mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 10:37:51 +07:00
3d13e839e8
current_stack_pointer(), which was called __get_SP(), used to just
return the value in r1.
But that caused problems in some cases, so it was turned into a
function in commit bfe9a2cfe9
("powerpc: Reimplement __get_SP() as a
function not a define").
Because it's a function in a separate compilation unit to all its
callers, it has the effect of causing a stack frame to be created, and
then returns the address of that frame. This is good in some cases
like those described in the above commit, but in other cases it's
overkill, we just need to know what stack page we're on.
On some other arches current_stack_pointer is just a register global
giving the stack pointer, and we'd like to do that too. So rename our
current_stack_pointer() to current_stack_frame() to make that
possible.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>
Link: https://lore.kernel.org/r/20200220115141.2707-1-mpe@ellerman.id.au
2195 lines
55 KiB
C
2195 lines
55 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Derived from "arch/i386/kernel/process.c"
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
|
|
* Paul Mackerras (paulus@cs.anu.edu.au)
|
|
*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/random.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/elf-randomize.h>
|
|
#include <linux/pkeys.h>
|
|
#include <linux/seq_buf.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/time.h>
|
|
#include <asm/runlatch.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tm.h>
|
|
#include <asm/debug.h>
|
|
#ifdef CONFIG_PPC64
|
|
#include <asm/firmware.h>
|
|
#include <asm/hw_irq.h>
|
|
#endif
|
|
#include <asm/code-patching.h>
|
|
#include <asm/exec.h>
|
|
#include <asm/livepatch.h>
|
|
#include <asm/cpu_has_feature.h>
|
|
#include <asm/asm-prototypes.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/hw_breakpoint.h>
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kdebug.h>
|
|
|
|
/* Transactional Memory debug */
|
|
#ifdef TM_DEBUG_SW
|
|
#define TM_DEBUG(x...) printk(KERN_INFO x)
|
|
#else
|
|
#define TM_DEBUG(x...) do { } while(0)
|
|
#endif
|
|
|
|
extern unsigned long _get_SP(void);
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Are we running in "Suspend disabled" mode? If so we have to block any
|
|
* sigreturn that would get us into suspended state, and we also warn in some
|
|
* other paths that we should never reach with suspend disabled.
|
|
*/
|
|
bool tm_suspend_disabled __ro_after_init = false;
|
|
|
|
static void check_if_tm_restore_required(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* If we are saving the current thread's registers, and the
|
|
* thread is in a transactional state, set the TIF_RESTORE_TM
|
|
* bit so that we know to restore the registers before
|
|
* returning to userspace.
|
|
*/
|
|
if (tsk == current && tsk->thread.regs &&
|
|
MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
|
|
!test_thread_flag(TIF_RESTORE_TM)) {
|
|
tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
|
|
set_thread_flag(TIF_RESTORE_TM);
|
|
}
|
|
}
|
|
|
|
#else
|
|
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
bool strict_msr_control;
|
|
EXPORT_SYMBOL(strict_msr_control);
|
|
|
|
static int __init enable_strict_msr_control(char *str)
|
|
{
|
|
strict_msr_control = true;
|
|
pr_info("Enabling strict facility control\n");
|
|
|
|
return 0;
|
|
}
|
|
early_param("ppc_strict_facility_enable", enable_strict_msr_control);
|
|
|
|
/* notrace because it's called by restore_math */
|
|
unsigned long notrace msr_check_and_set(unsigned long bits)
|
|
{
|
|
unsigned long oldmsr = mfmsr();
|
|
unsigned long newmsr;
|
|
|
|
newmsr = oldmsr | bits;
|
|
|
|
#ifdef CONFIG_VSX
|
|
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
|
|
newmsr |= MSR_VSX;
|
|
#endif
|
|
|
|
if (oldmsr != newmsr)
|
|
mtmsr_isync(newmsr);
|
|
|
|
return newmsr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(msr_check_and_set);
|
|
|
|
/* notrace because it's called by restore_math */
|
|
void notrace __msr_check_and_clear(unsigned long bits)
|
|
{
|
|
unsigned long oldmsr = mfmsr();
|
|
unsigned long newmsr;
|
|
|
|
newmsr = oldmsr & ~bits;
|
|
|
|
#ifdef CONFIG_VSX
|
|
if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
|
|
newmsr &= ~MSR_VSX;
|
|
#endif
|
|
|
|
if (oldmsr != newmsr)
|
|
mtmsr_isync(newmsr);
|
|
}
|
|
EXPORT_SYMBOL(__msr_check_and_clear);
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
static void __giveup_fpu(struct task_struct *tsk)
|
|
{
|
|
unsigned long msr;
|
|
|
|
save_fpu(tsk);
|
|
msr = tsk->thread.regs->msr;
|
|
msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
|
|
#ifdef CONFIG_VSX
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
msr &= ~MSR_VSX;
|
|
#endif
|
|
tsk->thread.regs->msr = msr;
|
|
}
|
|
|
|
void giveup_fpu(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_FP);
|
|
__giveup_fpu(tsk);
|
|
msr_check_and_clear(MSR_FP);
|
|
}
|
|
EXPORT_SYMBOL(giveup_fpu);
|
|
|
|
/*
|
|
* Make sure the floating-point register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_fp_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
/*
|
|
* We need to disable preemption here because if we didn't,
|
|
* another process could get scheduled after the regs->msr
|
|
* test but before we have finished saving the FP registers
|
|
* to the thread_struct. That process could take over the
|
|
* FPU, and then when we get scheduled again we would store
|
|
* bogus values for the remaining FP registers.
|
|
*/
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_FP) {
|
|
/*
|
|
* This should only ever be called for current or
|
|
* for a stopped child process. Since we save away
|
|
* the FP register state on context switch,
|
|
* there is something wrong if a stopped child appears
|
|
* to still have its FP state in the CPU registers.
|
|
*/
|
|
BUG_ON(tsk != current);
|
|
giveup_fpu(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
|
|
|
|
void enable_kernel_fp(void)
|
|
{
|
|
unsigned long cpumsr;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
cpumsr = msr_check_and_set(MSR_FP);
|
|
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
|
|
check_if_tm_restore_required(current);
|
|
/*
|
|
* If a thread has already been reclaimed then the
|
|
* checkpointed registers are on the CPU but have definitely
|
|
* been saved by the reclaim code. Don't need to and *cannot*
|
|
* giveup as this would save to the 'live' structure not the
|
|
* checkpointed structure.
|
|
*/
|
|
if (!MSR_TM_ACTIVE(cpumsr) &&
|
|
MSR_TM_ACTIVE(current->thread.regs->msr))
|
|
return;
|
|
__giveup_fpu(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_fp);
|
|
|
|
static int restore_fp(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.load_fp) {
|
|
load_fp_state(¤t->thread.fp_state);
|
|
current->thread.load_fp++;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static int restore_fp(struct task_struct *tsk) { return 0; }
|
|
#endif /* CONFIG_PPC_FPU */
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
#define loadvec(thr) ((thr).load_vec)
|
|
|
|
static void __giveup_altivec(struct task_struct *tsk)
|
|
{
|
|
unsigned long msr;
|
|
|
|
save_altivec(tsk);
|
|
msr = tsk->thread.regs->msr;
|
|
msr &= ~MSR_VEC;
|
|
#ifdef CONFIG_VSX
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
msr &= ~MSR_VSX;
|
|
#endif
|
|
tsk->thread.regs->msr = msr;
|
|
}
|
|
|
|
void giveup_altivec(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_VEC);
|
|
__giveup_altivec(tsk);
|
|
msr_check_and_clear(MSR_VEC);
|
|
}
|
|
EXPORT_SYMBOL(giveup_altivec);
|
|
|
|
void enable_kernel_altivec(void)
|
|
{
|
|
unsigned long cpumsr;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
cpumsr = msr_check_and_set(MSR_VEC);
|
|
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
|
|
check_if_tm_restore_required(current);
|
|
/*
|
|
* If a thread has already been reclaimed then the
|
|
* checkpointed registers are on the CPU but have definitely
|
|
* been saved by the reclaim code. Don't need to and *cannot*
|
|
* giveup as this would save to the 'live' structure not the
|
|
* checkpointed structure.
|
|
*/
|
|
if (!MSR_TM_ACTIVE(cpumsr) &&
|
|
MSR_TM_ACTIVE(current->thread.regs->msr))
|
|
return;
|
|
__giveup_altivec(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_altivec);
|
|
|
|
/*
|
|
* Make sure the VMX/Altivec register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_altivec_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_VEC) {
|
|
BUG_ON(tsk != current);
|
|
giveup_altivec(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
|
|
|
|
static int restore_altivec(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
|
|
load_vr_state(&tsk->thread.vr_state);
|
|
tsk->thread.used_vr = 1;
|
|
tsk->thread.load_vec++;
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
#define loadvec(thr) 0
|
|
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef CONFIG_VSX
|
|
static void __giveup_vsx(struct task_struct *tsk)
|
|
{
|
|
unsigned long msr = tsk->thread.regs->msr;
|
|
|
|
/*
|
|
* We should never be ssetting MSR_VSX without also setting
|
|
* MSR_FP and MSR_VEC
|
|
*/
|
|
WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
|
|
|
|
/* __giveup_fpu will clear MSR_VSX */
|
|
if (msr & MSR_FP)
|
|
__giveup_fpu(tsk);
|
|
if (msr & MSR_VEC)
|
|
__giveup_altivec(tsk);
|
|
}
|
|
|
|
static void giveup_vsx(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
|
|
__giveup_vsx(tsk);
|
|
msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
|
|
}
|
|
|
|
void enable_kernel_vsx(void)
|
|
{
|
|
unsigned long cpumsr;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
|
|
|
|
if (current->thread.regs &&
|
|
(current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
|
|
check_if_tm_restore_required(current);
|
|
/*
|
|
* If a thread has already been reclaimed then the
|
|
* checkpointed registers are on the CPU but have definitely
|
|
* been saved by the reclaim code. Don't need to and *cannot*
|
|
* giveup as this would save to the 'live' structure not the
|
|
* checkpointed structure.
|
|
*/
|
|
if (!MSR_TM_ACTIVE(cpumsr) &&
|
|
MSR_TM_ACTIVE(current->thread.regs->msr))
|
|
return;
|
|
__giveup_vsx(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_vsx);
|
|
|
|
void flush_vsx_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
|
|
BUG_ON(tsk != current);
|
|
giveup_vsx(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
|
|
|
|
static int restore_vsx(struct task_struct *tsk)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_VSX)) {
|
|
tsk->thread.used_vsr = 1;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
|
|
#endif /* CONFIG_VSX */
|
|
|
|
#ifdef CONFIG_SPE
|
|
void giveup_spe(struct task_struct *tsk)
|
|
{
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
msr_check_and_set(MSR_SPE);
|
|
__giveup_spe(tsk);
|
|
msr_check_and_clear(MSR_SPE);
|
|
}
|
|
EXPORT_SYMBOL(giveup_spe);
|
|
|
|
void enable_kernel_spe(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
msr_check_and_set(MSR_SPE);
|
|
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
|
|
check_if_tm_restore_required(current);
|
|
__giveup_spe(current);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_spe);
|
|
|
|
void flush_spe_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_SPE) {
|
|
BUG_ON(tsk != current);
|
|
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
|
|
giveup_spe(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
#endif /* CONFIG_SPE */
|
|
|
|
static unsigned long msr_all_available;
|
|
|
|
static int __init init_msr_all_available(void)
|
|
{
|
|
#ifdef CONFIG_PPC_FPU
|
|
msr_all_available |= MSR_FP;
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
msr_all_available |= MSR_VEC;
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
msr_all_available |= MSR_VSX;
|
|
#endif
|
|
#ifdef CONFIG_SPE
|
|
if (cpu_has_feature(CPU_FTR_SPE))
|
|
msr_all_available |= MSR_SPE;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(init_msr_all_available);
|
|
|
|
void giveup_all(struct task_struct *tsk)
|
|
{
|
|
unsigned long usermsr;
|
|
|
|
if (!tsk->thread.regs)
|
|
return;
|
|
|
|
check_if_tm_restore_required(tsk);
|
|
|
|
usermsr = tsk->thread.regs->msr;
|
|
|
|
if ((usermsr & msr_all_available) == 0)
|
|
return;
|
|
|
|
msr_check_and_set(msr_all_available);
|
|
|
|
WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
if (usermsr & MSR_FP)
|
|
__giveup_fpu(tsk);
|
|
#endif
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (usermsr & MSR_VEC)
|
|
__giveup_altivec(tsk);
|
|
#endif
|
|
#ifdef CONFIG_SPE
|
|
if (usermsr & MSR_SPE)
|
|
__giveup_spe(tsk);
|
|
#endif
|
|
|
|
msr_check_and_clear(msr_all_available);
|
|
}
|
|
EXPORT_SYMBOL(giveup_all);
|
|
|
|
/*
|
|
* The exception exit path calls restore_math() with interrupts hard disabled
|
|
* but the soft irq state not "reconciled". ftrace code that calls
|
|
* local_irq_save/restore causes warnings.
|
|
*
|
|
* Rather than complicate the exit path, just don't trace restore_math. This
|
|
* could be done by having ftrace entry code check for this un-reconciled
|
|
* condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
|
|
* temporarily fix it up for the duration of the ftrace call.
|
|
*/
|
|
void notrace restore_math(struct pt_regs *regs)
|
|
{
|
|
unsigned long msr;
|
|
|
|
if (!MSR_TM_ACTIVE(regs->msr) &&
|
|
!current->thread.load_fp && !loadvec(current->thread))
|
|
return;
|
|
|
|
msr = regs->msr;
|
|
msr_check_and_set(msr_all_available);
|
|
|
|
/*
|
|
* Only reload if the bit is not set in the user MSR, the bit BEING set
|
|
* indicates that the registers are hot
|
|
*/
|
|
if ((!(msr & MSR_FP)) && restore_fp(current))
|
|
msr |= MSR_FP | current->thread.fpexc_mode;
|
|
|
|
if ((!(msr & MSR_VEC)) && restore_altivec(current))
|
|
msr |= MSR_VEC;
|
|
|
|
if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
|
|
restore_vsx(current)) {
|
|
msr |= MSR_VSX;
|
|
}
|
|
|
|
msr_check_and_clear(msr_all_available);
|
|
|
|
regs->msr = msr;
|
|
}
|
|
|
|
static void save_all(struct task_struct *tsk)
|
|
{
|
|
unsigned long usermsr;
|
|
|
|
if (!tsk->thread.regs)
|
|
return;
|
|
|
|
usermsr = tsk->thread.regs->msr;
|
|
|
|
if ((usermsr & msr_all_available) == 0)
|
|
return;
|
|
|
|
msr_check_and_set(msr_all_available);
|
|
|
|
WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
|
|
|
|
if (usermsr & MSR_FP)
|
|
save_fpu(tsk);
|
|
|
|
if (usermsr & MSR_VEC)
|
|
save_altivec(tsk);
|
|
|
|
if (usermsr & MSR_SPE)
|
|
__giveup_spe(tsk);
|
|
|
|
msr_check_and_clear(msr_all_available);
|
|
thread_pkey_regs_save(&tsk->thread);
|
|
}
|
|
|
|
void flush_all_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
BUG_ON(tsk != current);
|
|
#ifdef CONFIG_SPE
|
|
if (tsk->thread.regs->msr & MSR_SPE)
|
|
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
|
|
#endif
|
|
save_all(tsk);
|
|
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(flush_all_to_thread);
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
void do_send_trap(struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code, int breakpt)
|
|
{
|
|
current->thread.trap_nr = TRAP_HWBKPT;
|
|
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
|
|
11, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
/* Deliver the signal to userspace */
|
|
force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
|
|
(void __user *)address);
|
|
}
|
|
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
|
|
void do_break (struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code)
|
|
{
|
|
current->thread.trap_nr = TRAP_HWBKPT;
|
|
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
|
|
11, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (debugger_break_match(regs))
|
|
return;
|
|
|
|
/* Clear the breakpoint */
|
|
hw_breakpoint_disable();
|
|
|
|
/* Deliver the signal to userspace */
|
|
force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
|
|
}
|
|
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
/*
|
|
* Set the debug registers back to their default "safe" values.
|
|
*/
|
|
static void set_debug_reg_defaults(struct thread_struct *thread)
|
|
{
|
|
thread->debug.iac1 = thread->debug.iac2 = 0;
|
|
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
|
|
thread->debug.iac3 = thread->debug.iac4 = 0;
|
|
#endif
|
|
thread->debug.dac1 = thread->debug.dac2 = 0;
|
|
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
|
|
thread->debug.dvc1 = thread->debug.dvc2 = 0;
|
|
#endif
|
|
thread->debug.dbcr0 = 0;
|
|
#ifdef CONFIG_BOOKE
|
|
/*
|
|
* Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
|
|
*/
|
|
thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
|
|
DBCR1_IAC3US | DBCR1_IAC4US;
|
|
/*
|
|
* Force Data Address Compare User/Supervisor bits to be User-only
|
|
* (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
|
|
*/
|
|
thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
|
|
#else
|
|
thread->debug.dbcr1 = 0;
|
|
#endif
|
|
}
|
|
|
|
static void prime_debug_regs(struct debug_reg *debug)
|
|
{
|
|
/*
|
|
* We could have inherited MSR_DE from userspace, since
|
|
* it doesn't get cleared on exception entry. Make sure
|
|
* MSR_DE is clear before we enable any debug events.
|
|
*/
|
|
mtmsr(mfmsr() & ~MSR_DE);
|
|
|
|
mtspr(SPRN_IAC1, debug->iac1);
|
|
mtspr(SPRN_IAC2, debug->iac2);
|
|
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
|
|
mtspr(SPRN_IAC3, debug->iac3);
|
|
mtspr(SPRN_IAC4, debug->iac4);
|
|
#endif
|
|
mtspr(SPRN_DAC1, debug->dac1);
|
|
mtspr(SPRN_DAC2, debug->dac2);
|
|
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
|
|
mtspr(SPRN_DVC1, debug->dvc1);
|
|
mtspr(SPRN_DVC2, debug->dvc2);
|
|
#endif
|
|
mtspr(SPRN_DBCR0, debug->dbcr0);
|
|
mtspr(SPRN_DBCR1, debug->dbcr1);
|
|
#ifdef CONFIG_BOOKE
|
|
mtspr(SPRN_DBCR2, debug->dbcr2);
|
|
#endif
|
|
}
|
|
/*
|
|
* Unless neither the old or new thread are making use of the
|
|
* debug registers, set the debug registers from the values
|
|
* stored in the new thread.
|
|
*/
|
|
void switch_booke_debug_regs(struct debug_reg *new_debug)
|
|
{
|
|
if ((current->thread.debug.dbcr0 & DBCR0_IDM)
|
|
|| (new_debug->dbcr0 & DBCR0_IDM))
|
|
prime_debug_regs(new_debug);
|
|
}
|
|
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
|
|
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
|
|
#ifndef CONFIG_HAVE_HW_BREAKPOINT
|
|
static void set_breakpoint(struct arch_hw_breakpoint *brk)
|
|
{
|
|
preempt_disable();
|
|
__set_breakpoint(brk);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void set_debug_reg_defaults(struct thread_struct *thread)
|
|
{
|
|
thread->hw_brk.address = 0;
|
|
thread->hw_brk.type = 0;
|
|
thread->hw_brk.len = 0;
|
|
thread->hw_brk.hw_len = 0;
|
|
if (ppc_breakpoint_available())
|
|
set_breakpoint(&thread->hw_brk);
|
|
}
|
|
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
|
|
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
|
|
{
|
|
mtspr(SPRN_DAC1, dabr);
|
|
#ifdef CONFIG_PPC_47x
|
|
isync();
|
|
#endif
|
|
return 0;
|
|
}
|
|
#elif defined(CONFIG_PPC_BOOK3S)
|
|
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
|
|
{
|
|
mtspr(SPRN_DABR, dabr);
|
|
if (cpu_has_feature(CPU_FTR_DABRX))
|
|
mtspr(SPRN_DABRX, dabrx);
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
static inline int set_dabr(struct arch_hw_breakpoint *brk)
|
|
{
|
|
unsigned long dabr, dabrx;
|
|
|
|
dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
|
|
dabrx = ((brk->type >> 3) & 0x7);
|
|
|
|
if (ppc_md.set_dabr)
|
|
return ppc_md.set_dabr(dabr, dabrx);
|
|
|
|
return __set_dabr(dabr, dabrx);
|
|
}
|
|
|
|
static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
|
|
{
|
|
unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
|
|
LCTRL1_CRWF_RW;
|
|
unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
|
|
unsigned long start_addr = brk->address & ~HW_BREAKPOINT_ALIGN;
|
|
unsigned long end_addr = (brk->address + brk->len - 1) | HW_BREAKPOINT_ALIGN;
|
|
|
|
if (start_addr == 0)
|
|
lctrl2 |= LCTRL2_LW0LA_F;
|
|
else if (end_addr == ~0U)
|
|
lctrl2 |= LCTRL2_LW0LA_E;
|
|
else
|
|
lctrl2 |= LCTRL2_LW0LA_EandF;
|
|
|
|
mtspr(SPRN_LCTRL2, 0);
|
|
|
|
if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
|
|
return 0;
|
|
|
|
if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
|
|
lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
|
|
if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
|
|
lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
|
|
|
|
mtspr(SPRN_CMPE, start_addr - 1);
|
|
mtspr(SPRN_CMPF, end_addr + 1);
|
|
mtspr(SPRN_LCTRL1, lctrl1);
|
|
mtspr(SPRN_LCTRL2, lctrl2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __set_breakpoint(struct arch_hw_breakpoint *brk)
|
|
{
|
|
memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk));
|
|
|
|
if (dawr_enabled())
|
|
// Power8 or later
|
|
set_dawr(brk);
|
|
else if (IS_ENABLED(CONFIG_PPC_8xx))
|
|
set_breakpoint_8xx(brk);
|
|
else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
// Power7 or earlier
|
|
set_dabr(brk);
|
|
else
|
|
// Shouldn't happen due to higher level checks
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
/* Check if we have DAWR or DABR hardware */
|
|
bool ppc_breakpoint_available(void)
|
|
{
|
|
if (dawr_enabled())
|
|
return true; /* POWER8 DAWR or POWER9 forced DAWR */
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
return false; /* POWER9 with DAWR disabled */
|
|
/* DABR: Everything but POWER8 and POWER9 */
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
|
|
|
|
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
|
|
struct arch_hw_breakpoint *b)
|
|
{
|
|
if (a->address != b->address)
|
|
return false;
|
|
if (a->type != b->type)
|
|
return false;
|
|
if (a->len != b->len)
|
|
return false;
|
|
/* no need to check hw_len. it's calculated from address and len */
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
|
|
static inline bool tm_enabled(struct task_struct *tsk)
|
|
{
|
|
return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
|
|
}
|
|
|
|
static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
|
|
{
|
|
/*
|
|
* Use the current MSR TM suspended bit to track if we have
|
|
* checkpointed state outstanding.
|
|
* On signal delivery, we'd normally reclaim the checkpointed
|
|
* state to obtain stack pointer (see:get_tm_stackpointer()).
|
|
* This will then directly return to userspace without going
|
|
* through __switch_to(). However, if the stack frame is bad,
|
|
* we need to exit this thread which calls __switch_to() which
|
|
* will again attempt to reclaim the already saved tm state.
|
|
* Hence we need to check that we've not already reclaimed
|
|
* this state.
|
|
* We do this using the current MSR, rather tracking it in
|
|
* some specific thread_struct bit, as it has the additional
|
|
* benefit of checking for a potential TM bad thing exception.
|
|
*/
|
|
if (!MSR_TM_SUSPENDED(mfmsr()))
|
|
return;
|
|
|
|
giveup_all(container_of(thr, struct task_struct, thread));
|
|
|
|
tm_reclaim(thr, cause);
|
|
|
|
/*
|
|
* If we are in a transaction and FP is off then we can't have
|
|
* used FP inside that transaction. Hence the checkpointed
|
|
* state is the same as the live state. We need to copy the
|
|
* live state to the checkpointed state so that when the
|
|
* transaction is restored, the checkpointed state is correct
|
|
* and the aborted transaction sees the correct state. We use
|
|
* ckpt_regs.msr here as that's what tm_reclaim will use to
|
|
* determine if it's going to write the checkpointed state or
|
|
* not. So either this will write the checkpointed registers,
|
|
* or reclaim will. Similarly for VMX.
|
|
*/
|
|
if ((thr->ckpt_regs.msr & MSR_FP) == 0)
|
|
memcpy(&thr->ckfp_state, &thr->fp_state,
|
|
sizeof(struct thread_fp_state));
|
|
if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
|
|
memcpy(&thr->ckvr_state, &thr->vr_state,
|
|
sizeof(struct thread_vr_state));
|
|
}
|
|
|
|
void tm_reclaim_current(uint8_t cause)
|
|
{
|
|
tm_enable();
|
|
tm_reclaim_thread(¤t->thread, cause);
|
|
}
|
|
|
|
static inline void tm_reclaim_task(struct task_struct *tsk)
|
|
{
|
|
/* We have to work out if we're switching from/to a task that's in the
|
|
* middle of a transaction.
|
|
*
|
|
* In switching we need to maintain a 2nd register state as
|
|
* oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
|
|
* checkpointed (tbegin) state in ckpt_regs, ckfp_state and
|
|
* ckvr_state
|
|
*
|
|
* We also context switch (save) TFHAR/TEXASR/TFIAR in here.
|
|
*/
|
|
struct thread_struct *thr = &tsk->thread;
|
|
|
|
if (!thr->regs)
|
|
return;
|
|
|
|
if (!MSR_TM_ACTIVE(thr->regs->msr))
|
|
goto out_and_saveregs;
|
|
|
|
WARN_ON(tm_suspend_disabled);
|
|
|
|
TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
|
|
"ccr=%lx, msr=%lx, trap=%lx)\n",
|
|
tsk->pid, thr->regs->nip,
|
|
thr->regs->ccr, thr->regs->msr,
|
|
thr->regs->trap);
|
|
|
|
tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
|
|
|
|
TM_DEBUG("--- tm_reclaim on pid %d complete\n",
|
|
tsk->pid);
|
|
|
|
out_and_saveregs:
|
|
/* Always save the regs here, even if a transaction's not active.
|
|
* This context-switches a thread's TM info SPRs. We do it here to
|
|
* be consistent with the restore path (in recheckpoint) which
|
|
* cannot happen later in _switch().
|
|
*/
|
|
tm_save_sprs(thr);
|
|
}
|
|
|
|
extern void __tm_recheckpoint(struct thread_struct *thread);
|
|
|
|
void tm_recheckpoint(struct thread_struct *thread)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!(thread->regs->msr & MSR_TM))
|
|
return;
|
|
|
|
/* We really can't be interrupted here as the TEXASR registers can't
|
|
* change and later in the trecheckpoint code, we have a userspace R1.
|
|
* So let's hard disable over this region.
|
|
*/
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
|
|
/* The TM SPRs are restored here, so that TEXASR.FS can be set
|
|
* before the trecheckpoint and no explosion occurs.
|
|
*/
|
|
tm_restore_sprs(thread);
|
|
|
|
__tm_recheckpoint(thread);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static inline void tm_recheckpoint_new_task(struct task_struct *new)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_TM))
|
|
return;
|
|
|
|
/* Recheckpoint the registers of the thread we're about to switch to.
|
|
*
|
|
* If the task was using FP, we non-lazily reload both the original and
|
|
* the speculative FP register states. This is because the kernel
|
|
* doesn't see if/when a TM rollback occurs, so if we take an FP
|
|
* unavailable later, we are unable to determine which set of FP regs
|
|
* need to be restored.
|
|
*/
|
|
if (!tm_enabled(new))
|
|
return;
|
|
|
|
if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
|
|
tm_restore_sprs(&new->thread);
|
|
return;
|
|
}
|
|
/* Recheckpoint to restore original checkpointed register state. */
|
|
TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
|
|
new->pid, new->thread.regs->msr);
|
|
|
|
tm_recheckpoint(&new->thread);
|
|
|
|
/*
|
|
* The checkpointed state has been restored but the live state has
|
|
* not, ensure all the math functionality is turned off to trigger
|
|
* restore_math() to reload.
|
|
*/
|
|
new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
|
|
|
|
TM_DEBUG("*** tm_recheckpoint of pid %d complete "
|
|
"(kernel msr 0x%lx)\n",
|
|
new->pid, mfmsr());
|
|
}
|
|
|
|
static inline void __switch_to_tm(struct task_struct *prev,
|
|
struct task_struct *new)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_TM)) {
|
|
if (tm_enabled(prev) || tm_enabled(new))
|
|
tm_enable();
|
|
|
|
if (tm_enabled(prev)) {
|
|
prev->thread.load_tm++;
|
|
tm_reclaim_task(prev);
|
|
if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
|
|
prev->thread.regs->msr &= ~MSR_TM;
|
|
}
|
|
|
|
tm_recheckpoint_new_task(new);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called if we are on the way out to userspace and the
|
|
* TIF_RESTORE_TM flag is set. It checks if we need to reload
|
|
* FP and/or vector state and does so if necessary.
|
|
* If userspace is inside a transaction (whether active or
|
|
* suspended) and FP/VMX/VSX instructions have ever been enabled
|
|
* inside that transaction, then we have to keep them enabled
|
|
* and keep the FP/VMX/VSX state loaded while ever the transaction
|
|
* continues. The reason is that if we didn't, and subsequently
|
|
* got a FP/VMX/VSX unavailable interrupt inside a transaction,
|
|
* we don't know whether it's the same transaction, and thus we
|
|
* don't know which of the checkpointed state and the transactional
|
|
* state to use.
|
|
*/
|
|
void restore_tm_state(struct pt_regs *regs)
|
|
{
|
|
unsigned long msr_diff;
|
|
|
|
/*
|
|
* This is the only moment we should clear TIF_RESTORE_TM as
|
|
* it is here that ckpt_regs.msr and pt_regs.msr become the same
|
|
* again, anything else could lead to an incorrect ckpt_msr being
|
|
* saved and therefore incorrect signal contexts.
|
|
*/
|
|
clear_thread_flag(TIF_RESTORE_TM);
|
|
if (!MSR_TM_ACTIVE(regs->msr))
|
|
return;
|
|
|
|
msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
|
|
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
|
|
|
|
/* Ensure that restore_math() will restore */
|
|
if (msr_diff & MSR_FP)
|
|
current->thread.load_fp = 1;
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
|
|
current->thread.load_vec = 1;
|
|
#endif
|
|
restore_math(regs);
|
|
|
|
regs->msr |= msr_diff;
|
|
}
|
|
|
|
#else
|
|
#define tm_recheckpoint_new_task(new)
|
|
#define __switch_to_tm(prev, new)
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
static inline void save_sprs(struct thread_struct *t)
|
|
{
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC))
|
|
t->vrsave = mfspr(SPRN_VRSAVE);
|
|
#endif
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (cpu_has_feature(CPU_FTR_DSCR))
|
|
t->dscr = mfspr(SPRN_DSCR);
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
t->bescr = mfspr(SPRN_BESCR);
|
|
t->ebbhr = mfspr(SPRN_EBBHR);
|
|
t->ebbrr = mfspr(SPRN_EBBRR);
|
|
|
|
t->fscr = mfspr(SPRN_FSCR);
|
|
|
|
/*
|
|
* Note that the TAR is not available for use in the kernel.
|
|
* (To provide this, the TAR should be backed up/restored on
|
|
* exception entry/exit instead, and be in pt_regs. FIXME,
|
|
* this should be in pt_regs anyway (for debug).)
|
|
*/
|
|
t->tar = mfspr(SPRN_TAR);
|
|
}
|
|
#endif
|
|
|
|
thread_pkey_regs_save(t);
|
|
}
|
|
|
|
static inline void restore_sprs(struct thread_struct *old_thread,
|
|
struct thread_struct *new_thread)
|
|
{
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
|
|
old_thread->vrsave != new_thread->vrsave)
|
|
mtspr(SPRN_VRSAVE, new_thread->vrsave);
|
|
#endif
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (cpu_has_feature(CPU_FTR_DSCR)) {
|
|
u64 dscr = get_paca()->dscr_default;
|
|
if (new_thread->dscr_inherit)
|
|
dscr = new_thread->dscr;
|
|
|
|
if (old_thread->dscr != dscr)
|
|
mtspr(SPRN_DSCR, dscr);
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
|
|
if (old_thread->bescr != new_thread->bescr)
|
|
mtspr(SPRN_BESCR, new_thread->bescr);
|
|
if (old_thread->ebbhr != new_thread->ebbhr)
|
|
mtspr(SPRN_EBBHR, new_thread->ebbhr);
|
|
if (old_thread->ebbrr != new_thread->ebbrr)
|
|
mtspr(SPRN_EBBRR, new_thread->ebbrr);
|
|
|
|
if (old_thread->fscr != new_thread->fscr)
|
|
mtspr(SPRN_FSCR, new_thread->fscr);
|
|
|
|
if (old_thread->tar != new_thread->tar)
|
|
mtspr(SPRN_TAR, new_thread->tar);
|
|
}
|
|
|
|
if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
|
|
old_thread->tidr != new_thread->tidr)
|
|
mtspr(SPRN_TIDR, new_thread->tidr);
|
|
#endif
|
|
|
|
thread_pkey_regs_restore(new_thread, old_thread);
|
|
}
|
|
|
|
struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *new)
|
|
{
|
|
struct thread_struct *new_thread, *old_thread;
|
|
struct task_struct *last;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct ppc64_tlb_batch *batch;
|
|
#endif
|
|
|
|
new_thread = &new->thread;
|
|
old_thread = ¤t->thread;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
batch = this_cpu_ptr(&ppc64_tlb_batch);
|
|
if (batch->active) {
|
|
current_thread_info()->local_flags |= _TLF_LAZY_MMU;
|
|
if (batch->index)
|
|
__flush_tlb_pending(batch);
|
|
batch->active = 0;
|
|
}
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
switch_booke_debug_regs(&new->thread.debug);
|
|
#else
|
|
/*
|
|
* For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
|
|
* schedule DABR
|
|
*/
|
|
#ifndef CONFIG_HAVE_HW_BREAKPOINT
|
|
if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk)))
|
|
__set_breakpoint(&new->thread.hw_brk);
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
#endif
|
|
|
|
/*
|
|
* We need to save SPRs before treclaim/trecheckpoint as these will
|
|
* change a number of them.
|
|
*/
|
|
save_sprs(&prev->thread);
|
|
|
|
/* Save FPU, Altivec, VSX and SPE state */
|
|
giveup_all(prev);
|
|
|
|
__switch_to_tm(prev, new);
|
|
|
|
if (!radix_enabled()) {
|
|
/*
|
|
* We can't take a PMU exception inside _switch() since there
|
|
* is a window where the kernel stack SLB and the kernel stack
|
|
* are out of sync. Hard disable here.
|
|
*/
|
|
hard_irq_disable();
|
|
}
|
|
|
|
/*
|
|
* Call restore_sprs() before calling _switch(). If we move it after
|
|
* _switch() then we miss out on calling it for new tasks. The reason
|
|
* for this is we manually create a stack frame for new tasks that
|
|
* directly returns through ret_from_fork() or
|
|
* ret_from_kernel_thread(). See copy_thread() for details.
|
|
*/
|
|
restore_sprs(old_thread, new_thread);
|
|
|
|
last = _switch(old_thread, new_thread);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
|
|
current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
|
|
batch = this_cpu_ptr(&ppc64_tlb_batch);
|
|
batch->active = 1;
|
|
}
|
|
|
|
if (current->thread.regs) {
|
|
restore_math(current->thread.regs);
|
|
|
|
/*
|
|
* The copy-paste buffer can only store into foreign real
|
|
* addresses, so unprivileged processes can not see the
|
|
* data or use it in any way unless they have foreign real
|
|
* mappings. If the new process has the foreign real address
|
|
* mappings, we must issue a cp_abort to clear any state and
|
|
* prevent snooping, corruption or a covert channel.
|
|
*/
|
|
if (current->thread.used_vas)
|
|
asm volatile(PPC_CP_ABORT);
|
|
}
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
return last;
|
|
}
|
|
|
|
#define NR_INSN_TO_PRINT 16
|
|
|
|
static void show_instructions(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
|
|
|
|
printk("Instruction dump:");
|
|
|
|
for (i = 0; i < NR_INSN_TO_PRINT; i++) {
|
|
int instr;
|
|
|
|
if (!(i % 8))
|
|
pr_cont("\n");
|
|
|
|
#if !defined(CONFIG_BOOKE)
|
|
/* If executing with the IMMU off, adjust pc rather
|
|
* than print XXXXXXXX.
|
|
*/
|
|
if (!(regs->msr & MSR_IR))
|
|
pc = (unsigned long)phys_to_virt(pc);
|
|
#endif
|
|
|
|
if (!__kernel_text_address(pc) ||
|
|
probe_kernel_address((const void *)pc, instr)) {
|
|
pr_cont("XXXXXXXX ");
|
|
} else {
|
|
if (regs->nip == pc)
|
|
pr_cont("<%08x> ", instr);
|
|
else
|
|
pr_cont("%08x ", instr);
|
|
}
|
|
|
|
pc += sizeof(int);
|
|
}
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
void show_user_instructions(struct pt_regs *regs)
|
|
{
|
|
unsigned long pc;
|
|
int n = NR_INSN_TO_PRINT;
|
|
struct seq_buf s;
|
|
char buf[96]; /* enough for 8 times 9 + 2 chars */
|
|
|
|
pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
|
|
|
|
seq_buf_init(&s, buf, sizeof(buf));
|
|
|
|
while (n) {
|
|
int i;
|
|
|
|
seq_buf_clear(&s);
|
|
|
|
for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
|
|
int instr;
|
|
|
|
if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) {
|
|
seq_buf_printf(&s, "XXXXXXXX ");
|
|
continue;
|
|
}
|
|
seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
|
|
}
|
|
|
|
if (!seq_buf_has_overflowed(&s))
|
|
pr_info("%s[%d]: code: %s\n", current->comm,
|
|
current->pid, s.buffer);
|
|
}
|
|
}
|
|
|
|
struct regbit {
|
|
unsigned long bit;
|
|
const char *name;
|
|
};
|
|
|
|
static struct regbit msr_bits[] = {
|
|
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
|
|
{MSR_SF, "SF"},
|
|
{MSR_HV, "HV"},
|
|
#endif
|
|
{MSR_VEC, "VEC"},
|
|
{MSR_VSX, "VSX"},
|
|
#ifdef CONFIG_BOOKE
|
|
{MSR_CE, "CE"},
|
|
#endif
|
|
{MSR_EE, "EE"},
|
|
{MSR_PR, "PR"},
|
|
{MSR_FP, "FP"},
|
|
{MSR_ME, "ME"},
|
|
#ifdef CONFIG_BOOKE
|
|
{MSR_DE, "DE"},
|
|
#else
|
|
{MSR_SE, "SE"},
|
|
{MSR_BE, "BE"},
|
|
#endif
|
|
{MSR_IR, "IR"},
|
|
{MSR_DR, "DR"},
|
|
{MSR_PMM, "PMM"},
|
|
#ifndef CONFIG_BOOKE
|
|
{MSR_RI, "RI"},
|
|
{MSR_LE, "LE"},
|
|
#endif
|
|
{0, NULL}
|
|
};
|
|
|
|
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
|
|
{
|
|
const char *s = "";
|
|
|
|
for (; bits->bit; ++bits)
|
|
if (val & bits->bit) {
|
|
pr_cont("%s%s", s, bits->name);
|
|
s = sep;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static struct regbit msr_tm_bits[] = {
|
|
{MSR_TS_T, "T"},
|
|
{MSR_TS_S, "S"},
|
|
{MSR_TM, "E"},
|
|
{0, NULL}
|
|
};
|
|
|
|
static void print_tm_bits(unsigned long val)
|
|
{
|
|
/*
|
|
* This only prints something if at least one of the TM bit is set.
|
|
* Inside the TM[], the output means:
|
|
* E: Enabled (bit 32)
|
|
* S: Suspended (bit 33)
|
|
* T: Transactional (bit 34)
|
|
*/
|
|
if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
|
|
pr_cont(",TM[");
|
|
print_bits(val, msr_tm_bits, "");
|
|
pr_cont("]");
|
|
}
|
|
}
|
|
#else
|
|
static void print_tm_bits(unsigned long val) {}
|
|
#endif
|
|
|
|
static void print_msr_bits(unsigned long val)
|
|
{
|
|
pr_cont("<");
|
|
print_bits(val, msr_bits, ",");
|
|
print_tm_bits(val);
|
|
pr_cont(">");
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define REG "%016lx"
|
|
#define REGS_PER_LINE 4
|
|
#define LAST_VOLATILE 13
|
|
#else
|
|
#define REG "%08lx"
|
|
#define REGS_PER_LINE 8
|
|
#define LAST_VOLATILE 12
|
|
#endif
|
|
|
|
void show_regs(struct pt_regs * regs)
|
|
{
|
|
int i, trap;
|
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
|
|
printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
|
|
regs->nip, regs->link, regs->ctr);
|
|
printk("REGS: %px TRAP: %04lx %s (%s)\n",
|
|
regs, regs->trap, print_tainted(), init_utsname()->release);
|
|
printk("MSR: "REG" ", regs->msr);
|
|
print_msr_bits(regs->msr);
|
|
pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
|
|
trap = TRAP(regs);
|
|
if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
|
|
pr_cont("CFAR: "REG" ", regs->orig_gpr3);
|
|
if (trap == 0x200 || trap == 0x300 || trap == 0x600)
|
|
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
|
|
pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
|
|
#else
|
|
pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
|
|
#endif
|
|
#ifdef CONFIG_PPC64
|
|
pr_cont("IRQMASK: %lx ", regs->softe);
|
|
#endif
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (MSR_TM_ACTIVE(regs->msr))
|
|
pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
|
|
#endif
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
if ((i % REGS_PER_LINE) == 0)
|
|
pr_cont("\nGPR%02d: ", i);
|
|
pr_cont(REG " ", regs->gpr[i]);
|
|
if (i == LAST_VOLATILE && !FULL_REGS(regs))
|
|
break;
|
|
}
|
|
pr_cont("\n");
|
|
#ifdef CONFIG_KALLSYMS
|
|
/*
|
|
* Lookup NIP late so we have the best change of getting the
|
|
* above info out without failing
|
|
*/
|
|
printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
|
|
printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
|
|
#endif
|
|
show_stack(current, (unsigned long *) regs->gpr[1]);
|
|
if (!user_mode(regs))
|
|
show_instructions(regs);
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
flush_ptrace_hw_breakpoint(current);
|
|
#else /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
set_debug_reg_defaults(¤t->thread);
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
void arch_setup_new_exec(void)
|
|
{
|
|
if (radix_enabled())
|
|
return;
|
|
hash__setup_new_exec();
|
|
}
|
|
#endif
|
|
|
|
int set_thread_uses_vas(void)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (!cpu_has_feature(CPU_FTR_ARCH_300))
|
|
return -EINVAL;
|
|
|
|
current->thread.used_vas = 1;
|
|
|
|
/*
|
|
* Even a process that has no foreign real address mapping can use
|
|
* an unpaired COPY instruction (to no real effect). Issue CP_ABORT
|
|
* to clear any pending COPY and prevent a covert channel.
|
|
*
|
|
* __switch_to() will issue CP_ABORT on future context switches.
|
|
*/
|
|
asm volatile(PPC_CP_ABORT);
|
|
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/**
|
|
* Assign a TIDR (thread ID) for task @t and set it in the thread
|
|
* structure. For now, we only support setting TIDR for 'current' task.
|
|
*
|
|
* Since the TID value is a truncated form of it PID, it is possible
|
|
* (but unlikely) for 2 threads to have the same TID. In the unlikely event
|
|
* that 2 threads share the same TID and are waiting, one of the following
|
|
* cases will happen:
|
|
*
|
|
* 1. The correct thread is running, the wrong thread is not
|
|
* In this situation, the correct thread is woken and proceeds to pass it's
|
|
* condition check.
|
|
*
|
|
* 2. Neither threads are running
|
|
* In this situation, neither thread will be woken. When scheduled, the waiting
|
|
* threads will execute either a wait, which will return immediately, followed
|
|
* by a condition check, which will pass for the correct thread and fail
|
|
* for the wrong thread, or they will execute the condition check immediately.
|
|
*
|
|
* 3. The wrong thread is running, the correct thread is not
|
|
* The wrong thread will be woken, but will fail it's condition check and
|
|
* re-execute wait. The correct thread, when scheduled, will execute either
|
|
* it's condition check (which will pass), or wait, which returns immediately
|
|
* when called the first time after the thread is scheduled, followed by it's
|
|
* condition check (which will pass).
|
|
*
|
|
* 4. Both threads are running
|
|
* Both threads will be woken. The wrong thread will fail it's condition check
|
|
* and execute another wait, while the correct thread will pass it's condition
|
|
* check.
|
|
*
|
|
* @t: the task to set the thread ID for
|
|
*/
|
|
int set_thread_tidr(struct task_struct *t)
|
|
{
|
|
if (!cpu_has_feature(CPU_FTR_P9_TIDR))
|
|
return -EINVAL;
|
|
|
|
if (t != current)
|
|
return -EINVAL;
|
|
|
|
if (t->thread.tidr)
|
|
return 0;
|
|
|
|
t->thread.tidr = (u16)task_pid_nr(t);
|
|
mtspr(SPRN_TIDR, t->thread.tidr);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_thread_tidr);
|
|
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
void
|
|
release_thread(struct task_struct *t)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* this gets called so that we can store coprocessor state into memory and
|
|
* copy the current task into the new thread.
|
|
*/
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
flush_all_to_thread(src);
|
|
/*
|
|
* Flush TM state out so we can copy it. __switch_to_tm() does this
|
|
* flush but it removes the checkpointed state from the current CPU and
|
|
* transitions the CPU out of TM mode. Hence we need to call
|
|
* tm_recheckpoint_new_task() (on the same task) to restore the
|
|
* checkpointed state back and the TM mode.
|
|
*
|
|
* Can't pass dst because it isn't ready. Doesn't matter, passing
|
|
* dst is only important for __switch_to()
|
|
*/
|
|
__switch_to_tm(src, src);
|
|
|
|
*dst = *src;
|
|
|
|
clear_task_ebb(dst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
unsigned long sp_vsid;
|
|
unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
|
|
if (radix_enabled())
|
|
return;
|
|
|
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
|
|
<< SLB_VSID_SHIFT_1T;
|
|
else
|
|
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
|
|
<< SLB_VSID_SHIFT;
|
|
sp_vsid |= SLB_VSID_KERNEL | llp;
|
|
p->thread.ksp_vsid = sp_vsid;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Copy a thread..
|
|
*/
|
|
|
|
/*
|
|
* Copy architecture-specific thread state
|
|
*/
|
|
int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
|
|
unsigned long kthread_arg, struct task_struct *p,
|
|
unsigned long tls)
|
|
{
|
|
struct pt_regs *childregs, *kregs;
|
|
extern void ret_from_fork(void);
|
|
extern void ret_from_kernel_thread(void);
|
|
void (*f)(void);
|
|
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
|
struct thread_info *ti = task_thread_info(p);
|
|
|
|
klp_init_thread_info(p);
|
|
|
|
/* Copy registers */
|
|
sp -= sizeof(struct pt_regs);
|
|
childregs = (struct pt_regs *) sp;
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
/* kernel thread */
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
childregs->gpr[1] = sp + sizeof(struct pt_regs);
|
|
/* function */
|
|
if (usp)
|
|
childregs->gpr[14] = ppc_function_entry((void *)usp);
|
|
#ifdef CONFIG_PPC64
|
|
clear_tsk_thread_flag(p, TIF_32BIT);
|
|
childregs->softe = IRQS_ENABLED;
|
|
#endif
|
|
childregs->gpr[15] = kthread_arg;
|
|
p->thread.regs = NULL; /* no user register state */
|
|
ti->flags |= _TIF_RESTOREALL;
|
|
f = ret_from_kernel_thread;
|
|
} else {
|
|
/* user thread */
|
|
struct pt_regs *regs = current_pt_regs();
|
|
CHECK_FULL_REGS(regs);
|
|
*childregs = *regs;
|
|
if (usp)
|
|
childregs->gpr[1] = usp;
|
|
p->thread.regs = childregs;
|
|
childregs->gpr[3] = 0; /* Result from fork() */
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
if (!is_32bit_task())
|
|
childregs->gpr[13] = tls;
|
|
else
|
|
childregs->gpr[2] = tls;
|
|
}
|
|
|
|
f = ret_from_fork;
|
|
}
|
|
childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
|
|
sp -= STACK_FRAME_OVERHEAD;
|
|
|
|
/*
|
|
* The way this works is that at some point in the future
|
|
* some task will call _switch to switch to the new task.
|
|
* That will pop off the stack frame created below and start
|
|
* the new task running at ret_from_fork. The new task will
|
|
* do some house keeping and then return from the fork or clone
|
|
* system call, using the stack frame created above.
|
|
*/
|
|
((unsigned long *)sp)[0] = 0;
|
|
sp -= sizeof(struct pt_regs);
|
|
kregs = (struct pt_regs *) sp;
|
|
sp -= STACK_FRAME_OVERHEAD;
|
|
p->thread.ksp = sp;
|
|
#ifdef CONFIG_PPC32
|
|
p->thread.ksp_limit = (unsigned long)end_of_stack(p);
|
|
#endif
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
p->thread.ptrace_bps[0] = NULL;
|
|
#endif
|
|
|
|
p->thread.fp_save_area = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
p->thread.vr_save_area = NULL;
|
|
#endif
|
|
|
|
setup_ksp_vsid(p, sp);
|
|
|
|
#ifdef CONFIG_PPC64
|
|
if (cpu_has_feature(CPU_FTR_DSCR)) {
|
|
p->thread.dscr_inherit = current->thread.dscr_inherit;
|
|
p->thread.dscr = mfspr(SPRN_DSCR);
|
|
}
|
|
if (cpu_has_feature(CPU_FTR_HAS_PPR))
|
|
childregs->ppr = DEFAULT_PPR;
|
|
|
|
p->thread.tidr = 0;
|
|
#endif
|
|
kregs->nip = ppc_function_entry(f);
|
|
return 0;
|
|
}
|
|
|
|
void preload_new_slb_context(unsigned long start, unsigned long sp);
|
|
|
|
/*
|
|
* Set up a thread for executing a new program
|
|
*/
|
|
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (!radix_enabled())
|
|
preload_new_slb_context(start, sp);
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* If we exec out of a kernel thread then thread.regs will not be
|
|
* set. Do it now.
|
|
*/
|
|
if (!current->thread.regs) {
|
|
struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
|
|
current->thread.regs = regs - 1;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
/*
|
|
* Clear any transactional state, we're exec()ing. The cause is
|
|
* not important as there will never be a recheckpoint so it's not
|
|
* user visible.
|
|
*/
|
|
if (MSR_TM_SUSPENDED(mfmsr()))
|
|
tm_reclaim_current(0);
|
|
#endif
|
|
|
|
memset(regs->gpr, 0, sizeof(regs->gpr));
|
|
regs->ctr = 0;
|
|
regs->link = 0;
|
|
regs->xer = 0;
|
|
regs->ccr = 0;
|
|
regs->gpr[1] = sp;
|
|
|
|
/*
|
|
* We have just cleared all the nonvolatile GPRs, so make
|
|
* FULL_REGS(regs) return true. This is necessary to allow
|
|
* ptrace to examine the thread immediately after exec.
|
|
*/
|
|
regs->trap &= ~1UL;
|
|
|
|
#ifdef CONFIG_PPC32
|
|
regs->mq = 0;
|
|
regs->nip = start;
|
|
regs->msr = MSR_USER;
|
|
#else
|
|
if (!is_32bit_task()) {
|
|
unsigned long entry;
|
|
|
|
if (is_elf2_task()) {
|
|
/* Look ma, no function descriptors! */
|
|
entry = start;
|
|
|
|
/*
|
|
* Ulrich says:
|
|
* The latest iteration of the ABI requires that when
|
|
* calling a function (at its global entry point),
|
|
* the caller must ensure r12 holds the entry point
|
|
* address (so that the function can quickly
|
|
* establish addressability).
|
|
*/
|
|
regs->gpr[12] = start;
|
|
/* Make sure that's restored on entry to userspace. */
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
} else {
|
|
unsigned long toc;
|
|
|
|
/* start is a relocated pointer to the function
|
|
* descriptor for the elf _start routine. The first
|
|
* entry in the function descriptor is the entry
|
|
* address of _start and the second entry is the TOC
|
|
* value we need to use.
|
|
*/
|
|
__get_user(entry, (unsigned long __user *)start);
|
|
__get_user(toc, (unsigned long __user *)start+1);
|
|
|
|
/* Check whether the e_entry function descriptor entries
|
|
* need to be relocated before we can use them.
|
|
*/
|
|
if (load_addr != 0) {
|
|
entry += load_addr;
|
|
toc += load_addr;
|
|
}
|
|
regs->gpr[2] = toc;
|
|
}
|
|
regs->nip = entry;
|
|
regs->msr = MSR_USER64;
|
|
} else {
|
|
regs->nip = start;
|
|
regs->gpr[2] = 0;
|
|
regs->msr = MSR_USER32;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
current->thread.used_vsr = 0;
|
|
#endif
|
|
current->thread.load_slb = 0;
|
|
current->thread.load_fp = 0;
|
|
memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
|
|
current->thread.fp_save_area = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
|
|
current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
|
|
current->thread.vr_save_area = NULL;
|
|
current->thread.vrsave = 0;
|
|
current->thread.used_vr = 0;
|
|
current->thread.load_vec = 0;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
memset(current->thread.evr, 0, sizeof(current->thread.evr));
|
|
current->thread.acc = 0;
|
|
current->thread.spefscr = 0;
|
|
current->thread.used_spe = 0;
|
|
#endif /* CONFIG_SPE */
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
current->thread.tm_tfhar = 0;
|
|
current->thread.tm_texasr = 0;
|
|
current->thread.tm_tfiar = 0;
|
|
current->thread.load_tm = 0;
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
thread_pkey_regs_init(¤t->thread);
|
|
}
|
|
EXPORT_SYMBOL(start_thread);
|
|
|
|
#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
|
|
| PR_FP_EXC_RES | PR_FP_EXC_INV)
|
|
|
|
int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
|
|
/* This is a bit hairy. If we are an SPE enabled processor
|
|
* (have embedded fp) we store the IEEE exception enable flags in
|
|
* fpexc_mode. fpexc_mode is also used for setting FP exception
|
|
* mode (asyn, precise, disabled) for 'Classic' FP. */
|
|
if (val & PR_FP_EXC_SW_ENABLE) {
|
|
#ifdef CONFIG_SPE
|
|
if (cpu_has_feature(CPU_FTR_SPE)) {
|
|
/*
|
|
* When the sticky exception bits are set
|
|
* directly by userspace, it must call prctl
|
|
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
|
|
* in the existing prctl settings) or
|
|
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
|
|
* the bits being set). <fenv.h> functions
|
|
* saving and restoring the whole
|
|
* floating-point environment need to do so
|
|
* anyway to restore the prctl settings from
|
|
* the saved environment.
|
|
*/
|
|
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
|
|
tsk->thread.fpexc_mode = val &
|
|
(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
|
|
return 0;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
#else
|
|
return -EINVAL;
|
|
#endif
|
|
}
|
|
|
|
/* on a CONFIG_SPE this does not hurt us. The bits that
|
|
* __pack_fe01 use do not overlap with bits used for
|
|
* PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
|
|
* on CONFIG_SPE implementations are reserved so writing to
|
|
* them does not change anything */
|
|
if (val > PR_FP_EXC_PRECISE)
|
|
return -EINVAL;
|
|
tsk->thread.fpexc_mode = __pack_fe01(val);
|
|
if (regs != NULL && (regs->msr & MSR_FP) != 0)
|
|
regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
|
|
| tsk->thread.fpexc_mode;
|
|
return 0;
|
|
}
|
|
|
|
int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
|
|
#ifdef CONFIG_SPE
|
|
if (cpu_has_feature(CPU_FTR_SPE)) {
|
|
/*
|
|
* When the sticky exception bits are set
|
|
* directly by userspace, it must call prctl
|
|
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
|
|
* in the existing prctl settings) or
|
|
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
|
|
* the bits being set). <fenv.h> functions
|
|
* saving and restoring the whole
|
|
* floating-point environment need to do so
|
|
* anyway to restore the prctl settings from
|
|
* the saved environment.
|
|
*/
|
|
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
|
|
val = tsk->thread.fpexc_mode;
|
|
} else
|
|
return -EINVAL;
|
|
#else
|
|
return -EINVAL;
|
|
#endif
|
|
else
|
|
val = __unpack_fe01(tsk->thread.fpexc_mode);
|
|
return put_user(val, (unsigned int __user *) adr);
|
|
}
|
|
|
|
int set_endian(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
|
|
if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
|
|
(val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
|
|
return -EINVAL;
|
|
|
|
if (regs == NULL)
|
|
return -EINVAL;
|
|
|
|
if (val == PR_ENDIAN_BIG)
|
|
regs->msr &= ~MSR_LE;
|
|
else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
|
|
regs->msr |= MSR_LE;
|
|
else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int get_endian(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
unsigned int val;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
|
|
!cpu_has_feature(CPU_FTR_REAL_LE))
|
|
return -EINVAL;
|
|
|
|
if (regs == NULL)
|
|
return -EINVAL;
|
|
|
|
if (regs->msr & MSR_LE) {
|
|
if (cpu_has_feature(CPU_FTR_REAL_LE))
|
|
val = PR_ENDIAN_LITTLE;
|
|
else
|
|
val = PR_ENDIAN_PPC_LITTLE;
|
|
} else
|
|
val = PR_ENDIAN_BIG;
|
|
|
|
return put_user(val, (unsigned int __user *)adr);
|
|
}
|
|
|
|
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
tsk->thread.align_ctl = val;
|
|
return 0;
|
|
}
|
|
|
|
int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
|
|
}
|
|
|
|
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
unsigned long stack_page;
|
|
unsigned long cpu = task_cpu(p);
|
|
|
|
stack_page = (unsigned long)hardirq_ctx[cpu];
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
stack_page = (unsigned long)softirq_ctx[cpu];
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int validate_sp(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
unsigned long stack_page = (unsigned long)task_stack_page(p);
|
|
|
|
if (sp < THREAD_SIZE)
|
|
return 0;
|
|
|
|
if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
return valid_irq_stack(sp, p, nbytes);
|
|
}
|
|
|
|
EXPORT_SYMBOL(validate_sp);
|
|
|
|
static unsigned long __get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long ip, sp;
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
sp = p->thread.ksp;
|
|
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
|
|
return 0;
|
|
|
|
do {
|
|
sp = *(unsigned long *)sp;
|
|
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
|
|
p->state == TASK_RUNNING)
|
|
return 0;
|
|
if (count > 0) {
|
|
ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
|
|
if (!in_sched_functions(ip))
|
|
return ip;
|
|
}
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long ret;
|
|
|
|
if (!try_get_task_stack(p))
|
|
return 0;
|
|
|
|
ret = __get_wchan(p);
|
|
|
|
put_task_stack(p);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
|
|
|
|
void show_stack(struct task_struct *tsk, unsigned long *stack)
|
|
{
|
|
unsigned long sp, ip, lr, newsp;
|
|
int count = 0;
|
|
int firstframe = 1;
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
unsigned long ret_addr;
|
|
int ftrace_idx = 0;
|
|
#endif
|
|
|
|
if (tsk == NULL)
|
|
tsk = current;
|
|
|
|
if (!try_get_task_stack(tsk))
|
|
return;
|
|
|
|
sp = (unsigned long) stack;
|
|
if (sp == 0) {
|
|
if (tsk == current)
|
|
sp = current_stack_frame();
|
|
else
|
|
sp = tsk->thread.ksp;
|
|
}
|
|
|
|
lr = 0;
|
|
printk("Call Trace:\n");
|
|
do {
|
|
if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
|
|
break;
|
|
|
|
stack = (unsigned long *) sp;
|
|
newsp = stack[0];
|
|
ip = stack[STACK_FRAME_LR_SAVE];
|
|
if (!firstframe || ip != lr) {
|
|
printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
ret_addr = ftrace_graph_ret_addr(current,
|
|
&ftrace_idx, ip, stack);
|
|
if (ret_addr != ip)
|
|
pr_cont(" (%pS)", (void *)ret_addr);
|
|
#endif
|
|
if (firstframe)
|
|
pr_cont(" (unreliable)");
|
|
pr_cont("\n");
|
|
}
|
|
firstframe = 0;
|
|
|
|
/*
|
|
* See if this is an exception frame.
|
|
* We look for the "regshere" marker in the current frame.
|
|
*/
|
|
if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
|
|
&& stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
|
|
struct pt_regs *regs = (struct pt_regs *)
|
|
(sp + STACK_FRAME_OVERHEAD);
|
|
lr = regs->link;
|
|
printk("--- interrupt: %lx at %pS\n LR = %pS\n",
|
|
regs->trap, (void *)regs->nip, (void *)lr);
|
|
firstframe = 1;
|
|
}
|
|
|
|
sp = newsp;
|
|
} while (count++ < kstack_depth_to_print);
|
|
|
|
put_task_stack(tsk);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Called with hard IRQs off */
|
|
void notrace __ppc64_runlatch_on(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
|
|
/*
|
|
* Least significant bit (RUN) is the only writable bit of
|
|
* the CTRL register, so we can avoid mfspr. 2.06 is not the
|
|
* earliest ISA where this is the case, but it's convenient.
|
|
*/
|
|
mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
|
|
} else {
|
|
unsigned long ctrl;
|
|
|
|
/*
|
|
* Some architectures (e.g., Cell) have writable fields other
|
|
* than RUN, so do the read-modify-write.
|
|
*/
|
|
ctrl = mfspr(SPRN_CTRLF);
|
|
ctrl |= CTRL_RUNLATCH;
|
|
mtspr(SPRN_CTRLT, ctrl);
|
|
}
|
|
|
|
ti->local_flags |= _TLF_RUNLATCH;
|
|
}
|
|
|
|
/* Called with hard IRQs off */
|
|
void notrace __ppc64_runlatch_off(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
|
|
ti->local_flags &= ~_TLF_RUNLATCH;
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
|
|
mtspr(SPRN_CTRLT, 0);
|
|
} else {
|
|
unsigned long ctrl;
|
|
|
|
ctrl = mfspr(SPRN_CTRLF);
|
|
ctrl &= ~CTRL_RUNLATCH;
|
|
mtspr(SPRN_CTRLT, ctrl);
|
|
}
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= get_random_int() & ~PAGE_MASK;
|
|
return sp & ~0xf;
|
|
}
|
|
|
|
static inline unsigned long brk_rnd(void)
|
|
{
|
|
unsigned long rnd = 0;
|
|
|
|
/* 8MB for 32bit, 1GB for 64bit */
|
|
if (is_32bit_task())
|
|
rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
|
|
else
|
|
rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
|
|
|
|
return rnd << PAGE_SHIFT;
|
|
}
|
|
|
|
unsigned long arch_randomize_brk(struct mm_struct *mm)
|
|
{
|
|
unsigned long base = mm->brk;
|
|
unsigned long ret;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* If we are using 1TB segments and we are allowed to randomise
|
|
* the heap, we can put it above 1TB so it is backed by a 1TB
|
|
* segment. Otherwise the heap will be in the bottom 1TB
|
|
* which always uses 256MB segments and this may result in a
|
|
* performance penalty. We don't need to worry about radix. For
|
|
* radix, mmu_highuser_ssize remains unchanged from 256MB.
|
|
*/
|
|
if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
|
|
base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
|
|
#endif
|
|
|
|
ret = PAGE_ALIGN(base + brk_rnd());
|
|
|
|
if (ret < mm->brk)
|
|
return mm->brk;
|
|
|
|
return ret;
|
|
}
|
|
|