mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 01:59:28 +07:00
7d4e9ccb43
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
1085 lines
28 KiB
C
1085 lines
28 KiB
C
/*
|
|
* This file is part of UBIFS.
|
|
*
|
|
* Copyright (C) 2006-2008 Nokia Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Authors: Adrian Hunter
|
|
* Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* This file contains journal replay code. It runs when the file-system is being
|
|
* mounted and requires no locking.
|
|
*
|
|
* The larger is the journal, the longer it takes to scan it, so the longer it
|
|
* takes to mount UBIFS. This is why the journal has limited size which may be
|
|
* changed depending on the system requirements. But a larger journal gives
|
|
* faster I/O speed because it writes the index less frequently. So this is a
|
|
* trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
|
|
* larger is the journal, the more memory its index may consume.
|
|
*/
|
|
|
|
#include "ubifs.h"
|
|
|
|
/*
|
|
* Replay flags.
|
|
*
|
|
* REPLAY_DELETION: node was deleted
|
|
* REPLAY_REF: node is a reference node
|
|
*/
|
|
enum {
|
|
REPLAY_DELETION = 1,
|
|
REPLAY_REF = 2,
|
|
};
|
|
|
|
/**
|
|
* struct replay_entry - replay tree entry.
|
|
* @lnum: logical eraseblock number of the node
|
|
* @offs: node offset
|
|
* @len: node length
|
|
* @sqnum: node sequence number
|
|
* @flags: replay flags
|
|
* @rb: links the replay tree
|
|
* @key: node key
|
|
* @nm: directory entry name
|
|
* @old_size: truncation old size
|
|
* @new_size: truncation new size
|
|
* @free: amount of free space in a bud
|
|
* @dirty: amount of dirty space in a bud from padding and deletion nodes
|
|
*
|
|
* UBIFS journal replay must compare node sequence numbers, which means it must
|
|
* build a tree of node information to insert into the TNC.
|
|
*/
|
|
struct replay_entry {
|
|
int lnum;
|
|
int offs;
|
|
int len;
|
|
unsigned long long sqnum;
|
|
int flags;
|
|
struct rb_node rb;
|
|
union ubifs_key key;
|
|
union {
|
|
struct qstr nm;
|
|
struct {
|
|
loff_t old_size;
|
|
loff_t new_size;
|
|
};
|
|
struct {
|
|
int free;
|
|
int dirty;
|
|
};
|
|
};
|
|
};
|
|
|
|
/**
|
|
* struct bud_entry - entry in the list of buds to replay.
|
|
* @list: next bud in the list
|
|
* @bud: bud description object
|
|
* @free: free bytes in the bud
|
|
* @sqnum: reference node sequence number
|
|
*/
|
|
struct bud_entry {
|
|
struct list_head list;
|
|
struct ubifs_bud *bud;
|
|
int free;
|
|
unsigned long long sqnum;
|
|
};
|
|
|
|
/**
|
|
* set_bud_lprops - set free and dirty space used by a bud.
|
|
* @c: UBIFS file-system description object
|
|
* @r: replay entry of bud
|
|
*/
|
|
static int set_bud_lprops(struct ubifs_info *c, struct replay_entry *r)
|
|
{
|
|
const struct ubifs_lprops *lp;
|
|
int err = 0, dirty;
|
|
|
|
ubifs_get_lprops(c);
|
|
|
|
lp = ubifs_lpt_lookup_dirty(c, r->lnum);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
|
|
dirty = lp->dirty;
|
|
if (r->offs == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
|
|
/*
|
|
* The LEB was added to the journal with a starting offset of
|
|
* zero which means the LEB must have been empty. The LEB
|
|
* property values should be lp->free == c->leb_size and
|
|
* lp->dirty == 0, but that is not the case. The reason is that
|
|
* the LEB was garbage collected. The garbage collector resets
|
|
* the free and dirty space without recording it anywhere except
|
|
* lprops, so if there is not a commit then lprops does not have
|
|
* that information next time the file system is mounted.
|
|
*
|
|
* We do not need to adjust free space because the scan has told
|
|
* us the exact value which is recorded in the replay entry as
|
|
* r->free.
|
|
*
|
|
* However we do need to subtract from the dirty space the
|
|
* amount of space that the garbage collector reclaimed, which
|
|
* is the whole LEB minus the amount of space that was free.
|
|
*/
|
|
dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
|
|
lp->free, lp->dirty);
|
|
dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", r->lnum,
|
|
lp->free, lp->dirty);
|
|
dirty -= c->leb_size - lp->free;
|
|
/*
|
|
* If the replay order was perfect the dirty space would now be
|
|
* zero. The order is not perfect because the journal heads
|
|
* race with each other. This is not a problem but is does mean
|
|
* that the dirty space may temporarily exceed c->leb_size
|
|
* during the replay.
|
|
*/
|
|
if (dirty != 0)
|
|
dbg_msg("LEB %d lp: %d free %d dirty "
|
|
"replay: %d free %d dirty", r->lnum, lp->free,
|
|
lp->dirty, r->free, r->dirty);
|
|
}
|
|
lp = ubifs_change_lp(c, lp, r->free, dirty + r->dirty,
|
|
lp->flags | LPROPS_TAKEN, 0);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
out:
|
|
ubifs_release_lprops(c);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* trun_remove_range - apply a replay entry for a truncation to the TNC.
|
|
* @c: UBIFS file-system description object
|
|
* @r: replay entry of truncation
|
|
*/
|
|
static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
|
|
{
|
|
unsigned min_blk, max_blk;
|
|
union ubifs_key min_key, max_key;
|
|
ino_t ino;
|
|
|
|
min_blk = r->new_size / UBIFS_BLOCK_SIZE;
|
|
if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
|
|
min_blk += 1;
|
|
|
|
max_blk = r->old_size / UBIFS_BLOCK_SIZE;
|
|
if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
|
|
max_blk -= 1;
|
|
|
|
ino = key_inum(c, &r->key);
|
|
|
|
data_key_init(c, &min_key, ino, min_blk);
|
|
data_key_init(c, &max_key, ino, max_blk);
|
|
|
|
return ubifs_tnc_remove_range(c, &min_key, &max_key);
|
|
}
|
|
|
|
/**
|
|
* apply_replay_entry - apply a replay entry to the TNC.
|
|
* @c: UBIFS file-system description object
|
|
* @r: replay entry to apply
|
|
*
|
|
* Apply a replay entry to the TNC.
|
|
*/
|
|
static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
|
|
{
|
|
int err, deletion = ((r->flags & REPLAY_DELETION) != 0);
|
|
|
|
dbg_mnt("LEB %d:%d len %d flgs %d sqnum %llu %s", r->lnum,
|
|
r->offs, r->len, r->flags, r->sqnum, DBGKEY(&r->key));
|
|
|
|
/* Set c->replay_sqnum to help deal with dangling branches. */
|
|
c->replay_sqnum = r->sqnum;
|
|
|
|
if (r->flags & REPLAY_REF)
|
|
err = set_bud_lprops(c, r);
|
|
else if (is_hash_key(c, &r->key)) {
|
|
if (deletion)
|
|
err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
|
|
else
|
|
err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
|
|
r->len, &r->nm);
|
|
} else {
|
|
if (deletion)
|
|
switch (key_type(c, &r->key)) {
|
|
case UBIFS_INO_KEY:
|
|
{
|
|
ino_t inum = key_inum(c, &r->key);
|
|
|
|
err = ubifs_tnc_remove_ino(c, inum);
|
|
break;
|
|
}
|
|
case UBIFS_TRUN_KEY:
|
|
err = trun_remove_range(c, r);
|
|
break;
|
|
default:
|
|
err = ubifs_tnc_remove(c, &r->key);
|
|
break;
|
|
}
|
|
else
|
|
err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
|
|
r->len);
|
|
if (err)
|
|
return err;
|
|
|
|
if (c->need_recovery)
|
|
err = ubifs_recover_size_accum(c, &r->key, deletion,
|
|
r->new_size);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* destroy_replay_tree - destroy the replay.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* Destroy the replay tree.
|
|
*/
|
|
static void destroy_replay_tree(struct ubifs_info *c)
|
|
{
|
|
struct rb_node *this = c->replay_tree.rb_node;
|
|
struct replay_entry *r;
|
|
|
|
while (this) {
|
|
if (this->rb_left) {
|
|
this = this->rb_left;
|
|
continue;
|
|
} else if (this->rb_right) {
|
|
this = this->rb_right;
|
|
continue;
|
|
}
|
|
r = rb_entry(this, struct replay_entry, rb);
|
|
this = rb_parent(this);
|
|
if (this) {
|
|
if (this->rb_left == &r->rb)
|
|
this->rb_left = NULL;
|
|
else
|
|
this->rb_right = NULL;
|
|
}
|
|
if (is_hash_key(c, &r->key))
|
|
kfree(r->nm.name);
|
|
kfree(r);
|
|
}
|
|
c->replay_tree = RB_ROOT;
|
|
}
|
|
|
|
/**
|
|
* apply_replay_tree - apply the replay tree to the TNC.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* Apply the replay tree.
|
|
* Returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int apply_replay_tree(struct ubifs_info *c)
|
|
{
|
|
struct rb_node *this = rb_first(&c->replay_tree);
|
|
|
|
while (this) {
|
|
struct replay_entry *r;
|
|
int err;
|
|
|
|
cond_resched();
|
|
|
|
r = rb_entry(this, struct replay_entry, rb);
|
|
err = apply_replay_entry(c, r);
|
|
if (err)
|
|
return err;
|
|
this = rb_next(this);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* insert_node - insert a node to the replay tree.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: node logical eraseblock number
|
|
* @offs: node offset
|
|
* @len: node length
|
|
* @key: node key
|
|
* @sqnum: sequence number
|
|
* @deletion: non-zero if this is a deletion
|
|
* @used: number of bytes in use in a LEB
|
|
* @old_size: truncation old size
|
|
* @new_size: truncation new size
|
|
*
|
|
* This function inserts a scanned non-direntry node to the replay tree. The
|
|
* replay tree is an RB-tree containing @struct replay_entry elements which are
|
|
* indexed by the sequence number. The replay tree is applied at the very end
|
|
* of the replay process. Since the tree is sorted in sequence number order,
|
|
* the older modifications are applied first. This function returns zero in
|
|
* case of success and a negative error code in case of failure.
|
|
*/
|
|
static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
|
|
union ubifs_key *key, unsigned long long sqnum,
|
|
int deletion, int *used, loff_t old_size,
|
|
loff_t new_size)
|
|
{
|
|
struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
|
|
struct replay_entry *r;
|
|
|
|
if (key_inum(c, key) >= c->highest_inum)
|
|
c->highest_inum = key_inum(c, key);
|
|
|
|
dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
|
|
while (*p) {
|
|
parent = *p;
|
|
r = rb_entry(parent, struct replay_entry, rb);
|
|
if (sqnum < r->sqnum) {
|
|
p = &(*p)->rb_left;
|
|
continue;
|
|
} else if (sqnum > r->sqnum) {
|
|
p = &(*p)->rb_right;
|
|
continue;
|
|
}
|
|
ubifs_err("duplicate sqnum in replay");
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
|
|
if (!r)
|
|
return -ENOMEM;
|
|
|
|
if (!deletion)
|
|
*used += ALIGN(len, 8);
|
|
r->lnum = lnum;
|
|
r->offs = offs;
|
|
r->len = len;
|
|
r->sqnum = sqnum;
|
|
r->flags = (deletion ? REPLAY_DELETION : 0);
|
|
r->old_size = old_size;
|
|
r->new_size = new_size;
|
|
key_copy(c, key, &r->key);
|
|
|
|
rb_link_node(&r->rb, parent, p);
|
|
rb_insert_color(&r->rb, &c->replay_tree);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* insert_dent - insert a directory entry node into the replay tree.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: node logical eraseblock number
|
|
* @offs: node offset
|
|
* @len: node length
|
|
* @key: node key
|
|
* @name: directory entry name
|
|
* @nlen: directory entry name length
|
|
* @sqnum: sequence number
|
|
* @deletion: non-zero if this is a deletion
|
|
* @used: number of bytes in use in a LEB
|
|
*
|
|
* This function inserts a scanned directory entry node to the replay tree.
|
|
* Returns zero in case of success and a negative error code in case of
|
|
* failure.
|
|
*
|
|
* This function is also used for extended attribute entries because they are
|
|
* implemented as directory entry nodes.
|
|
*/
|
|
static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
|
|
union ubifs_key *key, const char *name, int nlen,
|
|
unsigned long long sqnum, int deletion, int *used)
|
|
{
|
|
struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
|
|
struct replay_entry *r;
|
|
char *nbuf;
|
|
|
|
if (key_inum(c, key) >= c->highest_inum)
|
|
c->highest_inum = key_inum(c, key);
|
|
|
|
dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
|
|
while (*p) {
|
|
parent = *p;
|
|
r = rb_entry(parent, struct replay_entry, rb);
|
|
if (sqnum < r->sqnum) {
|
|
p = &(*p)->rb_left;
|
|
continue;
|
|
}
|
|
if (sqnum > r->sqnum) {
|
|
p = &(*p)->rb_right;
|
|
continue;
|
|
}
|
|
ubifs_err("duplicate sqnum in replay");
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
|
|
if (!r)
|
|
return -ENOMEM;
|
|
nbuf = kmalloc(nlen + 1, GFP_KERNEL);
|
|
if (!nbuf) {
|
|
kfree(r);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!deletion)
|
|
*used += ALIGN(len, 8);
|
|
r->lnum = lnum;
|
|
r->offs = offs;
|
|
r->len = len;
|
|
r->sqnum = sqnum;
|
|
r->nm.len = nlen;
|
|
memcpy(nbuf, name, nlen);
|
|
nbuf[nlen] = '\0';
|
|
r->nm.name = nbuf;
|
|
r->flags = (deletion ? REPLAY_DELETION : 0);
|
|
key_copy(c, key, &r->key);
|
|
|
|
ubifs_assert(!*p);
|
|
rb_link_node(&r->rb, parent, p);
|
|
rb_insert_color(&r->rb, &c->replay_tree);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubifs_validate_entry - validate directory or extended attribute entry node.
|
|
* @c: UBIFS file-system description object
|
|
* @dent: the node to validate
|
|
*
|
|
* This function validates directory or extended attribute entry node @dent.
|
|
* Returns zero if the node is all right and a %-EINVAL if not.
|
|
*/
|
|
int ubifs_validate_entry(struct ubifs_info *c,
|
|
const struct ubifs_dent_node *dent)
|
|
{
|
|
int key_type = key_type_flash(c, dent->key);
|
|
int nlen = le16_to_cpu(dent->nlen);
|
|
|
|
if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
|
|
dent->type >= UBIFS_ITYPES_CNT ||
|
|
nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
|
|
strnlen(dent->name, nlen) != nlen ||
|
|
le64_to_cpu(dent->inum) > MAX_INUM) {
|
|
ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
|
|
"directory entry" : "extended attribute entry");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
|
|
ubifs_err("bad key type %d", key_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* replay_bud - replay a bud logical eraseblock.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: bud logical eraseblock number to replay
|
|
* @offs: bud start offset
|
|
* @jhead: journal head to which this bud belongs
|
|
* @free: amount of free space in the bud is returned here
|
|
* @dirty: amount of dirty space from padding and deletion nodes is returned
|
|
* here
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
|
|
int *free, int *dirty)
|
|
{
|
|
int err = 0, used = 0;
|
|
struct ubifs_scan_leb *sleb;
|
|
struct ubifs_scan_node *snod;
|
|
struct ubifs_bud *bud;
|
|
|
|
dbg_mnt("replay bud LEB %d, head %d", lnum, jhead);
|
|
if (c->need_recovery)
|
|
sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, jhead != GCHD);
|
|
else
|
|
sleb = ubifs_scan(c, lnum, offs, c->sbuf);
|
|
if (IS_ERR(sleb))
|
|
return PTR_ERR(sleb);
|
|
|
|
/*
|
|
* The bud does not have to start from offset zero - the beginning of
|
|
* the 'lnum' LEB may contain previously committed data. One of the
|
|
* things we have to do in replay is to correctly update lprops with
|
|
* newer information about this LEB.
|
|
*
|
|
* At this point lprops thinks that this LEB has 'c->leb_size - offs'
|
|
* bytes of free space because it only contain information about
|
|
* committed data.
|
|
*
|
|
* But we know that real amount of free space is 'c->leb_size -
|
|
* sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
|
|
* 'sleb->endpt' is used by bud data. We have to correctly calculate
|
|
* how much of these data are dirty and update lprops with this
|
|
* information.
|
|
*
|
|
* The dirt in that LEB region is comprised of padding nodes, deletion
|
|
* nodes, truncation nodes and nodes which are obsoleted by subsequent
|
|
* nodes in this LEB. So instead of calculating clean space, we
|
|
* calculate used space ('used' variable).
|
|
*/
|
|
|
|
list_for_each_entry(snod, &sleb->nodes, list) {
|
|
int deletion = 0;
|
|
|
|
cond_resched();
|
|
|
|
if (snod->sqnum >= SQNUM_WATERMARK) {
|
|
ubifs_err("file system's life ended");
|
|
goto out_dump;
|
|
}
|
|
|
|
if (snod->sqnum > c->max_sqnum)
|
|
c->max_sqnum = snod->sqnum;
|
|
|
|
switch (snod->type) {
|
|
case UBIFS_INO_NODE:
|
|
{
|
|
struct ubifs_ino_node *ino = snod->node;
|
|
loff_t new_size = le64_to_cpu(ino->size);
|
|
|
|
if (le32_to_cpu(ino->nlink) == 0)
|
|
deletion = 1;
|
|
err = insert_node(c, lnum, snod->offs, snod->len,
|
|
&snod->key, snod->sqnum, deletion,
|
|
&used, 0, new_size);
|
|
break;
|
|
}
|
|
case UBIFS_DATA_NODE:
|
|
{
|
|
struct ubifs_data_node *dn = snod->node;
|
|
loff_t new_size = le32_to_cpu(dn->size) +
|
|
key_block(c, &snod->key) *
|
|
UBIFS_BLOCK_SIZE;
|
|
|
|
err = insert_node(c, lnum, snod->offs, snod->len,
|
|
&snod->key, snod->sqnum, deletion,
|
|
&used, 0, new_size);
|
|
break;
|
|
}
|
|
case UBIFS_DENT_NODE:
|
|
case UBIFS_XENT_NODE:
|
|
{
|
|
struct ubifs_dent_node *dent = snod->node;
|
|
|
|
err = ubifs_validate_entry(c, dent);
|
|
if (err)
|
|
goto out_dump;
|
|
|
|
err = insert_dent(c, lnum, snod->offs, snod->len,
|
|
&snod->key, dent->name,
|
|
le16_to_cpu(dent->nlen), snod->sqnum,
|
|
!le64_to_cpu(dent->inum), &used);
|
|
break;
|
|
}
|
|
case UBIFS_TRUN_NODE:
|
|
{
|
|
struct ubifs_trun_node *trun = snod->node;
|
|
loff_t old_size = le64_to_cpu(trun->old_size);
|
|
loff_t new_size = le64_to_cpu(trun->new_size);
|
|
union ubifs_key key;
|
|
|
|
/* Validate truncation node */
|
|
if (old_size < 0 || old_size > c->max_inode_sz ||
|
|
new_size < 0 || new_size > c->max_inode_sz ||
|
|
old_size <= new_size) {
|
|
ubifs_err("bad truncation node");
|
|
goto out_dump;
|
|
}
|
|
|
|
/*
|
|
* Create a fake truncation key just to use the same
|
|
* functions which expect nodes to have keys.
|
|
*/
|
|
trun_key_init(c, &key, le32_to_cpu(trun->inum));
|
|
err = insert_node(c, lnum, snod->offs, snod->len,
|
|
&key, snod->sqnum, 1, &used,
|
|
old_size, new_size);
|
|
break;
|
|
}
|
|
default:
|
|
ubifs_err("unexpected node type %d in bud LEB %d:%d",
|
|
snod->type, lnum, snod->offs);
|
|
err = -EINVAL;
|
|
goto out_dump;
|
|
}
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
bud = ubifs_search_bud(c, lnum);
|
|
if (!bud)
|
|
BUG();
|
|
|
|
ubifs_assert(sleb->endpt - offs >= used);
|
|
ubifs_assert(sleb->endpt % c->min_io_size == 0);
|
|
|
|
if (sleb->endpt + c->min_io_size <= c->leb_size &&
|
|
!(c->vfs_sb->s_flags & MS_RDONLY))
|
|
err = ubifs_wbuf_seek_nolock(&c->jheads[jhead].wbuf, lnum,
|
|
sleb->endpt, UBI_SHORTTERM);
|
|
|
|
*dirty = sleb->endpt - offs - used;
|
|
*free = c->leb_size - sleb->endpt;
|
|
|
|
out:
|
|
ubifs_scan_destroy(sleb);
|
|
return err;
|
|
|
|
out_dump:
|
|
ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
|
|
dbg_dump_node(c, snod->node);
|
|
ubifs_scan_destroy(sleb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* insert_ref_node - insert a reference node to the replay tree.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: node logical eraseblock number
|
|
* @offs: node offset
|
|
* @sqnum: sequence number
|
|
* @free: amount of free space in bud
|
|
* @dirty: amount of dirty space from padding and deletion nodes
|
|
*
|
|
* This function inserts a reference node to the replay tree and returns zero
|
|
* in case of success or a negative error code in case of failure.
|
|
*/
|
|
static int insert_ref_node(struct ubifs_info *c, int lnum, int offs,
|
|
unsigned long long sqnum, int free, int dirty)
|
|
{
|
|
struct rb_node **p = &c->replay_tree.rb_node, *parent = NULL;
|
|
struct replay_entry *r;
|
|
|
|
dbg_mnt("add ref LEB %d:%d", lnum, offs);
|
|
while (*p) {
|
|
parent = *p;
|
|
r = rb_entry(parent, struct replay_entry, rb);
|
|
if (sqnum < r->sqnum) {
|
|
p = &(*p)->rb_left;
|
|
continue;
|
|
} else if (sqnum > r->sqnum) {
|
|
p = &(*p)->rb_right;
|
|
continue;
|
|
}
|
|
ubifs_err("duplicate sqnum in replay tree");
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
|
|
if (!r)
|
|
return -ENOMEM;
|
|
|
|
r->lnum = lnum;
|
|
r->offs = offs;
|
|
r->sqnum = sqnum;
|
|
r->flags = REPLAY_REF;
|
|
r->free = free;
|
|
r->dirty = dirty;
|
|
|
|
rb_link_node(&r->rb, parent, p);
|
|
rb_insert_color(&r->rb, &c->replay_tree);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* replay_buds - replay all buds.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int replay_buds(struct ubifs_info *c)
|
|
{
|
|
struct bud_entry *b;
|
|
int err, uninitialized_var(free), uninitialized_var(dirty);
|
|
|
|
list_for_each_entry(b, &c->replay_buds, list) {
|
|
err = replay_bud(c, b->bud->lnum, b->bud->start, b->bud->jhead,
|
|
&free, &dirty);
|
|
if (err)
|
|
return err;
|
|
err = insert_ref_node(c, b->bud->lnum, b->bud->start, b->sqnum,
|
|
free, dirty);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* destroy_bud_list - destroy the list of buds to replay.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
static void destroy_bud_list(struct ubifs_info *c)
|
|
{
|
|
struct bud_entry *b;
|
|
|
|
while (!list_empty(&c->replay_buds)) {
|
|
b = list_entry(c->replay_buds.next, struct bud_entry, list);
|
|
list_del(&b->list);
|
|
kfree(b);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* add_replay_bud - add a bud to the list of buds to replay.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: bud logical eraseblock number to replay
|
|
* @offs: bud start offset
|
|
* @jhead: journal head to which this bud belongs
|
|
* @sqnum: reference node sequence number
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
|
|
unsigned long long sqnum)
|
|
{
|
|
struct ubifs_bud *bud;
|
|
struct bud_entry *b;
|
|
|
|
dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
|
|
|
|
bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
|
|
if (!bud)
|
|
return -ENOMEM;
|
|
|
|
b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
|
|
if (!b) {
|
|
kfree(bud);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bud->lnum = lnum;
|
|
bud->start = offs;
|
|
bud->jhead = jhead;
|
|
ubifs_add_bud(c, bud);
|
|
|
|
b->bud = bud;
|
|
b->sqnum = sqnum;
|
|
list_add_tail(&b->list, &c->replay_buds);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* validate_ref - validate a reference node.
|
|
* @c: UBIFS file-system description object
|
|
* @ref: the reference node to validate
|
|
* @ref_lnum: LEB number of the reference node
|
|
* @ref_offs: reference node offset
|
|
*
|
|
* This function returns %1 if a bud reference already exists for the LEB. %0 is
|
|
* returned if the reference node is new, otherwise %-EINVAL is returned if
|
|
* validation failed.
|
|
*/
|
|
static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
|
|
{
|
|
struct ubifs_bud *bud;
|
|
int lnum = le32_to_cpu(ref->lnum);
|
|
unsigned int offs = le32_to_cpu(ref->offs);
|
|
unsigned int jhead = le32_to_cpu(ref->jhead);
|
|
|
|
/*
|
|
* ref->offs may point to the end of LEB when the journal head points
|
|
* to the end of LEB and we write reference node for it during commit.
|
|
* So this is why we require 'offs > c->leb_size'.
|
|
*/
|
|
if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
|
|
lnum < c->main_first || offs > c->leb_size ||
|
|
offs & (c->min_io_size - 1))
|
|
return -EINVAL;
|
|
|
|
/* Make sure we have not already looked at this bud */
|
|
bud = ubifs_search_bud(c, lnum);
|
|
if (bud) {
|
|
if (bud->jhead == jhead && bud->start <= offs)
|
|
return 1;
|
|
ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* replay_log_leb - replay a log logical eraseblock.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: log logical eraseblock to replay
|
|
* @offs: offset to start replaying from
|
|
* @sbuf: scan buffer
|
|
*
|
|
* This function replays a log LEB and returns zero in case of success, %1 if
|
|
* this is the last LEB in the log, and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
|
|
{
|
|
int err;
|
|
struct ubifs_scan_leb *sleb;
|
|
struct ubifs_scan_node *snod;
|
|
const struct ubifs_cs_node *node;
|
|
|
|
dbg_mnt("replay log LEB %d:%d", lnum, offs);
|
|
sleb = ubifs_scan(c, lnum, offs, sbuf);
|
|
if (IS_ERR(sleb)) {
|
|
if (c->need_recovery)
|
|
sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
|
|
if (IS_ERR(sleb))
|
|
return PTR_ERR(sleb);
|
|
}
|
|
|
|
if (sleb->nodes_cnt == 0) {
|
|
err = 1;
|
|
goto out;
|
|
}
|
|
|
|
node = sleb->buf;
|
|
|
|
snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
|
|
if (c->cs_sqnum == 0) {
|
|
/*
|
|
* This is the first log LEB we are looking at, make sure that
|
|
* the first node is a commit start node. Also record its
|
|
* sequence number so that UBIFS can determine where the log
|
|
* ends, because all nodes which were have higher sequence
|
|
* numbers.
|
|
*/
|
|
if (snod->type != UBIFS_CS_NODE) {
|
|
dbg_err("first log node at LEB %d:%d is not CS node",
|
|
lnum, offs);
|
|
goto out_dump;
|
|
}
|
|
if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
|
|
dbg_err("first CS node at LEB %d:%d has wrong "
|
|
"commit number %llu expected %llu",
|
|
lnum, offs,
|
|
(unsigned long long)le64_to_cpu(node->cmt_no),
|
|
c->cmt_no);
|
|
goto out_dump;
|
|
}
|
|
|
|
c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
|
|
dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
|
|
}
|
|
|
|
if (snod->sqnum < c->cs_sqnum) {
|
|
/*
|
|
* This means that we reached end of log and now
|
|
* look to the older log data, which was already
|
|
* committed but the eraseblock was not erased (UBIFS
|
|
* only un-maps it). So this basically means we have to
|
|
* exit with "end of log" code.
|
|
*/
|
|
err = 1;
|
|
goto out;
|
|
}
|
|
|
|
/* Make sure the first node sits at offset zero of the LEB */
|
|
if (snod->offs != 0) {
|
|
dbg_err("first node is not at zero offset");
|
|
goto out_dump;
|
|
}
|
|
|
|
list_for_each_entry(snod, &sleb->nodes, list) {
|
|
|
|
cond_resched();
|
|
|
|
if (snod->sqnum >= SQNUM_WATERMARK) {
|
|
ubifs_err("file system's life ended");
|
|
goto out_dump;
|
|
}
|
|
|
|
if (snod->sqnum < c->cs_sqnum) {
|
|
dbg_err("bad sqnum %llu, commit sqnum %llu",
|
|
snod->sqnum, c->cs_sqnum);
|
|
goto out_dump;
|
|
}
|
|
|
|
if (snod->sqnum > c->max_sqnum)
|
|
c->max_sqnum = snod->sqnum;
|
|
|
|
switch (snod->type) {
|
|
case UBIFS_REF_NODE: {
|
|
const struct ubifs_ref_node *ref = snod->node;
|
|
|
|
err = validate_ref(c, ref);
|
|
if (err == 1)
|
|
break; /* Already have this bud */
|
|
if (err)
|
|
goto out_dump;
|
|
|
|
err = add_replay_bud(c, le32_to_cpu(ref->lnum),
|
|
le32_to_cpu(ref->offs),
|
|
le32_to_cpu(ref->jhead),
|
|
snod->sqnum);
|
|
if (err)
|
|
goto out;
|
|
|
|
break;
|
|
}
|
|
case UBIFS_CS_NODE:
|
|
/* Make sure it sits at the beginning of LEB */
|
|
if (snod->offs != 0) {
|
|
ubifs_err("unexpected node in log");
|
|
goto out_dump;
|
|
}
|
|
break;
|
|
default:
|
|
ubifs_err("unexpected node in log");
|
|
goto out_dump;
|
|
}
|
|
}
|
|
|
|
if (sleb->endpt || c->lhead_offs >= c->leb_size) {
|
|
c->lhead_lnum = lnum;
|
|
c->lhead_offs = sleb->endpt;
|
|
}
|
|
|
|
err = !sleb->endpt;
|
|
out:
|
|
ubifs_scan_destroy(sleb);
|
|
return err;
|
|
|
|
out_dump:
|
|
ubifs_err("log error detected while replying the log at LEB %d:%d",
|
|
lnum, offs + snod->offs);
|
|
dbg_dump_node(c, snod->node);
|
|
ubifs_scan_destroy(sleb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* take_ihead - update the status of the index head in lprops to 'taken'.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function returns the amount of free space in the index head LEB or a
|
|
* negative error code.
|
|
*/
|
|
static int take_ihead(struct ubifs_info *c)
|
|
{
|
|
const struct ubifs_lprops *lp;
|
|
int err, free;
|
|
|
|
ubifs_get_lprops(c);
|
|
|
|
lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
|
|
free = lp->free;
|
|
|
|
lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
|
|
lp->flags | LPROPS_TAKEN, 0);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
|
|
err = free;
|
|
out:
|
|
ubifs_release_lprops(c);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubifs_replay_journal - replay journal.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function scans the journal, replays and cleans it up. It makes sure all
|
|
* memory data structures related to uncommitted journal are built (dirty TNC
|
|
* tree, tree of buds, modified lprops, etc).
|
|
*/
|
|
int ubifs_replay_journal(struct ubifs_info *c)
|
|
{
|
|
int err, i, lnum, offs, free;
|
|
void *sbuf = NULL;
|
|
|
|
BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
|
|
|
|
/* Update the status of the index head in lprops to 'taken' */
|
|
free = take_ihead(c);
|
|
if (free < 0)
|
|
return free; /* Error code */
|
|
|
|
if (c->ihead_offs != c->leb_size - free) {
|
|
ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
|
|
c->ihead_offs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sbuf = vmalloc(c->leb_size);
|
|
if (!sbuf)
|
|
return -ENOMEM;
|
|
|
|
dbg_mnt("start replaying the journal");
|
|
|
|
c->replaying = 1;
|
|
|
|
lnum = c->ltail_lnum = c->lhead_lnum;
|
|
offs = c->lhead_offs;
|
|
|
|
for (i = 0; i < c->log_lebs; i++, lnum++) {
|
|
if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
|
|
/*
|
|
* The log is logically circular, we reached the last
|
|
* LEB, switch to the first one.
|
|
*/
|
|
lnum = UBIFS_LOG_LNUM;
|
|
offs = 0;
|
|
}
|
|
err = replay_log_leb(c, lnum, offs, sbuf);
|
|
if (err == 1)
|
|
/* We hit the end of the log */
|
|
break;
|
|
if (err)
|
|
goto out;
|
|
offs = 0;
|
|
}
|
|
|
|
err = replay_buds(c);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = apply_replay_tree(c);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* UBIFS budgeting calculations use @c->budg_uncommitted_idx variable
|
|
* to roughly estimate index growth. Things like @c->min_idx_lebs
|
|
* depend on it. This means we have to initialize it to make sure
|
|
* budgeting works properly.
|
|
*/
|
|
c->budg_uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
|
|
c->budg_uncommitted_idx *= c->max_idx_node_sz;
|
|
|
|
ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
|
|
dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
|
|
"highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
|
|
(unsigned long)c->highest_inum);
|
|
out:
|
|
destroy_replay_tree(c);
|
|
destroy_bud_list(c);
|
|
vfree(sbuf);
|
|
c->replaying = 0;
|
|
return err;
|
|
}
|