kvm->lock);
|
|
vcore = kvm->arch.vcores[core];
|
|
if (!vcore) {
|
|
vcore = kvmppc_vcore_create(kvm, core);
|
|
kvm->arch.vcores[core] = vcore;
|
|
kvm->arch.online_vcores++;
|
|
}
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
if (!vcore)
|
|
goto free_vcpu;
|
|
|
|
spin_lock(&vcore->lock);
|
|
++vcore->num_threads;
|
|
spin_unlock(&vcore->lock);
|
|
vcpu->arch.vcore = vcore;
|
|
vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
|
|
vcpu->arch.thread_cpu = -1;
|
|
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_64;
|
|
kvmppc_sanity_check(vcpu);
|
|
|
|
debugfs_vcpu_init(vcpu, id);
|
|
|
|
return vcpu;
|
|
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
|
|
{
|
|
if (vpa->pinned_addr)
|
|
kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
|
|
vpa->dirty);
|
|
}
|
|
|
|
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
spin_lock(&vcpu->arch.vpa_update_lock);
|
|
unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
|
|
unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
|
|
unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
|
|
spin_unlock(&vcpu->arch.vpa_update_lock);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
}
|
|
|
|
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Indicate we want to get back into the guest */
|
|
return 1;
|
|
}
|
|
|
|
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long dec_nsec, now;
|
|
|
|
now = get_tb();
|
|
if (now > vcpu->arch.dec_expires) {
|
|
/* decrementer has already gone negative */
|
|
kvmppc_core_queue_dec(vcpu);
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
return;
|
|
}
|
|
dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
|
|
/ tb_ticks_per_sec;
|
|
hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
|
|
HRTIMER_MODE_REL);
|
|
vcpu->arch.timer_running = 1;
|
|
}
|
|
|
|
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.ceded = 0;
|
|
if (vcpu->arch.timer_running) {
|
|
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
|
|
vcpu->arch.timer_running = 0;
|
|
}
|
|
}
|
|
|
|
extern void __kvmppc_vcore_entry(void);
|
|
|
|
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 now;
|
|
|
|
if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
|
|
return;
|
|
spin_lock_irq(&vcpu->arch.tbacct_lock);
|
|
now = mftb();
|
|
vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
|
|
vcpu->arch.stolen_logged;
|
|
vcpu->arch.busy_preempt = now;
|
|
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
|
|
spin_unlock_irq(&vcpu->arch.tbacct_lock);
|
|
--vc->n_runnable;
|
|
list_del(&vcpu->arch.run_list);
|
|
}
|
|
|
|
static int kvmppc_grab_hwthread(int cpu)
|
|
{
|
|
struct paca_struct *tpaca;
|
|
long timeout = 10000;
|
|
|
|
tpaca = &paca[cpu];
|
|
|
|
/* Ensure the thread won't go into the kernel if it wakes */
|
|
tpaca->kvm_hstate.kvm_vcpu = NULL;
|
|
tpaca->kvm_hstate.kvm_vcore = NULL;
|
|
tpaca->kvm_hstate.napping = 0;
|
|
smp_wmb();
|
|
tpaca->kvm_hstate.hwthread_req = 1;
|
|
|
|
/*
|
|
* If the thread is already executing in the kernel (e.g. handling
|
|
* a stray interrupt), wait for it to get back to nap mode.
|
|
* The smp_mb() is to ensure that our setting of hwthread_req
|
|
* is visible before we look at hwthread_state, so if this
|
|
* races with the code at system_reset_pSeries and the thread
|
|
* misses our setting of hwthread_req, we are sure to see its
|
|
* setting of hwthread_state, and vice versa.
|
|
*/
|
|
smp_mb();
|
|
while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
|
|
if (--timeout <= 0) {
|
|
pr_err("KVM: couldn't grab cpu %d\n", cpu);
|
|
return -EBUSY;
|
|
}
|
|
udelay(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_release_hwthread(int cpu)
|
|
{
|
|
struct paca_struct *tpaca;
|
|
|
|
tpaca = &paca[cpu];
|
|
tpaca->kvm_hstate.hwthread_req = 0;
|
|
tpaca->kvm_hstate.kvm_vcpu = NULL;
|
|
tpaca->kvm_hstate.kvm_vcore = NULL;
|
|
tpaca->kvm_hstate.kvm_split_mode = NULL;
|
|
}
|
|
|
|
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
|
|
{
|
|
int cpu;
|
|
struct paca_struct *tpaca;
|
|
struct kvmppc_vcore *mvc = vc->master_vcore;
|
|
|
|
cpu = vc->pcpu;
|
|
if (vcpu) {
|
|
if (vcpu->arch.timer_running) {
|
|
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
|
|
vcpu->arch.timer_running = 0;
|
|
}
|
|
cpu += vcpu->arch.ptid;
|
|
vcpu->cpu = mvc->pcpu;
|
|
vcpu->arch.thread_cpu = cpu;
|
|
}
|
|
tpaca = &paca[cpu];
|
|
tpaca->kvm_hstate.kvm_vcpu = vcpu;
|
|
tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
|
|
/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
|
|
smp_wmb();
|
|
tpaca->kvm_hstate.kvm_vcore = mvc;
|
|
if (cpu != smp_processor_id())
|
|
kvmppc_ipi_thread(cpu);
|
|
}
|
|
|
|
static void kvmppc_wait_for_nap(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int i, loops;
|
|
|
|
for (loops = 0; loops < 1000000; ++loops) {
|
|
/*
|
|
* Check if all threads are finished.
|
|
* We set the vcore pointer when starting a thread
|
|
* and the thread clears it when finished, so we look
|
|
* for any threads that still have a non-NULL vcore ptr.
|
|
*/
|
|
for (i = 1; i < threads_per_subcore; ++i)
|
|
if (paca[cpu + i].kvm_hstate.kvm_vcore)
|
|
break;
|
|
if (i == threads_per_subcore) {
|
|
HMT_medium();
|
|
return;
|
|
}
|
|
HMT_low();
|
|
}
|
|
HMT_medium();
|
|
for (i = 1; i < threads_per_subcore; ++i)
|
|
if (paca[cpu + i].kvm_hstate.kvm_vcore)
|
|
pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
|
|
}
|
|
|
|
/*
|
|
* Check that we are on thread 0 and that any other threads in
|
|
* this core are off-line. Then grab the threads so they can't
|
|
* enter the kernel.
|
|
*/
|
|
static int on_primary_thread(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int thr;
|
|
|
|
/* Are we on a primary subcore? */
|
|
if (cpu_thread_in_subcore(cpu))
|
|
return 0;
|
|
|
|
thr = 0;
|
|
while (++thr < threads_per_subcore)
|
|
if (cpu_online(cpu + thr))
|
|
return 0;
|
|
|
|
/* Grab all hw threads so they can't go into the kernel */
|
|
for (thr = 1; thr < threads_per_subcore; ++thr) {
|
|
if (kvmppc_grab_hwthread(cpu + thr)) {
|
|
/* Couldn't grab one; let the others go */
|
|
do {
|
|
kvmppc_release_hwthread(cpu + thr);
|
|
} while (--thr > 0);
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A list of virtual cores for each physical CPU.
|
|
* These are vcores that could run but their runner VCPU tasks are
|
|
* (or may be) preempted.
|
|
*/
|
|
struct preempted_vcore_list {
|
|
struct list_head list;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
|
|
|
|
static void init_vcore_lists(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
|
|
spin_lock_init(&lp->lock);
|
|
INIT_LIST_HEAD(&lp->list);
|
|
}
|
|
}
|
|
|
|
static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
|
|
{
|
|
struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
|
|
|
|
vc->vcore_state = VCORE_PREEMPT;
|
|
vc->pcpu = smp_processor_id();
|
|
if (vc->num_threads < threads_per_subcore) {
|
|
spin_lock(&lp->lock);
|
|
list_add_tail(&vc->preempt_list, &lp->list);
|
|
spin_unlock(&lp->lock);
|
|
}
|
|
|
|
/* Start accumulating stolen time */
|
|
kvmppc_core_start_stolen(vc);
|
|
}
|
|
|
|
static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
|
|
{
|
|
struct preempted_vcore_list *lp;
|
|
|
|
kvmppc_core_end_stolen(vc);
|
|
if (!list_empty(&vc->preempt_list)) {
|
|
lp = &per_cpu(preempted_vcores, vc->pcpu);
|
|
spin_lock(&lp->lock);
|
|
list_del_init(&vc->preempt_list);
|
|
spin_unlock(&lp->lock);
|
|
}
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
}
|
|
|
|
/*
|
|
* This stores information about the virtual cores currently
|
|
* assigned to a physical core.
|
|
*/
|
|
struct core_info {
|
|
int n_subcores;
|
|
int max_subcore_threads;
|
|
int total_threads;
|
|
int subcore_threads[MAX_SUBCORES];
|
|
struct kvm *subcore_vm[MAX_SUBCORES];
|
|
struct list_head vcs[MAX_SUBCORES];
|
|
};
|
|
|
|
/*
|
|
* This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
|
|
* respectively in 2-way micro-threading (split-core) mode.
|
|
*/
|
|
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
|
|
|
|
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
|
|
{
|
|
int sub;
|
|
|
|
memset(cip, 0, sizeof(*cip));
|
|
cip->n_subcores = 1;
|
|
cip->max_subcore_threads = vc->num_threads;
|
|
cip->total_threads = vc->num_threads;
|
|
cip->subcore_threads[0] = vc->num_threads;
|
|
cip->subcore_vm[0] = vc->kvm;
|
|
for (sub = 0; sub < MAX_SUBCORES; ++sub)
|
|
INIT_LIST_HEAD(&cip->vcs[sub]);
|
|
list_add_tail(&vc->preempt_list, &cip->vcs[0]);
|
|
}
|
|
|
|
static bool subcore_config_ok(int n_subcores, int n_threads)
|
|
{
|
|
/* Can only dynamically split if unsplit to begin with */
|
|
if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
|
|
return false;
|
|
if (n_subcores > MAX_SUBCORES)
|
|
return false;
|
|
if (n_subcores > 1) {
|
|
if (!(dynamic_mt_modes & 2))
|
|
n_subcores = 4;
|
|
if (n_subcores > 2 && !(dynamic_mt_modes & 4))
|
|
return false;
|
|
}
|
|
|
|
return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
|
|
}
|
|
|
|
static void init_master_vcore(struct kvmppc_vcore *vc)
|
|
{
|
|
vc->master_vcore = vc;
|
|
vc->entry_exit_map = 0;
|
|
vc->in_guest = 0;
|
|
vc->napping_threads = 0;
|
|
vc->conferring_threads = 0;
|
|
}
|
|
|
|
/*
|
|
* See if the existing subcores can be split into 3 (or fewer) subcores
|
|
* of at most two threads each, so we can fit in another vcore. This
|
|
* assumes there are at most two subcores and at most 6 threads in total.
|
|
*/
|
|
static bool can_split_piggybacked_subcores(struct core_info *cip)
|
|
{
|
|
int sub, new_sub;
|
|
int large_sub = -1;
|
|
int thr;
|
|
int n_subcores = cip->n_subcores;
|
|
struct kvmppc_vcore *vc, *vcnext;
|
|
struct kvmppc_vcore *master_vc = NULL;
|
|
|
|
for (sub = 0; sub < cip->n_subcores; ++sub) {
|
|
if (cip->subcore_threads[sub] <= 2)
|
|
continue;
|
|
if (large_sub >= 0)
|
|
return false;
|
|
large_sub = sub;
|
|
vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
|
|
preempt_list);
|
|
if (vc->num_threads > 2)
|
|
return false;
|
|
n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
|
|
}
|
|
if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
|
|
return false;
|
|
|
|
/*
|
|
* Seems feasible, so go through and move vcores to new subcores.
|
|
* Note that when we have two or more vcores in one subcore,
|
|
* all those vcores must have only one thread each.
|
|
*/
|
|
new_sub = cip->n_subcores;
|
|
thr = 0;
|
|
sub = large_sub;
|
|
list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
|
|
if (thr >= 2) {
|
|
list_del(&vc->preempt_list);
|
|
list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
|
|
/* vc->num_threads must be 1 */
|
|
if (++cip->subcore_threads[new_sub] == 1) {
|
|
cip->subcore_vm[new_sub] = vc->kvm;
|
|
init_master_vcore(vc);
|
|
master_vc = vc;
|
|
++cip->n_subcores;
|
|
} else {
|
|
vc->master_vcore = master_vc;
|
|
++new_sub;
|
|
}
|
|
}
|
|
thr += vc->num_threads;
|
|
}
|
|
cip->subcore_threads[large_sub] = 2;
|
|
cip->max_subcore_threads = 2;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
|
|
{
|
|
int n_threads = vc->num_threads;
|
|
int sub;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
return false;
|
|
|
|
if (n_threads < cip->max_subcore_threads)
|
|
n_threads = cip->max_subcore_threads;
|
|
if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
|
|
cip->max_subcore_threads = n_threads;
|
|
} else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
|
|
vc->num_threads <= 2) {
|
|
/*
|
|
* We may be able to fit another subcore in by
|
|
* splitting an existing subcore with 3 or 4
|
|
* threads into two 2-thread subcores, or one
|
|
* with 5 or 6 threads into three subcores.
|
|
* We can only do this if those subcores have
|
|
* piggybacked virtual cores.
|
|
*/
|
|
if (!can_split_piggybacked_subcores(cip))
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
sub = cip->n_subcores;
|
|
++cip->n_subcores;
|
|
cip->total_threads += vc->num_threads;
|
|
cip->subcore_threads[sub] = vc->num_threads;
|
|
cip->subcore_vm[sub] = vc->kvm;
|
|
init_master_vcore(vc);
|
|
list_del(&vc->preempt_list);
|
|
list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
|
|
struct core_info *cip, int sub)
|
|
{
|
|
struct kvmppc_vcore *vc;
|
|
int n_thr;
|
|
|
|
vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
|
|
preempt_list);
|
|
|
|
/* require same VM and same per-core reg values */
|
|
if (pvc->kvm != vc->kvm ||
|
|
pvc->tb_offset != vc->tb_offset ||
|
|
pvc->pcr != vc->pcr ||
|
|
pvc->lpcr != vc->lpcr)
|
|
return false;
|
|
|
|
/* P8 guest with > 1 thread per core would see wrong TIR value */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
|
|
(vc->num_threads > 1 || pvc->num_threads > 1))
|
|
return false;
|
|
|
|
n_thr = cip->subcore_threads[sub] + pvc->num_threads;
|
|
if (n_thr > cip->max_subcore_threads) {
|
|
if (!subcore_config_ok(cip->n_subcores, n_thr))
|
|
return false;
|
|
cip->max_subcore_threads = n_thr;
|
|
}
|
|
|
|
cip->total_threads += pvc->num_threads;
|
|
cip->subcore_threads[sub] = n_thr;
|
|
pvc->master_vcore = vc;
|
|
list_del(&pvc->preempt_list);
|
|
list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Work out whether it is possible to piggyback the execution of
|
|
* vcore *pvc onto the execution of the other vcores described in *cip.
|
|
*/
|
|
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
|
|
int target_threads)
|
|
{
|
|
int sub;
|
|
|
|
if (cip->total_threads + pvc->num_threads > target_threads)
|
|
return false;
|
|
for (sub = 0; sub < cip->n_subcores; ++sub)
|
|
if (cip->subcore_threads[sub] &&
|
|
can_piggyback_subcore(pvc, cip, sub))
|
|
return true;
|
|
|
|
if (can_dynamic_split(pvc, cip))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void prepare_threads(struct kvmppc_vcore *vc)
|
|
{
|
|
struct kvm_vcpu *vcpu, *vnext;
|
|
|
|
list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
|
|
arch.run_list) {
|
|
if (signal_pending(vcpu->arch.run_task))
|
|
vcpu->arch.ret = -EINTR;
|
|
else if (vcpu->arch.vpa.update_pending ||
|
|
vcpu->arch.slb_shadow.update_pending ||
|
|
vcpu->arch.dtl.update_pending)
|
|
vcpu->arch.ret = RESUME_GUEST;
|
|
else
|
|
continue;
|
|
kvmppc_remove_runnable(vc, vcpu);
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
}
|
|
|
|
static void collect_piggybacks(struct core_info *cip, int target_threads)
|
|
{
|
|
struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
|
|
struct kvmppc_vcore *pvc, *vcnext;
|
|
|
|
spin_lock(&lp->lock);
|
|
list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
|
|
if (!spin_trylock(&pvc->lock))
|
|
continue;
|
|
prepare_threads(pvc);
|
|
if (!pvc->n_runnable) {
|
|
list_del_init(&pvc->preempt_list);
|
|
if (pvc->runner == NULL) {
|
|
pvc->vcore_state = VCORE_INACTIVE;
|
|
kvmppc_core_end_stolen(pvc);
|
|
}
|
|
spin_unlock(&pvc->lock);
|
|
continue;
|
|
}
|
|
if (!can_piggyback(pvc, cip, target_threads)) {
|
|
spin_unlock(&pvc->lock);
|
|
continue;
|
|
}
|
|
kvmppc_core_end_stolen(pvc);
|
|
pvc->vcore_state = VCORE_PIGGYBACK;
|
|
if (cip->total_threads >= target_threads)
|
|
break;
|
|
}
|
|
spin_unlock(&lp->lock);
|
|
}
|
|
|
|
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
|
|
{
|
|
int still_running = 0;
|
|
u64 now;
|
|
long ret;
|
|
struct kvm_vcpu *vcpu, *vnext;
|
|
|
|
spin_lock(&vc->lock);
|
|
now = get_tb();
|
|
list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
|
|
arch.run_list) {
|
|
/* cancel pending dec exception if dec is positive */
|
|
if (now < vcpu->arch.dec_expires &&
|
|
kvmppc_core_pending_dec(vcpu))
|
|
kvmppc_core_dequeue_dec(vcpu);
|
|
|
|
trace_kvm_guest_exit(vcpu);
|
|
|
|
ret = RESUME_GUEST;
|
|
if (vcpu->arch.trap)
|
|
ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
|
|
vcpu->arch.run_task);
|
|
|
|
vcpu->arch.ret = ret;
|
|
vcpu->arch.trap = 0;
|
|
|
|
if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
|
|
if (vcpu->arch.pending_exceptions)
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
if (vcpu->arch.ceded)
|
|
kvmppc_set_timer(vcpu);
|
|
else
|
|
++still_running;
|
|
} else {
|
|
kvmppc_remove_runnable(vc, vcpu);
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
}
|
|
list_del_init(&vc->preempt_list);
|
|
if (!is_master) {
|
|
if (still_running > 0) {
|
|
kvmppc_vcore_preempt(vc);
|
|
} else if (vc->runner) {
|
|
vc->vcore_state = VCORE_PREEMPT;
|
|
kvmppc_core_start_stolen(vc);
|
|
} else {
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
}
|
|
if (vc->n_runnable > 0 && vc->runner == NULL) {
|
|
/* make sure there's a candidate runner awake */
|
|
vcpu = list_first_entry(&vc->runnable_threads,
|
|
struct kvm_vcpu, arch.run_list);
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
}
|
|
spin_unlock(&vc->lock);
|
|
}
|
|
|
|
/*
|
|
* Run a set of guest threads on a physical core.
|
|
* Called with vc->lock held.
|
|
*/
|
|
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
|
|
{
|
|
struct kvm_vcpu *vcpu, *vnext;
|
|
int i;
|
|
int srcu_idx;
|
|
struct core_info core_info;
|
|
struct kvmppc_vcore *pvc, *vcnext;
|
|
struct kvm_split_mode split_info, *sip;
|
|
int split, subcore_size, active;
|
|
int sub;
|
|
bool thr0_done;
|
|
unsigned long cmd_bit, stat_bit;
|
|
int pcpu, thr;
|
|
int target_threads;
|
|
|
|
/*
|
|
* Remove from the list any threads that have a signal pending
|
|
* or need a VPA update done
|
|
*/
|
|
prepare_threads(vc);
|
|
|
|
/* if the runner is no longer runnable, let the caller pick a new one */
|
|
if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
|
|
return;
|
|
|
|
/*
|
|
* Initialize *vc.
|
|
*/
|
|
init_master_vcore(vc);
|
|
vc->preempt_tb = TB_NIL;
|
|
|
|
/*
|
|
* Make sure we are running on primary threads, and that secondary
|
|
* threads are offline. Also check if the number of threads in this
|
|
* guest are greater than the current system threads per guest.
|
|
*/
|
|
if ((threads_per_core > 1) &&
|
|
((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
|
|
list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
|
|
arch.run_list) {
|
|
vcpu->arch.ret = -EBUSY;
|
|
kvmppc_remove_runnable(vc, vcpu);
|
|
wake_up(&vcpu->arch.cpu_run);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* See if we could run any other vcores on the physical core
|
|
* along with this one.
|
|
*/
|
|
init_core_info(&core_info, vc);
|
|
pcpu = smp_processor_id();
|
|
target_threads = threads_per_subcore;
|
|
if (target_smt_mode && target_smt_mode < target_threads)
|
|
target_threads = target_smt_mode;
|
|
if (vc->num_threads < target_threads)
|
|
collect_piggybacks(&core_info, target_threads);
|
|
|
|
/* Decide on micro-threading (split-core) mode */
|
|
subcore_size = threads_per_subcore;
|
|
cmd_bit = stat_bit = 0;
|
|
split = core_info.n_subcores;
|
|
sip = NULL;
|
|
if (split > 1) {
|
|
/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
|
|
if (split == 2 && (dynamic_mt_modes & 2)) {
|
|
cmd_bit = HID0_POWER8_1TO2LPAR;
|
|
stat_bit = HID0_POWER8_2LPARMODE;
|
|
} else {
|
|
split = 4;
|
|
cmd_bit = HID0_POWER8_1TO4LPAR;
|
|
stat_bit = HID0_POWER8_4LPARMODE;
|
|
}
|
|
subcore_size = MAX_SMT_THREADS / split;
|
|
sip = &split_info;
|
|
memset(&split_info, 0, sizeof(split_info));
|
|
split_info.rpr = mfspr(SPRN_RPR);
|
|
split_info.pmmar = mfspr(SPRN_PMMAR);
|
|
split_info.ldbar = mfspr(SPRN_LDBAR);
|
|
split_info.subcore_size = subcore_size;
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub)
|
|
split_info.master_vcs[sub] =
|
|
list_first_entry(&core_info.vcs[sub],
|
|
struct kvmppc_vcore, preempt_list);
|
|
/* order writes to split_info before kvm_split_mode pointer */
|
|
smp_wmb();
|
|
}
|
|
pcpu = smp_processor_id();
|
|
for (thr = 0; thr < threads_per_subcore; ++thr)
|
|
paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
|
|
|
|
/* Initiate micro-threading (split-core) if required */
|
|
if (cmd_bit) {
|
|
unsigned long hid0 = mfspr(SPRN_HID0);
|
|
|
|
hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
|
|
mb();
|
|
mtspr(SPRN_HID0, hid0);
|
|
isync();
|
|
for (;;) {
|
|
hid0 = mfspr(SPRN_HID0);
|
|
if (hid0 & stat_bit)
|
|
break;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/* Start all the threads */
|
|
active = 0;
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub) {
|
|
thr = subcore_thread_map[sub];
|
|
thr0_done = false;
|
|
active |= 1 << thr;
|
|
list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
|
|
pvc->pcpu = pcpu + thr;
|
|
list_for_each_entry(vcpu, &pvc->runnable_threads,
|
|
arch.run_list) {
|
|
kvmppc_start_thread(vcpu, pvc);
|
|
kvmppc_create_dtl_entry(vcpu, pvc);
|
|
trace_kvm_guest_enter(vcpu);
|
|
if (!vcpu->arch.ptid)
|
|
thr0_done = true;
|
|
active |= 1 << (thr + vcpu->arch.ptid);
|
|
}
|
|
/*
|
|
* We need to start the first thread of each subcore
|
|
* even if it doesn't have a vcpu.
|
|
*/
|
|
if (pvc->master_vcore == pvc && !thr0_done)
|
|
kvmppc_start_thread(NULL, pvc);
|
|
thr += pvc->num_threads;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure that split_info.do_nap is set after setting
|
|
* the vcore pointer in the PACA of the secondaries.
|
|
*/
|
|
smp_mb();
|
|
if (cmd_bit)
|
|
split_info.do_nap = 1; /* ask secondaries to nap when done */
|
|
|
|
/*
|
|
* When doing micro-threading, poke the inactive threads as well.
|
|
* This gets them to the nap instruction after kvm_do_nap,
|
|
* which reduces the time taken to unsplit later.
|
|
*/
|
|
if (split > 1)
|
|
for (thr = 1; thr < threads_per_subcore; ++thr)
|
|
if (!(active & (1 << thr)))
|
|
kvmppc_ipi_thread(pcpu + thr);
|
|
|
|
vc->vcore_state = VCORE_RUNNING;
|
|
preempt_disable();
|
|
|
|
trace_kvmppc_run_core(vc, 0);
|
|
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub)
|
|
list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
|
|
spin_unlock(&pvc->lock);
|
|
|
|
kvm_guest_enter();
|
|
|
|
srcu_idx = srcu_read_lock(&vc->kvm->srcu);
|
|
|
|
__kvmppc_vcore_entry();
|
|
|
|
srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
|
|
|
|
spin_lock(&vc->lock);
|
|
/* prevent other vcpu threads from doing kvmppc_start_thread() now */
|
|
vc->vcore_state = VCORE_EXITING;
|
|
|
|
/* wait for secondary threads to finish writing their state to memory */
|
|
kvmppc_wait_for_nap();
|
|
|
|
/* Return to whole-core mode if we split the core earlier */
|
|
if (split > 1) {
|
|
unsigned long hid0 = mfspr(SPRN_HID0);
|
|
unsigned long loops = 0;
|
|
|
|
hid0 &= ~HID0_POWER8_DYNLPARDIS;
|
|
stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
|
|
mb();
|
|
mtspr(SPRN_HID0, hid0);
|
|
isync();
|
|
for (;;) {
|
|
hid0 = mfspr(SPRN_HID0);
|
|
if (!(hid0 & stat_bit))
|
|
break;
|
|
cpu_relax();
|
|
++loops;
|
|
}
|
|
split_info.do_nap = 0;
|
|
}
|
|
|
|
/* Let secondaries go back to the offline loop */
|
|
for (i = 0; i < threads_per_subcore; ++i) {
|
|
kvmppc_release_hwthread(pcpu + i);
|
|
if (sip && sip->napped[i])
|
|
kvmppc_ipi_thread(pcpu + i);
|
|
}
|
|
|
|
spin_unlock(&vc->lock);
|
|
|
|
/* make sure updates to secondary vcpu structs are visible now */
|
|
smp_mb();
|
|
kvm_guest_exit();
|
|
|
|
for (sub = 0; sub < core_info.n_subcores; ++sub)
|
|
list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
|
|
preempt_list)
|
|
post_guest_process(pvc, pvc == vc);
|
|
|
|
spin_lock(&vc->lock);
|
|
preempt_enable();
|
|
|
|
out:
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
trace_kvmppc_run_core(vc, 1);
|
|
}
|
|
|
|
/*
|
|
* Wait for some other vcpu thread to execute us, and
|
|
* wake us up when we need to handle something in the host.
|
|
*/
|
|
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
|
|
struct kvm_vcpu *vcpu, int wait_state)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
|
|
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
|
|
spin_unlock(&vc->lock);
|
|
schedule();
|
|
spin_lock(&vc->lock);
|
|
}
|
|
finish_wait(&vcpu->arch.cpu_run, &wait);
|
|
}
|
|
|
|
/*
|
|
* All the vcpus in this vcore are idle, so wait for a decrementer
|
|
* or external interrupt to one of the vcpus. vc->lock is held.
|
|
*/
|
|
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int do_sleep = 1;
|
|
|
|
DEFINE_WAIT(wait);
|
|
|
|
prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
|
|
|
|
/*
|
|
* Check one last time for pending exceptions and ceded state after
|
|
* we put ourselves on the wait queue
|
|
*/
|
|
list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
|
|
if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
|
|
do_sleep = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!do_sleep) {
|
|
finish_wait(&vc->wq, &wait);
|
|
return;
|
|
}
|
|
|
|
vc->vcore_state = VCORE_SLEEPING;
|
|
trace_kvmppc_vcore_blocked(vc, 0);
|
|
spin_unlock(&vc->lock);
|
|
schedule();
|
|
finish_wait(&vc->wq, &wait);
|
|
spin_lock(&vc->lock);
|
|
vc->vcore_state = VCORE_INACTIVE;
|
|
trace_kvmppc_vcore_blocked(vc, 1);
|
|
}
|
|
|
|
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
|
{
|
|
int n_ceded;
|
|
struct kvmppc_vcore *vc;
|
|
struct kvm_vcpu *v, *vn;
|
|
|
|
trace_kvmppc_run_vcpu_enter(vcpu);
|
|
|
|
kvm_run->exit_reason = 0;
|
|
vcpu->arch.ret = RESUME_GUEST;
|
|
vcpu->arch.trap = 0;
|
|
kvmppc_update_vpas(vcpu);
|
|
|
|
/*
|
|
* Synchronize with other threads in this virtual core
|
|
*/
|
|
vc = vcpu->arch.vcore;
|
|
spin_lock(&vc->lock);
|
|
vcpu->arch.ceded = 0;
|
|
vcpu->arch.run_task = current;
|
|
vcpu->arch.kvm_run = kvm_run;
|
|
vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
|
|
vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
|
|
vcpu->arch.busy_preempt = TB_NIL;
|
|
list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
|
|
++vc->n_runnable;
|
|
|
|
/*
|
|
* This happens the first time this is called for a vcpu.
|
|
* If the vcore is already running, we may be able to start
|
|
* this thread straight away and have it join in.
|
|
*/
|
|
if (!signal_pending(current)) {
|
|
if (vc->vcore_state == VCORE_PIGGYBACK) {
|
|
struct kvmppc_vcore *mvc = vc->master_vcore;
|
|
if (spin_trylock(&mvc->lock)) {
|
|
if (mvc->vcore_state == VCORE_RUNNING &&
|
|
!VCORE_IS_EXITING(mvc)) {
|
|
kvmppc_create_dtl_entry(vcpu, vc);
|
|
kvmppc_start_thread(vcpu, vc);
|
|
trace_kvm_guest_enter(vcpu);
|
|
}
|
|
spin_unlock(&mvc->lock);
|
|
}
|
|
} else if (vc->vcore_state == VCORE_RUNNING &&
|
|
!VCORE_IS_EXITING(vc)) {
|
|
kvmppc_create_dtl_entry(vcpu, vc);
|
|
kvmppc_start_thread(vcpu, vc);
|
|
trace_kvm_guest_enter(vcpu);
|
|
} else if (vc->vcore_state == VCORE_SLEEPING) {
|
|
wake_up(&vc->wq);
|
|
}
|
|
|
|
}
|
|
|
|
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
|
|
!signal_pending(current)) {
|
|
if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
|
|
kvmppc_vcore_end_preempt(vc);
|
|
|
|
if (vc->vcore_state != VCORE_INACTIVE) {
|
|
kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
|
|
continue;
|
|
}
|
|
list_for_each_entry_safe(v, vn, &vc->runnable_threads,
|
|
arch.run_list) {
|
|
kvmppc_core_prepare_to_enter(v);
|
|
if (signal_pending(v->arch.run_task)) {
|
|
kvmppc_remove_runnable(vc, v);
|
|
v->stat.signal_exits++;
|
|
v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
|
|
v->arch.ret = -EINTR;
|
|
wake_up(&v->arch.cpu_run);
|
|
}
|
|
}
|
|
if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
|
|
break;
|
|
n_ceded = 0;
|
|
list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
|
|
if (!v->arch.pending_exceptions)
|
|
n_ceded += v->arch.ceded;
|
|
else
|
|
v->arch.ceded = 0;
|
|
}
|
|
vc->runner = vcpu;
|
|
if (n_ceded == vc->n_runnable) {
|
|
kvmppc_vcore_blocked(vc);
|
|
} else if (need_resched()) {
|
|
kvmppc_vcore_preempt(vc);
|
|
/* Let something else run */
|
|
cond_resched_lock(&vc->lock);
|
|
if (vc->vcore_state == VCORE_PREEMPT)
|
|
kvmppc_vcore_end_preempt(vc);
|
|
} else {
|
|
kvmppc_run_core(vc);
|
|
}
|
|
vc->runner = NULL;
|
|
}
|
|
|
|
while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
|
|
(vc->vcore_state == VCORE_RUNNING ||
|
|
vc->vcore_state == VCORE_EXITING ||
|
|
vc->vcore_state == VCORE_PIGGYBACK))
|
|
kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
|
|
kvmppc_vcore_end_preempt(vc);
|
|
|
|
if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
|
|
kvmppc_remove_runnable(vc, vcpu);
|
|
vcpu->stat.signal_exits++;
|
|
kvm_run->exit_reason = KVM_EXIT_INTR;
|
|
vcpu->arch.ret = -EINTR;
|
|
}
|
|
|
|
if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
|
|
/* Wake up some vcpu to run the core */
|
|
v = list_first_entry(&vc->runnable_threads,
|
|
struct kvm_vcpu, arch.run_list);
|
|
wake_up(&v->arch.cpu_run);
|
|
}
|
|
|
|
trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
|
|
spin_unlock(&vc->lock);
|
|
return vcpu->arch.ret;
|
|
}
|
|
|
|
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
int srcu_idx;
|
|
|
|
if (!vcpu->arch.sane) {
|
|
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
return -EINVAL;
|
|
}
|
|
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
|
|
/* No need to go into the guest when all we'll do is come back out */
|
|
if (signal_pending(current)) {
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
return -EINTR;
|
|
}
|
|
|
|
atomic_inc(&vcpu->kvm->arch.vcpus_running);
|
|
/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
|
|
smp_mb();
|
|
|
|
/* On the first time here, set up HTAB and VRMA */
|
|
if (!vcpu->kvm->arch.hpte_setup_done) {
|
|
r = kvmppc_hv_setup_htab_rma(vcpu);
|
|
if (r)
|
|
goto out;
|
|
}
|
|
|
|
flush_fp_to_thread(current);
|
|
flush_altivec_to_thread(current);
|
|
flush_vsx_to_thread(current);
|
|
vcpu->arch.wqp = &vcpu->arch.vcore->wq;
|
|
vcpu->arch.pgdir = current->mm->pgd;
|
|
vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
|
|
|
|
do {
|
|
r = kvmppc_run_vcpu(run, vcpu);
|
|
|
|
if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
|
|
!(vcpu->arch.shregs.msr & MSR_PR)) {
|
|
trace_kvm_hcall_enter(vcpu);
|
|
r = kvmppc_pseries_do_hcall(vcpu);
|
|
trace_kvm_hcall_exit(vcpu, r);
|
|
kvmppc_core_prepare_to_enter(vcpu);
|
|
} else if (r == RESUME_PAGE_FAULT) {
|
|
srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvmppc_book3s_hv_page_fault(run, vcpu,
|
|
vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
|
|
}
|
|
} while (is_kvmppc_resume_guest(r));
|
|
|
|
out:
|
|
vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
|
|
atomic_dec(&vcpu->kvm->arch.vcpus_running);
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
|
|
int linux_psize)
|
|
{
|
|
struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
|
|
|
|
if (!def->shift)
|
|
return;
|
|
(*sps)->page_shift = def->shift;
|
|
(*sps)->slb_enc = def->sllp;
|
|
(*sps)->enc[0].page_shift = def->shift;
|
|
(*sps)->enc[0].pte_enc = def->penc[linux_psize];
|
|
/*
|
|
* Add 16MB MPSS support if host supports it
|
|
*/
|
|
if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
|
|
(*sps)->enc[1].page_shift = 24;
|
|
(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
|
|
}
|
|
(*sps)++;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
|
|
struct kvm_ppc_smmu_info *info)
|
|
{
|
|
struct kvm_ppc_one_seg_page_size *sps;
|
|
|
|
info->flags = KVM_PPC_PAGE_SIZES_REAL;
|
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
info->flags |= KVM_PPC_1T_SEGMENTS;
|
|
info->slb_size = mmu_slb_size;
|
|
|
|
/* We only support these sizes for now, and no muti-size segments */
|
|
sps = &info->sps[0];
|
|
kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
|
|
kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
|
|
kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
*/
|
|
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
int r;
|
|
unsigned long n;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = -EINVAL;
|
|
if (log->slot >= KVM_USER_MEM_SLOTS)
|
|
goto out;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
memslot = id_to_memslot(slots, log->slot);
|
|
r = -ENOENT;
|
|
if (!memslot->dirty_bitmap)
|
|
goto out;
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
memset(memslot->dirty_bitmap, 0, n);
|
|
|
|
r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
|
|
goto out;
|
|
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
if (!dont || free->arch.rmap != dont->arch.rmap) {
|
|
vfree(free->arch.rmap);
|
|
free->arch.rmap = NULL;
|
|
}
|
|
}
|
|
|
|
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
|
|
unsigned long npages)
|
|
{
|
|
slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
|
|
if (!slot->arch.rmap)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
const struct kvm_userspace_memory_region *mem)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
const struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new)
|
|
{
|
|
unsigned long npages = mem->memory_size >> PAGE_SHIFT;
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
if (npages && old->npages) {
|
|
/*
|
|
* If modifying a memslot, reset all the rmap dirty bits.
|
|
* If this is a new memslot, we don't need to do anything
|
|
* since the rmap array starts out as all zeroes,
|
|
* i.e. no pages are dirty.
|
|
*/
|
|
slots = kvm_memslots(kvm);
|
|
memslot = id_to_memslot(slots, mem->slot);
|
|
kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update LPCR values in kvm->arch and in vcores.
|
|
* Caller must hold kvm->lock.
|
|
*/
|
|
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
|
|
{
|
|
long int i;
|
|
u32 cores_done = 0;
|
|
|
|
if ((kvm->arch.lpcr & mask) == lpcr)
|
|
return;
|
|
|
|
kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
|
|
|
|
for (i = 0; i < KVM_MAX_VCORES; ++i) {
|
|
struct kvmppc_vcore *vc = kvm->arch.vcores[i];
|
|
if (!vc)
|
|
continue;
|
|
spin_lock(&vc->lock);
|
|
vc->lpcr = (vc->lpcr & ~mask) | lpcr;
|
|
spin_unlock(&vc->lock);
|
|
if (++cores_done >= kvm->arch.online_vcores)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err = 0;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long hva;
|
|
struct kvm_memory_slot *memslot;
|
|
struct vm_area_struct *vma;
|
|
unsigned long lpcr = 0, senc;
|
|
unsigned long psize, porder;
|
|
int srcu_idx;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (kvm->arch.hpte_setup_done)
|
|
goto out; /* another vcpu beat us to it */
|
|
|
|
/* Allocate hashed page table (if not done already) and reset it */
|
|
if (!kvm->arch.hpt_virt) {
|
|
err = kvmppc_alloc_hpt(kvm, NULL);
|
|
if (err) {
|
|
pr_err("KVM: Couldn't alloc HPT\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Look up the memslot for guest physical address 0 */
|
|
srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
memslot = gfn_to_memslot(kvm, 0);
|
|
|
|
/* We must have some memory at 0 by now */
|
|
err = -EINVAL;
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
|
|
goto out_srcu;
|
|
|
|
/* Look up the VMA for the start of this memory slot */
|
|
hva = memslot->userspace_addr;
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma(current->mm, hva);
|
|
if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
|
|
goto up_out;
|
|
|
|
psize = vma_kernel_pagesize(vma);
|
|
porder = __ilog2(psize);
|
|
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
/* We can handle 4k, 64k or 16M pages in the VRMA */
|
|
err = -EINVAL;
|
|
if (!(psize == 0x1000 || psize == 0x10000 ||
|
|
psize == 0x1000000))
|
|
goto out_srcu;
|
|
|
|
/* Update VRMASD field in the LPCR */
|
|
senc = slb_pgsize_encoding(psize);
|
|
kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
|
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
|
/* the -4 is to account for senc values starting at 0x10 */
|
|
lpcr = senc << (LPCR_VRMASD_SH - 4);
|
|
|
|
/* Create HPTEs in the hash page table for the VRMA */
|
|
kvmppc_map_vrma(vcpu, memslot, porder);
|
|
|
|
kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
|
|
|
|
/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
|
|
smp_wmb();
|
|
kvm->arch.hpte_setup_done = 1;
|
|
err = 0;
|
|
out_srcu:
|
|
srcu_read_unlock(&kvm->srcu, srcu_idx);
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return err;
|
|
|
|
up_out:
|
|
up_read(¤t->mm->mmap_sem);
|
|
goto out_srcu;
|
|
}
|
|
|
|
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
|
|
{
|
|
unsigned long lpcr, lpid;
|
|
char buf[32];
|
|
|
|
/* Allocate the guest's logical partition ID */
|
|
|
|
lpid = kvmppc_alloc_lpid();
|
|
if ((long)lpid < 0)
|
|
return -ENOMEM;
|
|
kvm->arch.lpid = lpid;
|
|
|
|
/*
|
|
* Since we don't flush the TLB when tearing down a VM,
|
|
* and this lpid might have previously been used,
|
|
* make sure we flush on each core before running the new VM.
|
|
*/
|
|
cpumask_setall(&kvm->arch.need_tlb_flush);
|
|
|
|
/* Start out with the default set of hcalls enabled */
|
|
memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
|
|
sizeof(kvm->arch.enabled_hcalls));
|
|
|
|
kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
|
|
|
|
/* Init LPCR for virtual RMA mode */
|
|
kvm->arch.host_lpid = mfspr(SPRN_LPID);
|
|
kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
|
|
lpcr &= LPCR_PECE | LPCR_LPES;
|
|
lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
|
|
LPCR_VPM0 | LPCR_VPM1;
|
|
kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
|
|
(VRMA_VSID << SLB_VSID_SHIFT_1T);
|
|
/* On POWER8 turn on online bit to enable PURR/SPURR */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
lpcr |= LPCR_ONL;
|
|
kvm->arch.lpcr = lpcr;
|
|
|
|
/*
|
|
* Track that we now have a HV mode VM active. This blocks secondary
|
|
* CPU threads from coming online.
|
|
*/
|
|
kvm_hv_vm_activated();
|
|
|
|
/*
|
|
* Create a debugfs directory for the VM
|
|
*/
|
|
snprintf(buf, sizeof(buf), "vm%d", current->pid);
|
|
kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
|
|
if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
|
|
kvmppc_mmu_debugfs_init(kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvmppc_free_vcores(struct kvm *kvm)
|
|
{
|
|
long int i;
|
|
|
|
for (i = 0; i < KVM_MAX_VCORES; ++i)
|
|
kfree(kvm->arch.vcores[i]);
|
|
kvm->arch.online_vcores = 0;
|
|
}
|
|
|
|
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
|
|
{
|
|
debugfs_remove_recursive(kvm->arch.debugfs_dir);
|
|
|
|
kvm_hv_vm_deactivated();
|
|
|
|
kvmppc_free_vcores(kvm);
|
|
|
|
kvmppc_free_hpt(kvm);
|
|
}
|
|
|
|
/* We don't need to emulate any privileged instructions or dcbz */
|
|
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned int inst, int *advance)
|
|
{
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
|
|
ulong spr_val)
|
|
{
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
|
|
ulong *spr_val)
|
|
{
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
static int kvmppc_core_check_processor_compat_hv(void)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE) ||
|
|
!cpu_has_feature(CPU_FTR_ARCH_206))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static long kvm_arch_vm_ioctl_hv(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm __maybe_unused = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
long r;
|
|
|
|
switch (ioctl) {
|
|
|
|
case KVM_PPC_ALLOCATE_HTAB: {
|
|
u32 htab_order;
|
|
|
|
r = -EFAULT;
|
|
if (get_user(htab_order, (u32 __user *)argp))
|
|
break;
|
|
r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
|
|
if (r)
|
|
break;
|
|
r = -EFAULT;
|
|
if (put_user(htab_order, (u32 __user *)argp))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
|
|
case KVM_PPC_GET_HTAB_FD: {
|
|
struct kvm_get_htab_fd ghf;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&ghf, argp, sizeof(ghf)))
|
|
break;
|
|
r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
r = -ENOTTY;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* List of hcall numbers to enable by default.
|
|
* For compatibility with old userspace, we enable by default
|
|
* all hcalls that were implemented before the hcall-enabling
|
|
* facility was added. Note this list should not include H_RTAS.
|
|
*/
|
|
static unsigned int default_hcall_list[] = {
|
|
H_REMOVE,
|
|
H_ENTER,
|
|
H_READ,
|
|
H_PROTECT,
|
|
H_BULK_REMOVE,
|
|
H_GET_TCE,
|
|
H_PUT_TCE,
|
|
H_SET_DABR,
|
|
H_SET_XDABR,
|
|
H_CEDE,
|
|
H_PROD,
|
|
H_CONFER,
|
|
H_REGISTER_VPA,
|
|
#ifdef CONFIG_KVM_XICS
|
|
H_EOI,
|
|
H_CPPR,
|
|
H_IPI,
|
|
H_IPOLL,
|
|
H_XIRR,
|
|
H_XIRR_X,
|
|
#endif
|
|
0
|
|
};
|
|
|
|
static void init_default_hcalls(void)
|
|
{
|
|
int i;
|
|
unsigned int hcall;
|
|
|
|
for (i = 0; default_hcall_list[i]; ++i) {
|
|
hcall = default_hcall_list[i];
|
|
WARN_ON(!kvmppc_hcall_impl_hv(hcall));
|
|
__set_bit(hcall / 4, default_enabled_hcalls);
|
|
}
|
|
}
|
|
|
|
static struct kvmppc_ops kvm_ops_hv = {
|
|
.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
|
|
.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
|
|
.get_one_reg = kvmppc_get_one_reg_hv,
|
|
.set_one_reg = kvmppc_set_one_reg_hv,
|
|
.vcpu_load = kvmppc_core_vcpu_load_hv,
|
|
.vcpu_put = kvmppc_core_vcpu_put_hv,
|
|
.set_msr = kvmppc_set_msr_hv,
|
|
.vcpu_run = kvmppc_vcpu_run_hv,
|
|
.vcpu_create = kvmppc_core_vcpu_create_hv,
|
|
.vcpu_free = kvmppc_core_vcpu_free_hv,
|
|
.check_requests = kvmppc_core_check_requests_hv,
|
|
.get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
|
|
.flush_memslot = kvmppc_core_flush_memslot_hv,
|
|
.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
|
|
.commit_memory_region = kvmppc_core_commit_memory_region_hv,
|
|
.unmap_hva = kvm_unmap_hva_hv,
|
|
.unmap_hva_range = kvm_unmap_hva_range_hv,
|
|
.age_hva = kvm_age_hva_hv,
|
|
.test_age_hva = kvm_test_age_hva_hv,
|
|
.set_spte_hva = kvm_set_spte_hva_hv,
|
|
.mmu_destroy = kvmppc_mmu_destroy_hv,
|
|
.free_memslot = kvmppc_core_free_memslot_hv,
|
|
.create_memslot = kvmppc_core_create_memslot_hv,
|
|
.init_vm = kvmppc_core_init_vm_hv,
|
|
.destroy_vm = kvmppc_core_destroy_vm_hv,
|
|
.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
|
|
.emulate_op = kvmppc_core_emulate_op_hv,
|
|
.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
|
|
.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
|
|
.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
|
|
.arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
|
|
.hcall_implemented = kvmppc_hcall_impl_hv,
|
|
};
|
|
|
|
static int kvmppc_book3s_init_hv(void)
|
|
{
|
|
int r;
|
|
/*
|
|
* FIXME!! Do we need to check on all cpus ?
|
|
*/
|
|
r = kvmppc_core_check_processor_compat_hv();
|
|
if (r < 0)
|
|
return -ENODEV;
|
|
|
|
kvm_ops_hv.owner = THIS_MODULE;
|
|
kvmppc_hv_ops = &kvm_ops_hv;
|
|
|
|
init_default_hcalls();
|
|
|
|
init_vcore_lists();
|
|
|
|
r = kvmppc_mmu_hv_init();
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_book3s_exit_hv(void)
|
|
{
|
|
kvmppc_hv_ops = NULL;
|
|
}
|
|
|
|
module_init(kvmppc_book3s_init_hv);
|
|
module_exit(kvmppc_book3s_exit_hv);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS_MISCDEV(KVM_MINOR);
|
|
MODULE_ALIAS("devname:kvm");
|