linux_dsm_epyc7002/drivers/gpu/drm/i915/gt/intel_lrc.c
Chris Wilson 8e9f84cf5c drm/i915/gt: Propagate change in error status to children on unhold
As we release the head requests back into the queue, propagate any
change in error status that may have occurred while the requests were
temporarily suspended.

Closes: https://gitlab.freedesktop.org/drm/intel/issues/1277
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200304121849.2448028-2-chris@chris-wilson.co.uk
2020-03-04 14:29:50 +00:00

5403 lines
148 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
#include <linux/interrupt.h>
#include "i915_drv.h"
#include "i915_perf.h"
#include "i915_trace.h"
#include "i915_vgpu.h"
#include "intel_context.h"
#include "intel_engine_pm.h"
#include "intel_gt.h"
#include "intel_gt_pm.h"
#include "intel_gt_requests.h"
#include "intel_lrc_reg.h"
#include "intel_mocs.h"
#include "intel_reset.h"
#include "intel_ring.h"
#include "intel_workarounds.h"
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
#define GEN8_CTX_STATUS_COMPLETED_MASK \
(GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)
#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
#define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
#define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
#define GEN12_IDLE_CTX_ID 0x7FF
#define GEN12_CSB_CTX_VALID(csb_dw) \
(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
struct virtual_engine {
struct intel_engine_cs base;
struct intel_context context;
/*
* We allow only a single request through the virtual engine at a time
* (each request in the timeline waits for the completion fence of
* the previous before being submitted). By restricting ourselves to
* only submitting a single request, each request is placed on to a
* physical to maximise load spreading (by virtue of the late greedy
* scheduling -- each real engine takes the next available request
* upon idling).
*/
struct i915_request *request;
/*
* We keep a rbtree of available virtual engines inside each physical
* engine, sorted by priority. Here we preallocate the nodes we need
* for the virtual engine, indexed by physical_engine->id.
*/
struct ve_node {
struct rb_node rb;
int prio;
} nodes[I915_NUM_ENGINES];
/*
* Keep track of bonded pairs -- restrictions upon on our selection
* of physical engines any particular request may be submitted to.
* If we receive a submit-fence from a master engine, we will only
* use one of sibling_mask physical engines.
*/
struct ve_bond {
const struct intel_engine_cs *master;
intel_engine_mask_t sibling_mask;
} *bonds;
unsigned int num_bonds;
/* And finally, which physical engines this virtual engine maps onto. */
unsigned int num_siblings;
struct intel_engine_cs *siblings[0];
};
static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
GEM_BUG_ON(!intel_engine_is_virtual(engine));
return container_of(engine, struct virtual_engine, base);
}
static int __execlists_context_alloc(struct intel_context *ce,
struct intel_engine_cs *engine);
static void execlists_init_reg_state(u32 *reg_state,
const struct intel_context *ce,
const struct intel_engine_cs *engine,
const struct intel_ring *ring,
bool close);
static void
__execlists_update_reg_state(const struct intel_context *ce,
const struct intel_engine_cs *engine,
u32 head);
static void mark_eio(struct i915_request *rq)
{
if (i915_request_completed(rq))
return;
GEM_BUG_ON(i915_request_signaled(rq));
i915_request_set_error_once(rq, -EIO);
i915_request_mark_complete(rq);
}
static struct i915_request *
active_request(const struct intel_timeline * const tl, struct i915_request *rq)
{
struct i915_request *active = rq;
rcu_read_lock();
list_for_each_entry_continue_reverse(rq, &tl->requests, link) {
if (i915_request_completed(rq))
break;
active = rq;
}
rcu_read_unlock();
return active;
}
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
return (i915_ggtt_offset(engine->status_page.vma) +
I915_GEM_HWS_PREEMPT_ADDR);
}
static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
/*
* We inspect HWS_PREEMPT with a semaphore inside
* engine->emit_fini_breadcrumb. If the dword is true,
* the ring is paused as the semaphore will busywait
* until the dword is false.
*/
engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
if (state)
wmb();
}
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority;
}
static int effective_prio(const struct i915_request *rq)
{
int prio = rq_prio(rq);
/*
* If this request is special and must not be interrupted at any
* cost, so be it. Note we are only checking the most recent request
* in the context and so may be masking an earlier vip request. It
* is hoped that under the conditions where nopreempt is used, this
* will not matter (i.e. all requests to that context will be
* nopreempt for as long as desired).
*/
if (i915_request_has_nopreempt(rq))
prio = I915_PRIORITY_UNPREEMPTABLE;
/*
* On unwinding the active request, we give it a priority bump
* if it has completed waiting on any semaphore. If we know that
* the request has already started, we can prevent an unwanted
* preempt-to-idle cycle by taking that into account now.
*/
if (__i915_request_has_started(rq))
prio |= I915_PRIORITY_NOSEMAPHORE;
/* Restrict mere WAIT boosts from triggering preemption */
BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
return prio | __NO_PREEMPTION;
}
static int queue_prio(const struct intel_engine_execlists *execlists)
{
struct i915_priolist *p;
struct rb_node *rb;
rb = rb_first_cached(&execlists->queue);
if (!rb)
return INT_MIN;
/*
* As the priolist[] are inverted, with the highest priority in [0],
* we have to flip the index value to become priority.
*/
p = to_priolist(rb);
return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}
static inline bool need_preempt(const struct intel_engine_cs *engine,
const struct i915_request *rq,
struct rb_node *rb)
{
int last_prio;
if (!intel_engine_has_semaphores(engine))
return false;
/*
* Check if the current priority hint merits a preemption attempt.
*
* We record the highest value priority we saw during rescheduling
* prior to this dequeue, therefore we know that if it is strictly
* less than the current tail of ESLP[0], we do not need to force
* a preempt-to-idle cycle.
*
* However, the priority hint is a mere hint that we may need to
* preempt. If that hint is stale or we may be trying to preempt
* ourselves, ignore the request.
*
* More naturally we would write
* prio >= max(0, last);
* except that we wish to prevent triggering preemption at the same
* priority level: the task that is running should remain running
* to preserve FIFO ordering of dependencies.
*/
last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
if (engine->execlists.queue_priority_hint <= last_prio)
return false;
/*
* Check against the first request in ELSP[1], it will, thanks to the
* power of PI, be the highest priority of that context.
*/
if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
rq_prio(list_next_entry(rq, sched.link)) > last_prio)
return true;
if (rb) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
bool preempt = false;
if (engine == ve->siblings[0]) { /* only preempt one sibling */
struct i915_request *next;
rcu_read_lock();
next = READ_ONCE(ve->request);
if (next)
preempt = rq_prio(next) > last_prio;
rcu_read_unlock();
}
if (preempt)
return preempt;
}
/*
* If the inflight context did not trigger the preemption, then maybe
* it was the set of queued requests? Pick the highest priority in
* the queue (the first active priolist) and see if it deserves to be
* running instead of ELSP[0].
*
* The highest priority request in the queue can not be either
* ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
* context, it's priority would not exceed ELSP[0] aka last_prio.
*/
return queue_prio(&engine->execlists) > last_prio;
}
__maybe_unused static inline bool
assert_priority_queue(const struct i915_request *prev,
const struct i915_request *next)
{
/*
* Without preemption, the prev may refer to the still active element
* which we refuse to let go.
*
* Even with preemption, there are times when we think it is better not
* to preempt and leave an ostensibly lower priority request in flight.
*/
if (i915_request_is_active(prev))
return true;
return rq_prio(prev) >= rq_prio(next);
}
/*
* The context descriptor encodes various attributes of a context,
* including its GTT address and some flags. Because it's fairly
* expensive to calculate, we'll just do it once and cache the result,
* which remains valid until the context is unpinned.
*
* This is what a descriptor looks like, from LSB to MSB::
*
* bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
* bits 32-52: ctx ID, a globally unique tag (highest bit used by GuC)
* bits 53-54: mbz, reserved for use by hardware
* bits 55-63: group ID, currently unused and set to 0
*
* Starting from Gen11, the upper dword of the descriptor has a new format:
*
* bits 32-36: reserved
* bits 37-47: SW context ID
* bits 48:53: engine instance
* bit 54: mbz, reserved for use by hardware
* bits 55-60: SW counter
* bits 61-63: engine class
*
* engine info, SW context ID and SW counter need to form a unique number
* (Context ID) per lrc.
*/
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
{
u64 desc;
desc = INTEL_LEGACY_32B_CONTEXT;
if (i915_vm_is_4lvl(ce->vm))
desc = INTEL_LEGACY_64B_CONTEXT;
desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;
desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
if (IS_GEN(engine->i915, 8))
desc |= GEN8_CTX_L3LLC_COHERENT;
desc |= i915_ggtt_offset(ce->state); /* bits 12-31 */
/*
* The following 32bits are copied into the OA reports (dword 2).
* Consider updating oa_get_render_ctx_id in i915_perf.c when changing
* anything below.
*/
if (INTEL_GEN(engine->i915) >= 11) {
desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
/* bits 48-53 */
desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
/* bits 61-63 */
}
return desc;
}
static inline unsigned int dword_in_page(void *addr)
{
return offset_in_page(addr) / sizeof(u32);
}
static void set_offsets(u32 *regs,
const u8 *data,
const struct intel_engine_cs *engine,
bool clear)
#define NOP(x) (BIT(7) | (x))
#define LRI(count, flags) ((flags) << 6 | (count) | BUILD_BUG_ON_ZERO(count >= BIT(6)))
#define POSTED BIT(0)
#define REG(x) (((x) >> 2) | BUILD_BUG_ON_ZERO(x >= 0x200))
#define REG16(x) \
(((x) >> 9) | BIT(7) | BUILD_BUG_ON_ZERO(x >= 0x10000)), \
(((x) >> 2) & 0x7f)
#define END(x) 0, (x)
{
const u32 base = engine->mmio_base;
while (*data) {
u8 count, flags;
if (*data & BIT(7)) { /* skip */
count = *data++ & ~BIT(7);
if (clear)
memset32(regs, MI_NOOP, count);
regs += count;
continue;
}
count = *data & 0x3f;
flags = *data >> 6;
data++;
*regs = MI_LOAD_REGISTER_IMM(count);
if (flags & POSTED)
*regs |= MI_LRI_FORCE_POSTED;
if (INTEL_GEN(engine->i915) >= 11)
*regs |= MI_LRI_CS_MMIO;
regs++;
GEM_BUG_ON(!count);
do {
u32 offset = 0;
u8 v;
do {
v = *data++;
offset <<= 7;
offset |= v & ~BIT(7);
} while (v & BIT(7));
regs[0] = base + (offset << 2);
if (clear)
regs[1] = 0;
regs += 2;
} while (--count);
}
if (clear) {
u8 count = *++data;
/* Clear past the tail for HW access */
GEM_BUG_ON(dword_in_page(regs) > count);
memset32(regs, MI_NOOP, count - dword_in_page(regs));
/* Close the batch; used mainly by live_lrc_layout() */
*regs = MI_BATCH_BUFFER_END;
if (INTEL_GEN(engine->i915) >= 10)
*regs |= BIT(0);
}
}
static const u8 gen8_xcs_offsets[] = {
NOP(1),
LRI(11, 0),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
NOP(9),
LRI(9, 0),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
NOP(13),
LRI(2, 0),
REG16(0x200),
REG(0x028),
END(80)
};
static const u8 gen9_xcs_offsets[] = {
NOP(1),
LRI(14, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
NOP(3),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
NOP(13),
LRI(1, POSTED),
REG16(0x200),
NOP(13),
LRI(44, POSTED),
REG(0x028),
REG(0x09c),
REG(0x0c0),
REG(0x178),
REG(0x17c),
REG16(0x358),
REG(0x170),
REG(0x150),
REG(0x154),
REG(0x158),
REG16(0x41c),
REG16(0x600),
REG16(0x604),
REG16(0x608),
REG16(0x60c),
REG16(0x610),
REG16(0x614),
REG16(0x618),
REG16(0x61c),
REG16(0x620),
REG16(0x624),
REG16(0x628),
REG16(0x62c),
REG16(0x630),
REG16(0x634),
REG16(0x638),
REG16(0x63c),
REG16(0x640),
REG16(0x644),
REG16(0x648),
REG16(0x64c),
REG16(0x650),
REG16(0x654),
REG16(0x658),
REG16(0x65c),
REG16(0x660),
REG16(0x664),
REG16(0x668),
REG16(0x66c),
REG16(0x670),
REG16(0x674),
REG16(0x678),
REG16(0x67c),
REG(0x068),
END(176)
};
static const u8 gen12_xcs_offsets[] = {
NOP(1),
LRI(13, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
REG(0x180),
REG16(0x2b4),
NOP(5),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
END(80)
};
static const u8 gen8_rcs_offsets[] = {
NOP(1),
LRI(14, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
NOP(3),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
NOP(13),
LRI(1, 0),
REG(0x0c8),
END(80)
};
static const u8 gen9_rcs_offsets[] = {
NOP(1),
LRI(14, POSTED),
REG16(0x244),
REG(0x34),
REG(0x30),
REG(0x38),
REG(0x3c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
NOP(3),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
NOP(13),
LRI(1, 0),
REG(0xc8),
NOP(13),
LRI(44, POSTED),
REG(0x28),
REG(0x9c),
REG(0xc0),
REG(0x178),
REG(0x17c),
REG16(0x358),
REG(0x170),
REG(0x150),
REG(0x154),
REG(0x158),
REG16(0x41c),
REG16(0x600),
REG16(0x604),
REG16(0x608),
REG16(0x60c),
REG16(0x610),
REG16(0x614),
REG16(0x618),
REG16(0x61c),
REG16(0x620),
REG16(0x624),
REG16(0x628),
REG16(0x62c),
REG16(0x630),
REG16(0x634),
REG16(0x638),
REG16(0x63c),
REG16(0x640),
REG16(0x644),
REG16(0x648),
REG16(0x64c),
REG16(0x650),
REG16(0x654),
REG16(0x658),
REG16(0x65c),
REG16(0x660),
REG16(0x664),
REG16(0x668),
REG16(0x66c),
REG16(0x670),
REG16(0x674),
REG16(0x678),
REG16(0x67c),
REG(0x68),
END(176)
};
static const u8 gen11_rcs_offsets[] = {
NOP(1),
LRI(15, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x11c),
REG(0x114),
REG(0x118),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
REG(0x180),
NOP(1),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
LRI(1, POSTED),
REG(0x1b0),
NOP(10),
LRI(1, 0),
REG(0x0c8),
END(80)
};
static const u8 gen12_rcs_offsets[] = {
NOP(1),
LRI(13, POSTED),
REG16(0x244),
REG(0x034),
REG(0x030),
REG(0x038),
REG(0x03c),
REG(0x168),
REG(0x140),
REG(0x110),
REG(0x1c0),
REG(0x1c4),
REG(0x1c8),
REG(0x180),
REG16(0x2b4),
NOP(5),
LRI(9, POSTED),
REG16(0x3a8),
REG16(0x28c),
REG16(0x288),
REG16(0x284),
REG16(0x280),
REG16(0x27c),
REG16(0x278),
REG16(0x274),
REG16(0x270),
LRI(3, POSTED),
REG(0x1b0),
REG16(0x5a8),
REG16(0x5ac),
NOP(6),
LRI(1, 0),
REG(0x0c8),
END(80)
};
#undef END
#undef REG16
#undef REG
#undef LRI
#undef NOP
static const u8 *reg_offsets(const struct intel_engine_cs *engine)
{
/*
* The gen12+ lists only have the registers we program in the basic
* default state. We rely on the context image using relative
* addressing to automatic fixup the register state between the
* physical engines for virtual engine.
*/
GEM_BUG_ON(INTEL_GEN(engine->i915) >= 12 &&
!intel_engine_has_relative_mmio(engine));
if (engine->class == RENDER_CLASS) {
if (INTEL_GEN(engine->i915) >= 12)
return gen12_rcs_offsets;
else if (INTEL_GEN(engine->i915) >= 11)
return gen11_rcs_offsets;
else if (INTEL_GEN(engine->i915) >= 9)
return gen9_rcs_offsets;
else
return gen8_rcs_offsets;
} else {
if (INTEL_GEN(engine->i915) >= 12)
return gen12_xcs_offsets;
else if (INTEL_GEN(engine->i915) >= 9)
return gen9_xcs_offsets;
else
return gen8_xcs_offsets;
}
}
static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs *engine)
{
struct i915_request *rq, *rn, *active = NULL;
struct list_head *uninitialized_var(pl);
int prio = I915_PRIORITY_INVALID;
lockdep_assert_held(&engine->active.lock);
list_for_each_entry_safe_reverse(rq, rn,
&engine->active.requests,
sched.link) {
if (i915_request_completed(rq))
continue; /* XXX */
__i915_request_unsubmit(rq);
/*
* Push the request back into the queue for later resubmission.
* If this request is not native to this physical engine (i.e.
* it came from a virtual source), push it back onto the virtual
* engine so that it can be moved across onto another physical
* engine as load dictates.
*/
if (likely(rq->execution_mask == engine->mask)) {
GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
if (rq_prio(rq) != prio) {
prio = rq_prio(rq);
pl = i915_sched_lookup_priolist(engine, prio);
}
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
list_move(&rq->sched.link, pl);
set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
active = rq;
} else {
struct intel_engine_cs *owner = rq->context->engine;
/*
* Decouple the virtual breadcrumb before moving it
* back to the virtual engine -- we don't want the
* request to complete in the background and try
* and cancel the breadcrumb on the virtual engine
* (instead of the old engine where it is linked)!
*/
if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&rq->fence.flags)) {
spin_lock_nested(&rq->lock,
SINGLE_DEPTH_NESTING);
i915_request_cancel_breadcrumb(rq);
spin_unlock(&rq->lock);
}
rq->engine = owner;
owner->submit_request(rq);
active = NULL;
}
}
return active;
}
struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
struct intel_engine_cs *engine =
container_of(execlists, typeof(*engine), execlists);
return __unwind_incomplete_requests(engine);
}
static inline void
execlists_context_status_change(struct i915_request *rq, unsigned long status)
{
/*
* Only used when GVT-g is enabled now. When GVT-g is disabled,
* The compiler should eliminate this function as dead-code.
*/
if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
return;
atomic_notifier_call_chain(&rq->engine->context_status_notifier,
status, rq);
}
static void intel_engine_context_in(struct intel_engine_cs *engine)
{
unsigned long flags;
if (READ_ONCE(engine->stats.enabled) == 0)
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
if (engine->stats.enabled > 0) {
if (engine->stats.active++ == 0)
engine->stats.start = ktime_get();
GEM_BUG_ON(engine->stats.active == 0);
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
static void intel_engine_context_out(struct intel_engine_cs *engine)
{
unsigned long flags;
if (READ_ONCE(engine->stats.enabled) == 0)
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
if (engine->stats.enabled > 0) {
ktime_t last;
if (engine->stats.active && --engine->stats.active == 0) {
/*
* Decrement the active context count and in case GPU
* is now idle add up to the running total.
*/
last = ktime_sub(ktime_get(), engine->stats.start);
engine->stats.total = ktime_add(engine->stats.total,
last);
} else if (engine->stats.active == 0) {
/*
* After turning on engine stats, context out might be
* the first event in which case we account from the
* time stats gathering was turned on.
*/
last = ktime_sub(ktime_get(), engine->stats.enabled_at);
engine->stats.total = ktime_add(engine->stats.total,
last);
}
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
static int lrc_ring_mi_mode(const struct intel_engine_cs *engine)
{
if (INTEL_GEN(engine->i915) >= 12)
return 0x60;
else if (INTEL_GEN(engine->i915) >= 9)
return 0x54;
else if (engine->class == RENDER_CLASS)
return 0x58;
else
return -1;
}
static void
execlists_check_context(const struct intel_context *ce,
const struct intel_engine_cs *engine)
{
const struct intel_ring *ring = ce->ring;
u32 *regs = ce->lrc_reg_state;
bool valid = true;
int x;
if (regs[CTX_RING_START] != i915_ggtt_offset(ring->vma)) {
pr_err("%s: context submitted with incorrect RING_START [%08x], expected %08x\n",
engine->name,
regs[CTX_RING_START],
i915_ggtt_offset(ring->vma));
regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
valid = false;
}
if ((regs[CTX_RING_CTL] & ~(RING_WAIT | RING_WAIT_SEMAPHORE)) !=
(RING_CTL_SIZE(ring->size) | RING_VALID)) {
pr_err("%s: context submitted with incorrect RING_CTL [%08x], expected %08x\n",
engine->name,
regs[CTX_RING_CTL],
(u32)(RING_CTL_SIZE(ring->size) | RING_VALID));
regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
valid = false;
}
x = lrc_ring_mi_mode(engine);
if (x != -1 && regs[x + 1] & (regs[x + 1] >> 16) & STOP_RING) {
pr_err("%s: context submitted with STOP_RING [%08x] in RING_MI_MODE\n",
engine->name, regs[x + 1]);
regs[x + 1] &= ~STOP_RING;
regs[x + 1] |= STOP_RING << 16;
valid = false;
}
WARN_ONCE(!valid, "Invalid lrc state found before submission\n");
}
static void restore_default_state(struct intel_context *ce,
struct intel_engine_cs *engine)
{
u32 *regs = ce->lrc_reg_state;
if (engine->pinned_default_state)
memcpy(regs, /* skip restoring the vanilla PPHWSP */
engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
engine->context_size - PAGE_SIZE);
execlists_init_reg_state(regs, ce, engine, ce->ring, false);
}
static void reset_active(struct i915_request *rq,
struct intel_engine_cs *engine)
{
struct intel_context * const ce = rq->context;
u32 head;
/*
* The executing context has been cancelled. We want to prevent
* further execution along this context and propagate the error on
* to anything depending on its results.
*
* In __i915_request_submit(), we apply the -EIO and remove the
* requests' payloads for any banned requests. But first, we must
* rewind the context back to the start of the incomplete request so
* that we do not jump back into the middle of the batch.
*
* We preserve the breadcrumbs and semaphores of the incomplete
* requests so that inter-timeline dependencies (i.e other timelines)
* remain correctly ordered. And we defer to __i915_request_submit()
* so that all asynchronous waits are correctly handled.
*/
ENGINE_TRACE(engine, "{ rq=%llx:%lld }\n",
rq->fence.context, rq->fence.seqno);
/* On resubmission of the active request, payload will be scrubbed */
if (i915_request_completed(rq))
head = rq->tail;
else
head = active_request(ce->timeline, rq)->head;
head = intel_ring_wrap(ce->ring, head);
/* Scrub the context image to prevent replaying the previous batch */
restore_default_state(ce, engine);
__execlists_update_reg_state(ce, engine, head);
/* We've switched away, so this should be a no-op, but intent matters */
ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
}
static u32 intel_context_get_runtime(const struct intel_context *ce)
{
/*
* We can use either ppHWSP[16] which is recorded before the context
* switch (and so excludes the cost of context switches) or use the
* value from the context image itself, which is saved/restored earlier
* and so includes the cost of the save.
*/
return READ_ONCE(ce->lrc_reg_state[CTX_TIMESTAMP]);
}
static void st_update_runtime_underflow(struct intel_context *ce, s32 dt)
{
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
ce->runtime.num_underflow += dt < 0;
ce->runtime.max_underflow = max_t(u32, ce->runtime.max_underflow, -dt);
#endif
}
static void intel_context_update_runtime(struct intel_context *ce)
{
u32 old;
s32 dt;
if (intel_context_is_barrier(ce))
return;
old = ce->runtime.last;
ce->runtime.last = intel_context_get_runtime(ce);
dt = ce->runtime.last - old;
if (unlikely(dt <= 0)) {
CE_TRACE(ce, "runtime underflow: last=%u, new=%u, delta=%d\n",
old, ce->runtime.last, dt);
st_update_runtime_underflow(ce, dt);
return;
}
ewma_runtime_add(&ce->runtime.avg, dt);
ce->runtime.total += dt;
}
static inline struct intel_engine_cs *
__execlists_schedule_in(struct i915_request *rq)
{
struct intel_engine_cs * const engine = rq->engine;
struct intel_context * const ce = rq->context;
intel_context_get(ce);
if (unlikely(intel_context_is_banned(ce)))
reset_active(rq, engine);
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
execlists_check_context(ce, engine);
ce->lrc_desc &= ~GENMASK_ULL(47, 37);
if (ce->tag) {
/* Use a fixed tag for OA and friends */
ce->lrc_desc |= (u64)ce->tag << 32;
} else {
/* We don't need a strict matching tag, just different values */
ce->lrc_desc |=
(u64)(++engine->context_tag % NUM_CONTEXT_TAG) <<
GEN11_SW_CTX_ID_SHIFT;
BUILD_BUG_ON(NUM_CONTEXT_TAG > GEN12_MAX_CONTEXT_HW_ID);
}
__intel_gt_pm_get(engine->gt);
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
intel_engine_context_in(engine);
return engine;
}
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
{
struct intel_context * const ce = rq->context;
struct intel_engine_cs *old;
GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
trace_i915_request_in(rq, idx);
old = READ_ONCE(ce->inflight);
do {
if (!old) {
WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
break;
}
} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
return i915_request_get(rq);
}
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
struct i915_request *next = READ_ONCE(ve->request);
if (next && next->execution_mask & ~rq->execution_mask)
tasklet_schedule(&ve->base.execlists.tasklet);
}
static inline void
__execlists_schedule_out(struct i915_request *rq,
struct intel_engine_cs * const engine)
{
struct intel_context * const ce = rq->context;
/*
* NB process_csb() is not under the engine->active.lock and hence
* schedule_out can race with schedule_in meaning that we should
* refrain from doing non-trivial work here.
*/
/*
* If we have just completed this context, the engine may now be
* idle and we want to re-enter powersaving.
*/
if (list_is_last(&rq->link, &ce->timeline->requests) &&
i915_request_completed(rq))
intel_engine_add_retire(engine, ce->timeline);
intel_context_update_runtime(ce);
intel_engine_context_out(engine);
execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
intel_gt_pm_put_async(engine->gt);
/*
* If this is part of a virtual engine, its next request may
* have been blocked waiting for access to the active context.
* We have to kick all the siblings again in case we need to
* switch (e.g. the next request is not runnable on this
* engine). Hopefully, we will already have submitted the next
* request before the tasklet runs and do not need to rebuild
* each virtual tree and kick everyone again.
*/
if (ce->engine != engine)
kick_siblings(rq, ce);
intel_context_put(ce);
}
static inline void
execlists_schedule_out(struct i915_request *rq)
{
struct intel_context * const ce = rq->context;
struct intel_engine_cs *cur, *old;
trace_i915_request_out(rq);
old = READ_ONCE(ce->inflight);
do
cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
while (!try_cmpxchg(&ce->inflight, &old, cur));
if (!cur)
__execlists_schedule_out(rq, old);
i915_request_put(rq);
}
static u64 execlists_update_context(struct i915_request *rq)
{
struct intel_context *ce = rq->context;
u64 desc = ce->lrc_desc;
u32 tail, prev;
/*
* WaIdleLiteRestore:bdw,skl
*
* We should never submit the context with the same RING_TAIL twice
* just in case we submit an empty ring, which confuses the HW.
*
* We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
* the normal request to be able to always advance the RING_TAIL on
* subsequent resubmissions (for lite restore). Should that fail us,
* and we try and submit the same tail again, force the context
* reload.
*
* If we need to return to a preempted context, we need to skip the
* lite-restore and force it to reload the RING_TAIL. Otherwise, the
* HW has a tendency to ignore us rewinding the TAIL to the end of
* an earlier request.
*/
tail = intel_ring_set_tail(rq->ring, rq->tail);
prev = ce->lrc_reg_state[CTX_RING_TAIL];
if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
desc |= CTX_DESC_FORCE_RESTORE;
ce->lrc_reg_state[CTX_RING_TAIL] = tail;
rq->tail = rq->wa_tail;
/*
* Make sure the context image is complete before we submit it to HW.
*
* Ostensibly, writes (including the WCB) should be flushed prior to
* an uncached write such as our mmio register access, the empirical
* evidence (esp. on Braswell) suggests that the WC write into memory
* may not be visible to the HW prior to the completion of the UC
* register write and that we may begin execution from the context
* before its image is complete leading to invalid PD chasing.
*/
wmb();
ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;
return desc;
}
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
{
if (execlists->ctrl_reg) {
writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
} else {
writel(upper_32_bits(desc), execlists->submit_reg);
writel(lower_32_bits(desc), execlists->submit_reg);
}
}
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
const char *msg,
struct i915_request * const *ports)
{
const struct intel_engine_cs *engine =
container_of(execlists, typeof(*engine), execlists);
if (!ports[0])
return;
ENGINE_TRACE(engine, "%s { %llx:%lld%s, %llx:%lld }\n", msg,
ports[0]->fence.context,
ports[0]->fence.seqno,
i915_request_completed(ports[0]) ? "!" :
i915_request_started(ports[0]) ? "*" :
"",
ports[1] ? ports[1]->fence.context : 0,
ports[1] ? ports[1]->fence.seqno : 0);
}
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}
static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
const char *msg)
{
struct i915_request * const *port, *rq;
struct intel_context *ce = NULL;
bool sentinel = false;
trace_ports(execlists, msg, execlists->pending);
/* We may be messing around with the lists during reset, lalala */
if (reset_in_progress(execlists))
return true;
if (!execlists->pending[0]) {
GEM_TRACE_ERR("Nothing pending for promotion!\n");
return false;
}
if (execlists->pending[execlists_num_ports(execlists)]) {
GEM_TRACE_ERR("Excess pending[%d] for promotion!\n",
execlists_num_ports(execlists));
return false;
}
for (port = execlists->pending; (rq = *port); port++) {
unsigned long flags;
bool ok = true;
GEM_BUG_ON(!kref_read(&rq->fence.refcount));
GEM_BUG_ON(!i915_request_is_active(rq));
if (ce == rq->context) {
GEM_TRACE_ERR("Dup context:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
return false;
}
ce = rq->context;
/*
* Sentinels are supposed to be lonely so they flush the
* current exection off the HW. Check that they are the
* only request in the pending submission.
*/
if (sentinel) {
GEM_TRACE_ERR("context:%llx after sentinel in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
return false;
}
sentinel = i915_request_has_sentinel(rq);
if (sentinel && port != execlists->pending) {
GEM_TRACE_ERR("sentinel context:%llx not in prime position[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
return false;
}
/* Hold tightly onto the lock to prevent concurrent retires! */
if (!spin_trylock_irqsave(&rq->lock, flags))
continue;
if (i915_request_completed(rq))
goto unlock;
if (i915_active_is_idle(&ce->active) &&
!intel_context_is_barrier(ce)) {
GEM_TRACE_ERR("Inactive context:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
ok = false;
goto unlock;
}
if (!i915_vma_is_pinned(ce->state)) {
GEM_TRACE_ERR("Unpinned context:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
ok = false;
goto unlock;
}
if (!i915_vma_is_pinned(ce->ring->vma)) {
GEM_TRACE_ERR("Unpinned ring:%llx in pending[%zd]\n",
ce->timeline->fence_context,
port - execlists->pending);
ok = false;
goto unlock;
}
unlock:
spin_unlock_irqrestore(&rq->lock, flags);
if (!ok)
return false;
}
return ce;
}
static void execlists_submit_ports(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
unsigned int n;
GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
/*
* We can skip acquiring intel_runtime_pm_get() here as it was taken
* on our behalf by the request (see i915_gem_mark_busy()) and it will
* not be relinquished until the device is idle (see
* i915_gem_idle_work_handler()). As a precaution, we make sure
* that all ELSP are drained i.e. we have processed the CSB,
* before allowing ourselves to idle and calling intel_runtime_pm_put().
*/
GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
/*
* ELSQ note: the submit queue is not cleared after being submitted
* to the HW so we need to make sure we always clean it up. This is
* currently ensured by the fact that we always write the same number
* of elsq entries, keep this in mind before changing the loop below.
*/
for (n = execlists_num_ports(execlists); n--; ) {
struct i915_request *rq = execlists->pending[n];
write_desc(execlists,
rq ? execlists_update_context(rq) : 0,
n);
}
/* we need to manually load the submit queue */
if (execlists->ctrl_reg)
writel(EL_CTRL_LOAD, execlists->ctrl_reg);
}
static bool ctx_single_port_submission(const struct intel_context *ce)
{
return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
intel_context_force_single_submission(ce));
}
static bool can_merge_ctx(const struct intel_context *prev,
const struct intel_context *next)
{
if (prev != next)
return false;
if (ctx_single_port_submission(prev))
return false;
return true;
}
static bool can_merge_rq(const struct i915_request *prev,
const struct i915_request *next)
{
GEM_BUG_ON(prev == next);
GEM_BUG_ON(!assert_priority_queue(prev, next));
/*
* We do not submit known completed requests. Therefore if the next
* request is already completed, we can pretend to merge it in
* with the previous context (and we will skip updating the ELSP
* and tracking). Thus hopefully keeping the ELSP full with active
* contexts, despite the best efforts of preempt-to-busy to confuse
* us.
*/
if (i915_request_completed(next))
return true;
if (unlikely((prev->fence.flags ^ next->fence.flags) &
(BIT(I915_FENCE_FLAG_NOPREEMPT) |
BIT(I915_FENCE_FLAG_SENTINEL))))
return false;
if (!can_merge_ctx(prev->context, next->context))
return false;
return true;
}
static void virtual_update_register_offsets(u32 *regs,
struct intel_engine_cs *engine)
{
set_offsets(regs, reg_offsets(engine), engine, false);
}
static bool virtual_matches(const struct virtual_engine *ve,
const struct i915_request *rq,
const struct intel_engine_cs *engine)
{
const struct intel_engine_cs *inflight;
if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
return false;
/*
* We track when the HW has completed saving the context image
* (i.e. when we have seen the final CS event switching out of
* the context) and must not overwrite the context image before
* then. This restricts us to only using the active engine
* while the previous virtualized request is inflight (so
* we reuse the register offsets). This is a very small
* hystersis on the greedy seelction algorithm.
*/
inflight = intel_context_inflight(&ve->context);
if (inflight && inflight != engine)
return false;
return true;
}
static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
struct intel_engine_cs *engine)
{
struct intel_engine_cs *old = ve->siblings[0];
/* All unattached (rq->engine == old) must already be completed */
spin_lock(&old->breadcrumbs.irq_lock);
if (!list_empty(&ve->context.signal_link)) {
list_move_tail(&ve->context.signal_link,
&engine->breadcrumbs.signalers);
intel_engine_signal_breadcrumbs(engine);
}
spin_unlock(&old->breadcrumbs.irq_lock);
}
static struct i915_request *
last_active(const struct intel_engine_execlists *execlists)
{
struct i915_request * const *last = READ_ONCE(execlists->active);
while (*last && i915_request_completed(*last))
last++;
return *last;
}
#define for_each_waiter(p__, rq__) \
list_for_each_entry_lockless(p__, \
&(rq__)->sched.waiters_list, \
wait_link)
#define for_each_signaler(p__, rq__) \
list_for_each_entry_rcu(p__, \
&(rq__)->sched.signalers_list, \
signal_link)
static void defer_request(struct i915_request *rq, struct list_head * const pl)
{
LIST_HEAD(list);
/*
* We want to move the interrupted request to the back of
* the round-robin list (i.e. its priority level), but
* in doing so, we must then move all requests that were in
* flight and were waiting for the interrupted request to
* be run after it again.
*/
do {
struct i915_dependency *p;
GEM_BUG_ON(i915_request_is_active(rq));
list_move_tail(&rq->sched.link, pl);
for_each_waiter(p, rq) {
struct i915_request *w =
container_of(p->waiter, typeof(*w), sched);
/* Leave semaphores spinning on the other engines */
if (w->engine != rq->engine)
continue;
/* No waiter should start before its signaler */
GEM_BUG_ON(i915_request_started(w) &&
!i915_request_completed(rq));
GEM_BUG_ON(i915_request_is_active(w));
if (!i915_request_is_ready(w))
continue;
if (rq_prio(w) < rq_prio(rq))
continue;
GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
list_move_tail(&w->sched.link, &list);
}
rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
} while (rq);
}
static void defer_active(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = __unwind_incomplete_requests(engine);
if (!rq)
return;
defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}
static bool
need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
{
int hint;
if (!intel_engine_has_timeslices(engine))
return false;
if (list_is_last(&rq->sched.link, &engine->active.requests))
return false;
hint = max(rq_prio(list_next_entry(rq, sched.link)),
engine->execlists.queue_priority_hint);
return hint >= effective_prio(rq);
}
static int
switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
{
if (list_is_last(&rq->sched.link, &engine->active.requests))
return INT_MIN;
return rq_prio(list_next_entry(rq, sched.link));
}
static inline unsigned long
timeslice(const struct intel_engine_cs *engine)
{
return READ_ONCE(engine->props.timeslice_duration_ms);
}
static unsigned long
active_timeslice(const struct intel_engine_cs *engine)
{
const struct i915_request *rq = *engine->execlists.active;
if (!rq || i915_request_completed(rq))
return 0;
if (engine->execlists.switch_priority_hint < effective_prio(rq))
return 0;
return timeslice(engine);
}
static void set_timeslice(struct intel_engine_cs *engine)
{
if (!intel_engine_has_timeslices(engine))
return;
set_timer_ms(&engine->execlists.timer, active_timeslice(engine));
}
static void record_preemption(struct intel_engine_execlists *execlists)
{
(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}
static unsigned long active_preempt_timeout(struct intel_engine_cs *engine)
{
struct i915_request *rq;
rq = last_active(&engine->execlists);
if (!rq)
return 0;
/* Force a fast reset for terminated contexts (ignoring sysfs!) */
if (unlikely(intel_context_is_banned(rq->context)))
return 1;
return READ_ONCE(engine->props.preempt_timeout_ms);
}
static void set_preempt_timeout(struct intel_engine_cs *engine)
{
if (!intel_engine_has_preempt_reset(engine))
return;
set_timer_ms(&engine->execlists.preempt,
active_preempt_timeout(engine));
}
static inline void clear_ports(struct i915_request **ports, int count)
{
memset_p((void **)ports, NULL, count);
}
static void execlists_dequeue(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request **port = execlists->pending;
struct i915_request ** const last_port = port + execlists->port_mask;
struct i915_request *last;
struct rb_node *rb;
bool submit = false;
/*
* Hardware submission is through 2 ports. Conceptually each port
* has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
* static for a context, and unique to each, so we only execute
* requests belonging to a single context from each ring. RING_HEAD
* is maintained by the CS in the context image, it marks the place
* where it got up to last time, and through RING_TAIL we tell the CS
* where we want to execute up to this time.
*
* In this list the requests are in order of execution. Consecutive
* requests from the same context are adjacent in the ringbuffer. We
* can combine these requests into a single RING_TAIL update:
*
* RING_HEAD...req1...req2
* ^- RING_TAIL
* since to execute req2 the CS must first execute req1.
*
* Our goal then is to point each port to the end of a consecutive
* sequence of requests as being the most optimal (fewest wake ups
* and context switches) submission.
*/
for (rb = rb_first_cached(&execlists->virtual); rb; ) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
struct i915_request *rq = READ_ONCE(ve->request);
if (!rq) { /* lazily cleanup after another engine handled rq */
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
rb = rb_first_cached(&execlists->virtual);
continue;
}
if (!virtual_matches(ve, rq, engine)) {
rb = rb_next(rb);
continue;
}
break;
}
/*
* If the queue is higher priority than the last
* request in the currently active context, submit afresh.
* We will resubmit again afterwards in case we need to split
* the active context to interject the preemption request,
* i.e. we will retrigger preemption following the ack in case
* of trouble.
*/
last = last_active(execlists);
if (last) {
if (need_preempt(engine, last, rb)) {
ENGINE_TRACE(engine,
"preempting last=%llx:%lld, prio=%d, hint=%d\n",
last->fence.context,
last->fence.seqno,
last->sched.attr.priority,
execlists->queue_priority_hint);
record_preemption(execlists);
/*
* Don't let the RING_HEAD advance past the breadcrumb
* as we unwind (and until we resubmit) so that we do
* not accidentally tell it to go backwards.
*/
ring_set_paused(engine, 1);
/*
* Note that we have not stopped the GPU at this point,
* so we are unwinding the incomplete requests as they
* remain inflight and so by the time we do complete
* the preemption, some of the unwound requests may
* complete!
*/
__unwind_incomplete_requests(engine);
last = NULL;
} else if (need_timeslice(engine, last) &&
timer_expired(&engine->execlists.timer)) {
ENGINE_TRACE(engine,
"expired last=%llx:%lld, prio=%d, hint=%d\n",
last->fence.context,
last->fence.seqno,
last->sched.attr.priority,
execlists->queue_priority_hint);
ring_set_paused(engine, 1);
defer_active(engine);
/*
* Unlike for preemption, if we rewind and continue
* executing the same context as previously active,
* the order of execution will remain the same and
* the tail will only advance. We do not need to
* force a full context restore, as a lite-restore
* is sufficient to resample the monotonic TAIL.
*
* If we switch to any other context, similarly we
* will not rewind TAIL of current context, and
* normal save/restore will preserve state and allow
* us to later continue executing the same request.
*/
last = NULL;
} else {
/*
* Otherwise if we already have a request pending
* for execution after the current one, we can
* just wait until the next CS event before
* queuing more. In either case we will force a
* lite-restore preemption event, but if we wait
* we hopefully coalesce several updates into a single
* submission.
*/
if (!list_is_last(&last->sched.link,
&engine->active.requests)) {
/*
* Even if ELSP[1] is occupied and not worthy
* of timeslices, our queue might be.
*/
if (!execlists->timer.expires &&
need_timeslice(engine, last))
set_timer_ms(&execlists->timer,
timeslice(engine));
return;
}
}
}
while (rb) { /* XXX virtual is always taking precedence */
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
struct i915_request *rq;
spin_lock(&ve->base.active.lock);
rq = ve->request;
if (unlikely(!rq)) { /* lost the race to a sibling */
spin_unlock(&ve->base.active.lock);
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
rb = rb_first_cached(&execlists->virtual);
continue;
}
GEM_BUG_ON(rq != ve->request);
GEM_BUG_ON(rq->engine != &ve->base);
GEM_BUG_ON(rq->context != &ve->context);
if (rq_prio(rq) >= queue_prio(execlists)) {
if (!virtual_matches(ve, rq, engine)) {
spin_unlock(&ve->base.active.lock);
rb = rb_next(rb);
continue;
}
if (last && !can_merge_rq(last, rq)) {
spin_unlock(&ve->base.active.lock);
return; /* leave this for another */
}
ENGINE_TRACE(engine,
"virtual rq=%llx:%lld%s, new engine? %s\n",
rq->fence.context,
rq->fence.seqno,
i915_request_completed(rq) ? "!" :
i915_request_started(rq) ? "*" :
"",
yesno(engine != ve->siblings[0]));
ve->request = NULL;
ve->base.execlists.queue_priority_hint = INT_MIN;
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
GEM_BUG_ON(!(rq->execution_mask & engine->mask));
rq->engine = engine;
if (engine != ve->siblings[0]) {
u32 *regs = ve->context.lrc_reg_state;
unsigned int n;
GEM_BUG_ON(READ_ONCE(ve->context.inflight));
if (!intel_engine_has_relative_mmio(engine))
virtual_update_register_offsets(regs,
engine);
if (!list_empty(&ve->context.signals))
virtual_xfer_breadcrumbs(ve, engine);
/*
* Move the bound engine to the top of the list
* for future execution. We then kick this
* tasklet first before checking others, so that
* we preferentially reuse this set of bound
* registers.
*/
for (n = 1; n < ve->num_siblings; n++) {
if (ve->siblings[n] == engine) {
swap(ve->siblings[n],
ve->siblings[0]);
break;
}
}
GEM_BUG_ON(ve->siblings[0] != engine);
}
if (__i915_request_submit(rq)) {
submit = true;
last = rq;
}
i915_request_put(rq);
/*
* Hmm, we have a bunch of virtual engine requests,
* but the first one was already completed (thanks
* preempt-to-busy!). Keep looking at the veng queue
* until we have no more relevant requests (i.e.
* the normal submit queue has higher priority).
*/
if (!submit) {
spin_unlock(&ve->base.active.lock);
rb = rb_first_cached(&execlists->virtual);
continue;
}
}
spin_unlock(&ve->base.active.lock);
break;
}
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
bool merge = true;
/*
* Can we combine this request with the current port?
* It has to be the same context/ringbuffer and not
* have any exceptions (e.g. GVT saying never to
* combine contexts).
*
* If we can combine the requests, we can execute both
* by updating the RING_TAIL to point to the end of the
* second request, and so we never need to tell the
* hardware about the first.
*/
if (last && !can_merge_rq(last, rq)) {
/*
* If we are on the second port and cannot
* combine this request with the last, then we
* are done.
*/
if (port == last_port)
goto done;
/*
* We must not populate both ELSP[] with the
* same LRCA, i.e. we must submit 2 different
* contexts if we submit 2 ELSP.
*/
if (last->context == rq->context)
goto done;
if (i915_request_has_sentinel(last))
goto done;
/*
* If GVT overrides us we only ever submit
* port[0], leaving port[1] empty. Note that we
* also have to be careful that we don't queue
* the same context (even though a different
* request) to the second port.
*/
if (ctx_single_port_submission(last->context) ||
ctx_single_port_submission(rq->context))
goto done;
merge = false;
}
if (__i915_request_submit(rq)) {
if (!merge) {
*port = execlists_schedule_in(last, port - execlists->pending);
port++;
last = NULL;
}
GEM_BUG_ON(last &&
!can_merge_ctx(last->context,
rq->context));
submit = true;
last = rq;
}
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
done:
/*
* Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
*
* We choose the priority hint such that if we add a request of greater
* priority than this, we kick the submission tasklet to decide on
* the right order of submitting the requests to hardware. We must
* also be prepared to reorder requests as they are in-flight on the
* HW. We derive the priority hint then as the first "hole" in
* the HW submission ports and if there are no available slots,
* the priority of the lowest executing request, i.e. last.
*
* When we do receive a higher priority request ready to run from the
* user, see queue_request(), the priority hint is bumped to that
* request triggering preemption on the next dequeue (or subsequent
* interrupt for secondary ports).
*/
execlists->queue_priority_hint = queue_prio(execlists);
if (submit) {
*port = execlists_schedule_in(last, port - execlists->pending);
execlists->switch_priority_hint =
switch_prio(engine, *execlists->pending);
/*
* Skip if we ended up with exactly the same set of requests,
* e.g. trying to timeslice a pair of ordered contexts
*/
if (!memcmp(execlists->active, execlists->pending,
(port - execlists->pending + 1) * sizeof(*port))) {
do
execlists_schedule_out(fetch_and_zero(port));
while (port-- != execlists->pending);
goto skip_submit;
}
clear_ports(port + 1, last_port - port);
execlists_submit_ports(engine);
set_preempt_timeout(engine);
} else {
skip_submit:
ring_set_paused(engine, 0);
}
}
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
{
struct i915_request * const *port;
for (port = execlists->pending; *port; port++)
execlists_schedule_out(*port);
clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
/* Mark the end of active before we overwrite *active */
for (port = xchg(&execlists->active, execlists->pending); *port; port++)
execlists_schedule_out(*port);
clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
WRITE_ONCE(execlists->active, execlists->inflight);
}
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
clflush((void *)first);
clflush((void *)last);
}
/*
* Starting with Gen12, the status has a new format:
*
* bit 0: switched to new queue
* bit 1: reserved
* bit 2: semaphore wait mode (poll or signal), only valid when
* switch detail is set to "wait on semaphore"
* bits 3-5: engine class
* bits 6-11: engine instance
* bits 12-14: reserved
* bits 15-25: sw context id of the lrc the GT switched to
* bits 26-31: sw counter of the lrc the GT switched to
* bits 32-35: context switch detail
* - 0: ctx complete
* - 1: wait on sync flip
* - 2: wait on vblank
* - 3: wait on scanline
* - 4: wait on semaphore
* - 5: context preempted (not on SEMAPHORE_WAIT or
* WAIT_FOR_EVENT)
* bit 36: reserved
* bits 37-43: wait detail (for switch detail 1 to 4)
* bits 44-46: reserved
* bits 47-57: sw context id of the lrc the GT switched away from
* bits 58-63: sw counter of the lrc the GT switched away from
*/
static inline bool
gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
u32 lower_dw = csb[0];
u32 upper_dw = csb[1];
bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
/*
* The context switch detail is not guaranteed to be 5 when a preemption
* occurs, so we can't just check for that. The check below works for
* all the cases we care about, including preemptions of WAIT
* instructions and lite-restore. Preempt-to-idle via the CTRL register
* would require some extra handling, but we don't support that.
*/
if (!ctx_away_valid || new_queue) {
GEM_BUG_ON(!ctx_to_valid);
return true;
}
/*
* switch detail = 5 is covered by the case above and we do not expect a
* context switch on an unsuccessful wait instruction since we always
* use polling mode.
*/
GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));
return false;
}
static inline bool
gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
return *csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
}
static void process_csb(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
const u32 * const buf = execlists->csb_status;
const u8 num_entries = execlists->csb_size;
u8 head, tail;
/*
* As we modify our execlists state tracking we require exclusive
* access. Either we are inside the tasklet, or the tasklet is disabled
* and we assume that is only inside the reset paths and so serialised.
*/
GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
!reset_in_progress(execlists));
GEM_BUG_ON(!intel_engine_in_execlists_submission_mode(engine));
/*
* Note that csb_write, csb_status may be either in HWSP or mmio.
* When reading from the csb_write mmio register, we have to be
* careful to only use the GEN8_CSB_WRITE_PTR portion, which is
* the low 4bits. As it happens we know the next 4bits are always
* zero and so we can simply masked off the low u8 of the register
* and treat it identically to reading from the HWSP (without having
* to use explicit shifting and masking, and probably bifurcating
* the code to handle the legacy mmio read).
*/
head = execlists->csb_head;
tail = READ_ONCE(*execlists->csb_write);
if (unlikely(head == tail))
return;
/*
* Hopefully paired with a wmb() in HW!
*
* We must complete the read of the write pointer before any reads
* from the CSB, so that we do not see stale values. Without an rmb
* (lfence) the HW may speculatively perform the CSB[] reads *before*
* we perform the READ_ONCE(*csb_write).
*/
rmb();
ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
do {
bool promote;
if (++head == num_entries)
head = 0;
/*
* We are flying near dragons again.
*
* We hold a reference to the request in execlist_port[]
* but no more than that. We are operating in softirq
* context and so cannot hold any mutex or sleep. That
* prevents us stopping the requests we are processing
* in port[] from being retired simultaneously (the
* breadcrumb will be complete before we see the
* context-switch). As we only hold the reference to the
* request, any pointer chasing underneath the request
* is subject to a potential use-after-free. Thus we
* store all of the bookkeeping within port[] as
* required, and avoid using unguarded pointers beneath
* request itself. The same applies to the atomic
* status notifier.
*/
ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
head, buf[2 * head + 0], buf[2 * head + 1]);
if (INTEL_GEN(engine->i915) >= 12)
promote = gen12_csb_parse(execlists, buf + 2 * head);
else
promote = gen8_csb_parse(execlists, buf + 2 * head);
if (promote) {
struct i915_request * const *old = execlists->active;
GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
ring_set_paused(engine, 0);
/* Point active to the new ELSP; prevent overwriting */
WRITE_ONCE(execlists->active, execlists->pending);
/* cancel old inflight, prepare for switch */
trace_ports(execlists, "preempted", old);
while (*old)
execlists_schedule_out(*old++);
/* switch pending to inflight */
WRITE_ONCE(execlists->active,
memcpy(execlists->inflight,
execlists->pending,
execlists_num_ports(execlists) *
sizeof(*execlists->pending)));
WRITE_ONCE(execlists->pending[0], NULL);
} else {
GEM_BUG_ON(!*execlists->active);
/* port0 completed, advanced to port1 */
trace_ports(execlists, "completed", execlists->active);
/*
* We rely on the hardware being strongly
* ordered, that the breadcrumb write is
* coherent (visible from the CPU) before the
* user interrupt and CSB is processed.
*/
if (GEM_SHOW_DEBUG() &&
!i915_request_completed(*execlists->active) &&
!reset_in_progress(execlists)) {
struct i915_request *rq __maybe_unused =
*execlists->active;
const u32 *regs __maybe_unused =
rq->context->lrc_reg_state;
ENGINE_TRACE(engine,
"ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
ENGINE_READ(engine, RING_START),
ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
ENGINE_READ(engine, RING_CTL),
ENGINE_READ(engine, RING_MI_MODE));
ENGINE_TRACE(engine,
"rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
i915_ggtt_offset(rq->ring->vma),
rq->head, rq->tail,
rq->fence.context,
lower_32_bits(rq->fence.seqno),
hwsp_seqno(rq));
ENGINE_TRACE(engine,
"ctx:{start:%08x, head:%04x, tail:%04x}, ",
regs[CTX_RING_START],
regs[CTX_RING_HEAD],
regs[CTX_RING_TAIL]);
GEM_BUG_ON("context completed before request");
}
execlists_schedule_out(*execlists->active++);
GEM_BUG_ON(execlists->active - execlists->inflight >
execlists_num_ports(execlists));
}
} while (head != tail);
execlists->csb_head = head;
set_timeslice(engine);
/*
* Gen11 has proven to fail wrt global observation point between
* entry and tail update, failing on the ordering and thus
* we see an old entry in the context status buffer.
*
* Forcibly evict out entries for the next gpu csb update,
* to increase the odds that we get a fresh entries with non
* working hardware. The cost for doing so comes out mostly with
* the wash as hardware, working or not, will need to do the
* invalidation before.
*/
invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
}
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
{
lockdep_assert_held(&engine->active.lock);
if (!READ_ONCE(engine->execlists.pending[0])) {
rcu_read_lock(); /* protect peeking at execlists->active */
execlists_dequeue(engine);
rcu_read_unlock();
}
}
static void __execlists_hold(struct i915_request *rq)
{
LIST_HEAD(list);
do {
struct i915_dependency *p;
if (i915_request_is_active(rq))
__i915_request_unsubmit(rq);
clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
list_move_tail(&rq->sched.link, &rq->engine->active.hold);
i915_request_set_hold(rq);
RQ_TRACE(rq, "on hold\n");
for_each_waiter(p, rq) {
struct i915_request *w =
container_of(p->waiter, typeof(*w), sched);
/* Leave semaphores spinning on the other engines */
if (w->engine != rq->engine)
continue;
if (!i915_request_is_ready(w))
continue;
if (i915_request_completed(w))
continue;
if (i915_request_on_hold(w))
continue;
list_move_tail(&w->sched.link, &list);
}
rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
} while (rq);
}
static bool execlists_hold(struct intel_engine_cs *engine,
struct i915_request *rq)
{
spin_lock_irq(&engine->active.lock);
if (i915_request_completed(rq)) { /* too late! */
rq = NULL;
goto unlock;
}
if (rq->engine != engine) { /* preempted virtual engine */
struct virtual_engine *ve = to_virtual_engine(rq->engine);
/*
* intel_context_inflight() is only protected by virtue
* of process_csb() being called only by the tasklet (or
* directly from inside reset while the tasklet is suspended).
* Assert that neither of those are allowed to run while we
* poke at the request queues.
*/
GEM_BUG_ON(!reset_in_progress(&engine->execlists));
/*
* An unsubmitted request along a virtual engine will
* remain on the active (this) engine until we are able
* to process the context switch away (and so mark the
* context as no longer in flight). That cannot have happened
* yet, otherwise we would not be hanging!
*/
spin_lock(&ve->base.active.lock);
GEM_BUG_ON(intel_context_inflight(rq->context) != engine);
GEM_BUG_ON(ve->request != rq);
ve->request = NULL;
spin_unlock(&ve->base.active.lock);
i915_request_put(rq);
rq->engine = engine;
}
/*
* Transfer this request onto the hold queue to prevent it
* being resumbitted to HW (and potentially completed) before we have
* released it. Since we may have already submitted following
* requests, we need to remove those as well.
*/
GEM_BUG_ON(i915_request_on_hold(rq));
GEM_BUG_ON(rq->engine != engine);
__execlists_hold(rq);
GEM_BUG_ON(list_empty(&engine->active.hold));
unlock:
spin_unlock_irq(&engine->active.lock);
return rq;
}
static bool hold_request(const struct i915_request *rq)
{
struct i915_dependency *p;
bool result = false;
/*
* If one of our ancestors is on hold, we must also be on hold,
* otherwise we will bypass it and execute before it.
*/
rcu_read_lock();
for_each_signaler(p, rq) {
const struct i915_request *s =
container_of(p->signaler, typeof(*s), sched);
if (s->engine != rq->engine)
continue;
result = i915_request_on_hold(s);
if (result)
break;
}
rcu_read_unlock();
return result;
}
static void __execlists_unhold(struct i915_request *rq)
{
LIST_HEAD(list);
do {
struct i915_dependency *p;
RQ_TRACE(rq, "hold release\n");
GEM_BUG_ON(!i915_request_on_hold(rq));
GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
i915_request_clear_hold(rq);
list_move_tail(&rq->sched.link,
i915_sched_lookup_priolist(rq->engine,
rq_prio(rq)));
set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
/* Also release any children on this engine that are ready */
for_each_waiter(p, rq) {
struct i915_request *w =
container_of(p->waiter, typeof(*w), sched);
/* Propagate any change in error status */
if (rq->fence.error)
i915_request_set_error_once(w, rq->fence.error);
if (w->engine != rq->engine)
continue;
if (!i915_request_on_hold(w))
continue;
/* Check that no other parents are also on hold */
if (hold_request(w))
continue;
list_move_tail(&w->sched.link, &list);
}
rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
} while (rq);
}
static void execlists_unhold(struct intel_engine_cs *engine,
struct i915_request *rq)
{
spin_lock_irq(&engine->active.lock);
/*
* Move this request back to the priority queue, and all of its
* children and grandchildren that were suspended along with it.
*/
__execlists_unhold(rq);
if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
engine->execlists.queue_priority_hint = rq_prio(rq);
tasklet_hi_schedule(&engine->execlists.tasklet);
}
spin_unlock_irq(&engine->active.lock);
}
struct execlists_capture {
struct work_struct work;
struct i915_request *rq;
struct i915_gpu_coredump *error;
};
static void execlists_capture_work(struct work_struct *work)
{
struct execlists_capture *cap = container_of(work, typeof(*cap), work);
const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
struct intel_engine_cs *engine = cap->rq->engine;
struct intel_gt_coredump *gt = cap->error->gt;
struct intel_engine_capture_vma *vma;
/* Compress all the objects attached to the request, slow! */
vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
if (vma) {
struct i915_vma_compress *compress =
i915_vma_capture_prepare(gt);
intel_engine_coredump_add_vma(gt->engine, vma, compress);
i915_vma_capture_finish(gt, compress);
}
gt->simulated = gt->engine->simulated;
cap->error->simulated = gt->simulated;
/* Publish the error state, and announce it to the world */
i915_error_state_store(cap->error);
i915_gpu_coredump_put(cap->error);
/* Return this request and all that depend upon it for signaling */
execlists_unhold(engine, cap->rq);
i915_request_put(cap->rq);
kfree(cap);
}
static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
{
const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
struct execlists_capture *cap;
cap = kmalloc(sizeof(*cap), gfp);
if (!cap)
return NULL;
cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
if (!cap->error)
goto err_cap;
cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
if (!cap->error->gt)
goto err_gpu;
cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
if (!cap->error->gt->engine)
goto err_gt;
return cap;
err_gt:
kfree(cap->error->gt);
err_gpu:
kfree(cap->error);
err_cap:
kfree(cap);
return NULL;
}
static bool execlists_capture(struct intel_engine_cs *engine)
{
struct execlists_capture *cap;
if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
return true;
/*
* We need to _quickly_ capture the engine state before we reset.
* We are inside an atomic section (softirq) here and we are delaying
* the forced preemption event.
*/
cap = capture_regs(engine);
if (!cap)
return true;
spin_lock_irq(&engine->active.lock);
cap->rq = execlists_active(&engine->execlists);
if (cap->rq) {
cap->rq = active_request(cap->rq->context->timeline, cap->rq);
cap->rq = i915_request_get_rcu(cap->rq);
}
spin_unlock_irq(&engine->active.lock);
if (!cap->rq)
goto err_free;
/*
* Remove the request from the execlists queue, and take ownership
* of the request. We pass it to our worker who will _slowly_ compress
* all the pages the _user_ requested for debugging their batch, after
* which we return it to the queue for signaling.
*
* By removing them from the execlists queue, we also remove the
* requests from being processed by __unwind_incomplete_requests()
* during the intel_engine_reset(), and so they will *not* be replayed
* afterwards.
*
* Note that because we have not yet reset the engine at this point,
* it is possible for the request that we have identified as being
* guilty, did in fact complete and we will then hit an arbitration
* point allowing the outstanding preemption to succeed. The likelihood
* of that is very low (as capturing of the engine registers should be
* fast enough to run inside an irq-off atomic section!), so we will
* simply hold that request accountable for being non-preemptible
* long enough to force the reset.
*/
if (!execlists_hold(engine, cap->rq))
goto err_rq;
INIT_WORK(&cap->work, execlists_capture_work);
schedule_work(&cap->work);
return true;
err_rq:
i915_request_put(cap->rq);
err_free:
i915_gpu_coredump_put(cap->error);
kfree(cap);
return false;
}
static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
{
const unsigned int bit = I915_RESET_ENGINE + engine->id;
unsigned long *lock = &engine->gt->reset.flags;
if (!intel_has_reset_engine(engine->gt))
return;
if (test_and_set_bit(bit, lock))
return;
ENGINE_TRACE(engine, "reset for %s\n", msg);
/* Mark this tasklet as disabled to avoid waiting for it to complete */
tasklet_disable_nosync(&engine->execlists.tasklet);
ring_set_paused(engine, 1); /* Freeze the current request in place */
if (execlists_capture(engine))
intel_engine_reset(engine, msg);
else
ring_set_paused(engine, 0);
tasklet_enable(&engine->execlists.tasklet);
clear_and_wake_up_bit(bit, lock);
}
static bool preempt_timeout(const struct intel_engine_cs *const engine)
{
const struct timer_list *t = &engine->execlists.preempt;
if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
return false;
if (!timer_expired(t))
return false;
return READ_ONCE(engine->execlists.pending[0]);
}
/*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
static void execlists_submission_tasklet(unsigned long data)
{
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
bool timeout = preempt_timeout(engine);
process_csb(engine);
if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
engine->execlists.error_interrupt = 0;
if (ENGINE_READ(engine, RING_ESR)) /* confirm the error */
execlists_reset(engine, "CS error");
}
if (!READ_ONCE(engine->execlists.pending[0]) || timeout) {
unsigned long flags;
spin_lock_irqsave(&engine->active.lock, flags);
__execlists_submission_tasklet(engine);
spin_unlock_irqrestore(&engine->active.lock, flags);
/* Recheck after serialising with direct-submission */
if (unlikely(timeout && preempt_timeout(engine)))
execlists_reset(engine, "preemption time out");
}
}
static void __execlists_kick(struct intel_engine_execlists *execlists)
{
/* Kick the tasklet for some interrupt coalescing and reset handling */
tasklet_hi_schedule(&execlists->tasklet);
}
#define execlists_kick(t, member) \
__execlists_kick(container_of(t, struct intel_engine_execlists, member))
static void execlists_timeslice(struct timer_list *timer)
{
execlists_kick(timer, timer);
}
static void execlists_preempt(struct timer_list *timer)
{
execlists_kick(timer, preempt);
}
static void queue_request(struct intel_engine_cs *engine,
struct i915_request *rq)
{
GEM_BUG_ON(!list_empty(&rq->sched.link));
list_add_tail(&rq->sched.link,
i915_sched_lookup_priolist(engine, rq_prio(rq)));
set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
}
static void __submit_queue_imm(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
if (reset_in_progress(execlists))
return; /* defer until we restart the engine following reset */
if (execlists->tasklet.func == execlists_submission_tasklet)
__execlists_submission_tasklet(engine);
else
tasklet_hi_schedule(&execlists->tasklet);
}
static void submit_queue(struct intel_engine_cs *engine,
const struct i915_request *rq)
{
struct intel_engine_execlists *execlists = &engine->execlists;
if (rq_prio(rq) <= execlists->queue_priority_hint)
return;
execlists->queue_priority_hint = rq_prio(rq);
__submit_queue_imm(engine);
}
static bool ancestor_on_hold(const struct intel_engine_cs *engine,
const struct i915_request *rq)
{
GEM_BUG_ON(i915_request_on_hold(rq));
return !list_empty(&engine->active.hold) && hold_request(rq);
}
static void execlists_submit_request(struct i915_request *request)
{
struct intel_engine_cs *engine = request->engine;
unsigned long flags;
/* Will be called from irq-context when using foreign fences. */
spin_lock_irqsave(&engine->active.lock, flags);
if (unlikely(ancestor_on_hold(engine, request))) {
RQ_TRACE(request, "ancestor on hold\n");
list_add_tail(&request->sched.link, &engine->active.hold);
i915_request_set_hold(request);
} else {
queue_request(engine, request);
GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
GEM_BUG_ON(list_empty(&request->sched.link));
submit_queue(engine, request);
}
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void __execlists_context_fini(struct intel_context *ce)
{
intel_ring_put(ce->ring);
i915_vma_put(ce->state);
}
static void execlists_context_destroy(struct kref *kref)
{
struct intel_context *ce = container_of(kref, typeof(*ce), ref);
GEM_BUG_ON(!i915_active_is_idle(&ce->active));
GEM_BUG_ON(intel_context_is_pinned(ce));
if (ce->state)
__execlists_context_fini(ce);
intel_context_fini(ce);
intel_context_free(ce);
}
static void
set_redzone(void *vaddr, const struct intel_engine_cs *engine)
{
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
vaddr += engine->context_size;
memset(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE);
}
static void
check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
{
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
return;
vaddr += engine->context_size;
if (memchr_inv(vaddr, CONTEXT_REDZONE, I915_GTT_PAGE_SIZE))
dev_err_once(engine->i915->drm.dev,
"%s context redzone overwritten!\n",
engine->name);
}
static void execlists_context_unpin(struct intel_context *ce)
{
check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
ce->engine);
i915_gem_object_unpin_map(ce->state->obj);
}
static void
__execlists_update_reg_state(const struct intel_context *ce,
const struct intel_engine_cs *engine,
u32 head)
{
struct intel_ring *ring = ce->ring;
u32 *regs = ce->lrc_reg_state;
GEM_BUG_ON(!intel_ring_offset_valid(ring, head));
GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
regs[CTX_RING_START] = i915_ggtt_offset(ring->vma);
regs[CTX_RING_HEAD] = head;
regs[CTX_RING_TAIL] = ring->tail;
regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
/* RPCS */
if (engine->class == RENDER_CLASS) {
regs[CTX_R_PWR_CLK_STATE] =
intel_sseu_make_rpcs(engine->i915, &ce->sseu);
i915_oa_init_reg_state(ce, engine);
}
}
static int
__execlists_context_pin(struct intel_context *ce,
struct intel_engine_cs *engine)
{
void *vaddr;
GEM_BUG_ON(!ce->state);
GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
vaddr = i915_gem_object_pin_map(ce->state->obj,
i915_coherent_map_type(engine->i915) |
I915_MAP_OVERRIDE);
if (IS_ERR(vaddr))
return PTR_ERR(vaddr);
ce->lrc_desc = lrc_descriptor(ce, engine) | CTX_DESC_FORCE_RESTORE;
ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
__execlists_update_reg_state(ce, engine, ce->ring->tail);
return 0;
}
static int execlists_context_pin(struct intel_context *ce)
{
return __execlists_context_pin(ce, ce->engine);
}
static int execlists_context_alloc(struct intel_context *ce)
{
return __execlists_context_alloc(ce, ce->engine);
}
static void execlists_context_reset(struct intel_context *ce)
{
CE_TRACE(ce, "reset\n");
GEM_BUG_ON(!intel_context_is_pinned(ce));
intel_ring_reset(ce->ring, ce->ring->emit);
/* Scrub away the garbage */
execlists_init_reg_state(ce->lrc_reg_state,
ce, ce->engine, ce->ring, true);
__execlists_update_reg_state(ce, ce->engine, ce->ring->tail);
ce->lrc_desc |= CTX_DESC_FORCE_RESTORE;
}
static const struct intel_context_ops execlists_context_ops = {
.alloc = execlists_context_alloc,
.pin = execlists_context_pin,
.unpin = execlists_context_unpin,
.enter = intel_context_enter_engine,
.exit = intel_context_exit_engine,
.reset = execlists_context_reset,
.destroy = execlists_context_destroy,
};
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
u32 *cs;
if (!i915_request_timeline(rq)->has_initial_breadcrumb)
return 0;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Check if we have been preempted before we even get started.
*
* After this point i915_request_started() reports true, even if
* we get preempted and so are no longer running.
*/
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = i915_request_timeline(rq)->hwsp_offset;
*cs++ = 0;
*cs++ = rq->fence.seqno - 1;
intel_ring_advance(rq, cs);
/* Record the updated position of the request's payload */
rq->infix = intel_ring_offset(rq, cs);
return 0;
}
static int execlists_request_alloc(struct i915_request *request)
{
int ret;
GEM_BUG_ON(!intel_context_is_pinned(request->context));
/*
* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += EXECLISTS_REQUEST_SIZE;
/*
* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
/* Unconditionally invalidate GPU caches and TLBs. */
ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
if (ret)
return ret;
request->reserved_space -= EXECLISTS_REQUEST_SIZE;
return 0;
}
/*
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
* but there is a slight complication as this is applied in WA batch where the
* values are only initialized once so we cannot take register value at the
* beginning and reuse it further; hence we save its value to memory, upload a
* constant value with bit21 set and then we restore it back with the saved value.
* To simplify the WA, a constant value is formed by using the default value
* of this register. This shouldn't be a problem because we are only modifying
* it for a short period and this batch in non-premptible. We can ofcourse
* use additional instructions that read the actual value of the register
* at that time and set our bit of interest but it makes the WA complicated.
*
* This WA is also required for Gen9 so extracting as a function avoids
* code duplication.
*/
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
{
/* NB no one else is allowed to scribble over scratch + 256! */
*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = intel_gt_scratch_offset(engine->gt,
INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
*batch++ = 0;
*batch++ = MI_LOAD_REGISTER_IMM(1);
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
*batch++ = intel_gt_scratch_offset(engine->gt,
INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
*batch++ = 0;
return batch;
}
/*
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
* initialized at the beginning and shared across all contexts but this field
* helps us to have multiple batches at different offsets and select them based
* on a criteria. At the moment this batch always start at the beginning of the page
* and at this point we don't have multiple wa_ctx batch buffers.
*
* The number of WA applied are not known at the beginning; we use this field
* to return the no of DWORDS written.
*
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
* so it adds NOOPs as padding to make it cacheline aligned.
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
* makes a complete batch buffer.
*/
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
/* WaDisableCtxRestoreArbitration:bdw,chv */
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
if (IS_BROADWELL(engine->i915))
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
/* Actual scratch location is at 128 bytes offset */
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_STORE_DATA_INDEX |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE,
LRC_PPHWSP_SCRATCH_ADDR);
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
/*
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
* execution depends on the length specified in terms of cache lines
* in the register CTX_RCS_INDIRECT_CTX
*/
return batch;
}
struct lri {
i915_reg_t reg;
u32 value;
};
static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
{
GEM_BUG_ON(!count || count > 63);
*batch++ = MI_LOAD_REGISTER_IMM(count);
do {
*batch++ = i915_mmio_reg_offset(lri->reg);
*batch++ = lri->value;
} while (lri++, --count);
*batch++ = MI_NOOP;
return batch;
}
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
static const struct lri lri[] = {
/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
{
COMMON_SLICE_CHICKEN2,
__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
0),
},
/* BSpec: 11391 */
{
FF_SLICE_CHICKEN,
__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
},
/* BSpec: 11299 */
{
_3D_CHICKEN3,
__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
}
};
*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
batch = gen8_emit_flush_coherentl3_wa(engine, batch);
/* WaClearSlmSpaceAtContextSwitch:skl,bxt,kbl,glk,cfl */
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_STORE_DATA_INDEX |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE,
LRC_PPHWSP_SCRATCH_ADDR);
batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
/* WaMediaPoolStateCmdInWABB:bxt,glk */
if (HAS_POOLED_EU(engine->i915)) {
/*
* EU pool configuration is setup along with golden context
* during context initialization. This value depends on
* device type (2x6 or 3x6) and needs to be updated based
* on which subslice is disabled especially for 2x6
* devices, however it is safe to load default
* configuration of 3x6 device instead of masking off
* corresponding bits because HW ignores bits of a disabled
* subslice and drops down to appropriate config. Please
* see render_state_setup() in i915_gem_render_state.c for
* possible configurations, to avoid duplication they are
* not shown here again.
*/
*batch++ = GEN9_MEDIA_POOL_STATE;
*batch++ = GEN9_MEDIA_POOL_ENABLE;
*batch++ = 0x00777000;
*batch++ = 0;
*batch++ = 0;
*batch++ = 0;
}
*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
int i;
/*
* WaPipeControlBefore3DStateSamplePattern: cnl
*
* Ensure the engine is idle prior to programming a
* 3DSTATE_SAMPLE_PATTERN during a context restore.
*/
batch = gen8_emit_pipe_control(batch,
PIPE_CONTROL_CS_STALL,
0);
/*
* WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
* the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
* total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
* confusing. Since gen8_emit_pipe_control() already advances the
* batch by 6 dwords, we advance the other 10 here, completing a
* cacheline. It's not clear if the workaround requires this padding
* before other commands, or if it's just the regular padding we would
* already have for the workaround bb, so leave it here for now.
*/
for (i = 0; i < 10; i++)
*batch++ = MI_NOOP;
/* Pad to end of cacheline */
while ((unsigned long)batch % CACHELINE_BYTES)
*batch++ = MI_NOOP;
return batch;
}
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int err;
obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
if (IS_ERR(obj))
return PTR_ERR(obj);
vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
goto err;
}
err = i915_ggtt_pin(vma, 0, PIN_HIGH);
if (err)
goto err;
engine->wa_ctx.vma = vma;
return 0;
err:
i915_gem_object_put(obj);
return err;
}
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
{
i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
}
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
{
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
&wa_ctx->per_ctx };
wa_bb_func_t wa_bb_fn[2];
struct page *page;
void *batch, *batch_ptr;
unsigned int i;
int ret;
if (engine->class != RENDER_CLASS)
return 0;
switch (INTEL_GEN(engine->i915)) {
case 12:
case 11:
return 0;
case 10:
wa_bb_fn[0] = gen10_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 9:
wa_bb_fn[0] = gen9_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
case 8:
wa_bb_fn[0] = gen8_init_indirectctx_bb;
wa_bb_fn[1] = NULL;
break;
default:
MISSING_CASE(INTEL_GEN(engine->i915));
return 0;
}
ret = lrc_setup_wa_ctx(engine);
if (ret) {
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
return ret;
}
page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
batch = batch_ptr = kmap_atomic(page);
/*
* Emit the two workaround batch buffers, recording the offset from the
* start of the workaround batch buffer object for each and their
* respective sizes.
*/
for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
wa_bb[i]->offset = batch_ptr - batch;
if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
CACHELINE_BYTES))) {
ret = -EINVAL;
break;
}
if (wa_bb_fn[i])
batch_ptr = wa_bb_fn[i](engine, batch_ptr);
wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
}
BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
kunmap_atomic(batch);
if (ret)
lrc_destroy_wa_ctx(engine);
return ret;
}
static void enable_error_interrupt(struct intel_engine_cs *engine)
{
u32 status;
engine->execlists.error_interrupt = 0;
ENGINE_WRITE(engine, RING_EMR, ~0u);
ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
status = ENGINE_READ(engine, RING_ESR);
if (unlikely(status)) {
dev_err(engine->i915->drm.dev,
"engine '%s' resumed still in error: %08x\n",
engine->name, status);
__intel_gt_reset(engine->gt, engine->mask);
}
/*
* On current gen8+, we have 2 signals to play with
*
* - I915_ERROR_INSTUCTION (bit 0)
*
* Generate an error if the command parser encounters an invalid
* instruction
*
* This is a fatal error.
*
* - CP_PRIV (bit 2)
*
* Generate an error on privilege violation (where the CP replaces
* the instruction with a no-op). This also fires for writes into
* read-only scratch pages.
*
* This is a non-fatal error, parsing continues.
*
* * there are a few others defined for odd HW that we do not use
*
* Since CP_PRIV fires for cases where we have chosen to ignore the
* error (as the HW is validating and suppressing the mistakes), we
* only unmask the instruction error bit.
*/
ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
}
static void enable_execlists(struct intel_engine_cs *engine)
{
u32 mode;
assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
if (INTEL_GEN(engine->i915) >= 11)
mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
else
mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
ENGINE_WRITE_FW(engine,
RING_HWS_PGA,
i915_ggtt_offset(engine->status_page.vma));
ENGINE_POSTING_READ(engine, RING_HWS_PGA);
enable_error_interrupt(engine);
engine->context_tag = 0;
}
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
bool unexpected = false;
if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
unexpected = true;
}
return unexpected;
}
static int execlists_resume(struct intel_engine_cs *engine)
{
intel_mocs_init_engine(engine);
intel_engine_reset_breadcrumbs(engine);
if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
struct drm_printer p = drm_debug_printer(__func__);
intel_engine_dump(engine, &p, NULL);
}
enable_execlists(engine);
return 0;
}
static void execlists_reset_prepare(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
unsigned long flags;
ENGINE_TRACE(engine, "depth<-%d\n",
atomic_read(&execlists->tasklet.count));
/*
* Prevent request submission to the hardware until we have
* completed the reset in i915_gem_reset_finish(). If a request
* is completed by one engine, it may then queue a request
* to a second via its execlists->tasklet *just* as we are
* calling engine->resume() and also writing the ELSP.
* Turning off the execlists->tasklet until the reset is over
* prevents the race.
*/
__tasklet_disable_sync_once(&execlists->tasklet);
GEM_BUG_ON(!reset_in_progress(execlists));
/* And flush any current direct submission. */
spin_lock_irqsave(&engine->active.lock, flags);
spin_unlock_irqrestore(&engine->active.lock, flags);
/*
* We stop engines, otherwise we might get failed reset and a
* dead gpu (on elk). Also as modern gpu as kbl can suffer
* from system hang if batchbuffer is progressing when
* the reset is issued, regardless of READY_TO_RESET ack.
* Thus assume it is best to stop engines on all gens
* where we have a gpu reset.
*
* WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
*
* FIXME: Wa for more modern gens needs to be validated
*/
intel_engine_stop_cs(engine);
}
static void reset_csb_pointers(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
const unsigned int reset_value = execlists->csb_size - 1;
ring_set_paused(engine, 0);
/*
* After a reset, the HW starts writing into CSB entry [0]. We
* therefore have to set our HEAD pointer back one entry so that
* the *first* entry we check is entry 0. To complicate this further,
* as we don't wait for the first interrupt after reset, we have to
* fake the HW write to point back to the last entry so that our
* inline comparison of our cached head position against the last HW
* write works even before the first interrupt.
*/
execlists->csb_head = reset_value;
WRITE_ONCE(*execlists->csb_write, reset_value);
wmb(); /* Make sure this is visible to HW (paranoia?) */
/*
* Sometimes Icelake forgets to reset its pointers on a GPU reset.
* Bludgeon them with a mmio update to be sure.
*/
ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
reset_value << 8 | reset_value);
ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
invalidate_csb_entries(&execlists->csb_status[0],
&execlists->csb_status[reset_value]);
}
static void __reset_stop_ring(u32 *regs, const struct intel_engine_cs *engine)
{
int x;
x = lrc_ring_mi_mode(engine);
if (x != -1) {
regs[x + 1] &= ~STOP_RING;
regs[x + 1] |= STOP_RING << 16;
}
}
static void __execlists_reset_reg_state(const struct intel_context *ce,
const struct intel_engine_cs *engine)
{
u32 *regs = ce->lrc_reg_state;
__reset_stop_ring(regs, engine);
}
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct intel_context *ce;
struct i915_request *rq;
u32 head;
mb(); /* paranoia: read the CSB pointers from after the reset */
clflush(execlists->csb_write);
mb();
process_csb(engine); /* drain preemption events */
/* Following the reset, we need to reload the CSB read/write pointers */
reset_csb_pointers(engine);
/*
* Save the currently executing context, even if we completed
* its request, it was still running at the time of the
* reset and will have been clobbered.
*/
rq = execlists_active(execlists);
if (!rq)
goto unwind;
ce = rq->context;
GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
if (i915_request_completed(rq)) {
/* Idle context; tidy up the ring so we can restart afresh */
head = intel_ring_wrap(ce->ring, rq->tail);
goto out_replay;
}
/* We still have requests in-flight; the engine should be active */
GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
/* Context has requests still in-flight; it should not be idle! */
GEM_BUG_ON(i915_active_is_idle(&ce->active));
rq = active_request(ce->timeline, rq);
head = intel_ring_wrap(ce->ring, rq->head);
GEM_BUG_ON(head == ce->ring->tail);
/*
* If this request hasn't started yet, e.g. it is waiting on a
* semaphore, we need to avoid skipping the request or else we
* break the signaling chain. However, if the context is corrupt
* the request will not restart and we will be stuck with a wedged
* device. It is quite often the case that if we issue a reset
* while the GPU is loading the context image, that the context
* image becomes corrupt.
*
* Otherwise, if we have not started yet, the request should replay
* perfectly and we do not need to flag the result as being erroneous.
*/
if (!i915_request_started(rq))
goto out_replay;
/*
* If the request was innocent, we leave the request in the ELSP
* and will try to replay it on restarting. The context image may
* have been corrupted by the reset, in which case we may have
* to service a new GPU hang, but more likely we can continue on
* without impact.
*
* If the request was guilty, we presume the context is corrupt
* and have to at least restore the RING register in the context
* image back to the expected values to skip over the guilty request.
*/
__i915_request_reset(rq, stalled);
if (!stalled)
goto out_replay;
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
GEM_BUG_ON(!intel_context_is_pinned(ce));
restore_default_state(ce, engine);
out_replay:
ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
head, ce->ring->tail);
__execlists_reset_reg_state(ce, engine);
__execlists_update_reg_state(ce, engine, head);
ce->lrc_desc |= CTX_DESC_FORCE_RESTORE; /* paranoid: GPU was reset! */
unwind:
/* Push back any incomplete requests for replay after the reset. */
cancel_port_requests(execlists);
__unwind_incomplete_requests(engine);
}
static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
{
unsigned long flags;
ENGINE_TRACE(engine, "\n");
spin_lock_irqsave(&engine->active.lock, flags);
__execlists_reset(engine, stalled);
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void nop_submission_tasklet(unsigned long data)
{
struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
/* The driver is wedged; don't process any more events. */
WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
}
static void execlists_reset_cancel(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
ENGINE_TRACE(engine, "\n");
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&engine->active.lock, flags);
__execlists_reset(engine, true);
/* Mark all executing requests as skipped. */
list_for_each_entry(rq, &engine->active.requests, sched.link)
mark_eio(rq);
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&execlists->queue))) {
struct i915_priolist *p = to_priolist(rb);
int i;
priolist_for_each_request_consume(rq, rn, p, i) {
mark_eio(rq);
__i915_request_submit(rq);
}
rb_erase_cached(&p->node, &execlists->queue);
i915_priolist_free(p);
}
/* On-hold requests will be flushed to timeline upon their release */
list_for_each_entry(rq, &engine->active.hold, sched.link)
mark_eio(rq);
/* Cancel all attached virtual engines */
while ((rb = rb_first_cached(&execlists->virtual))) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
rb_erase_cached(rb, &execlists->virtual);
RB_CLEAR_NODE(rb);
spin_lock(&ve->base.active.lock);
rq = fetch_and_zero(&ve->request);
if (rq) {
mark_eio(rq);
rq->engine = engine;
__i915_request_submit(rq);
i915_request_put(rq);
ve->base.execlists.queue_priority_hint = INT_MIN;
}
spin_unlock(&ve->base.active.lock);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
execlists->tasklet.func = nop_submission_tasklet;
spin_unlock_irqrestore(&engine->active.lock, flags);
}
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
/*
* After a GPU reset, we may have requests to replay. Do so now while
* we still have the forcewake to be sure that the GPU is not allowed
* to sleep before we restart and reload a context.
*/
GEM_BUG_ON(!reset_in_progress(execlists));
if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
execlists->tasklet.func(execlists->tasklet.data);
if (__tasklet_enable(&execlists->tasklet))
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&execlists->tasklet);
ENGINE_TRACE(engine, "depth->%d\n",
atomic_read(&execlists->tasklet.count));
}
static int gen8_emit_bb_start_noarb(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* WaDisableCtxRestoreArbitration:bdw,chv
*
* We don't need to perform MI_ARB_ENABLE as often as we do (in
* particular all the gen that do not need the w/a at all!), if we
* took care to make sure that on every switch into this context
* (both ordinary and for preemption) that arbitrartion was enabled
* we would be fine. However, for gen8 there is another w/a that
* requires us to not preempt inside GPGPU execution, so we keep
* arbitration disabled for gen8 batches. Arbitration will be
* re-enabled before we close the request
* (engine->emit_fini_breadcrumb).
*/
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* FIXME(BDW+): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
intel_ring_advance(rq, cs);
return 0;
}
static int gen8_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR,
~(engine->irq_enable_mask | engine->irq_keep_mask));
ENGINE_POSTING_READ(engine, RING_IMR);
}
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
{
ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
}
static int gen8_emit_flush(struct i915_request *request, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(request, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW + 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (request->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
intel_ring_advance(request, cs);
return 0;
}
static int gen8_emit_flush_render(struct i915_request *request,
u32 mode)
{
bool vf_flush_wa = false, dc_flush_wa = false;
u32 *cs, flags = 0;
int len;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (IS_GEN(request->i915, 9))
vf_flush_wa = true;
/* WaForGAMHang:kbl */
if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
dc_flush_wa = true;
}
len = 6;
if (vf_flush_wa)
len += 6;
if (dc_flush_wa)
len += 12;
cs = intel_ring_begin(request, len);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (vf_flush_wa)
cs = gen8_emit_pipe_control(cs, 0, 0);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
intel_ring_advance(request, cs);
return 0;
}
static int gen11_emit_flush_render(struct i915_request *request,
u32 mode)
{
if (mode & EMIT_FLUSH) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
return 0;
}
static u32 preparser_disable(bool state)
{
return MI_ARB_CHECK | 1 << 8 | state;
}
static int gen12_emit_flush_render(struct i915_request *request,
u32 mode)
{
if (mode & EMIT_FLUSH) {
u32 flags = 0;
u32 *cs;
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/* Wa_1409600907:tgl */
flags |= PIPE_CONTROL_DEPTH_STALL;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_CS_STALL;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 flags = 0;
u32 *cs;
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_L3_RO_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_CS_STALL;
cs = intel_ring_begin(request, 8);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Prevent the pre-parser from skipping past the TLB
* invalidate and loading a stale page for the batch
* buffer / request payload.
*/
*cs++ = preparser_disable(true);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
*cs++ = preparser_disable(false);
intel_ring_advance(request, cs);
/*
* Wa_1604544889:tgl
*/
if (IS_TGL_REVID(request->i915, TGL_REVID_A0, TGL_REVID_A0)) {
flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_HDC_PIPELINE_FLUSH;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
cs = intel_ring_begin(request, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags,
LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(request, cs);
}
}
return 0;
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
{
/* Ensure there's always at least one preemption point per-request. */
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
request->wa_tail = intel_ring_offset(request, cs);
return cs;
}
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = intel_hws_preempt_address(request->engine);
*cs++ = 0;
return cs;
}
static __always_inline u32*
gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(request->engine))
cs = emit_preempt_busywait(request, cs);
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
0);
return gen8_emit_fini_breadcrumb_footer(request, cs);
}
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_pipe_control(cs,
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
return gen8_emit_fini_breadcrumb_footer(request, cs);
}
static u32 *
gen11_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE);
return gen8_emit_fini_breadcrumb_footer(request, cs);
}
/*
* Note that the CS instruction pre-parser will not stall on the breadcrumb
* flush and will continue pre-fetching the instructions after it before the
* memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
* BB_START/END instructions, so, even though we might pre-fetch the pre-amble
* of the next request before the memory has been flushed, we're guaranteed that
* we won't access the batch itself too early.
* However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
* so, if the current request is modifying an instruction in the next request on
* the same intel_context, we might pre-fetch and then execute the pre-update
* instruction. To avoid this, the users of self-modifying code should either
* disable the parser around the code emitting the memory writes, via a new flag
* added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
* the in-kernel use-cases we've opted to use a separate context, see
* reloc_gpu() as an example.
* All the above applies only to the instructions themselves. Non-inline data
* used by the instructions is not pre-fetched.
*/
static u32 *gen12_emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = intel_hws_preempt_address(request->engine);
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_NOOP;
return cs;
}
static __always_inline u32*
gen12_emit_fini_breadcrumb_footer(struct i915_request *request, u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(request->engine))
cs = gen12_emit_preempt_busywait(request, cs);
request->tail = intel_ring_offset(request, cs);
assert_ring_tail_valid(request->ring, request->tail);
return gen8_emit_wa_tail(request, cs);
}
static u32 *gen12_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
0);
return gen12_emit_fini_breadcrumb_footer(request, cs);
}
static u32 *
gen12_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
{
cs = gen8_emit_ggtt_write_rcs(cs,
request->fence.seqno,
i915_request_active_timeline(request)->hwsp_offset,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
/* Wa_1409600907:tgl */
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_HDC_PIPELINE_FLUSH);
return gen12_emit_fini_breadcrumb_footer(request, cs);
}
static void execlists_park(struct intel_engine_cs *engine)
{
cancel_timer(&engine->execlists.timer);
cancel_timer(&engine->execlists.preempt);
}
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = execlists_submit_request;
engine->schedule = i915_schedule;
engine->execlists.tasklet.func = execlists_submission_tasklet;
engine->reset.prepare = execlists_reset_prepare;
engine->reset.rewind = execlists_reset_rewind;
engine->reset.cancel = execlists_reset_cancel;
engine->reset.finish = execlists_reset_finish;
engine->park = execlists_park;
engine->unpark = NULL;
engine->flags |= I915_ENGINE_SUPPORTS_STATS;
if (!intel_vgpu_active(engine->i915)) {
engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
engine->flags |= I915_ENGINE_HAS_PREEMPTION;
}
if (INTEL_GEN(engine->i915) >= 12)
engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
if (intel_engine_has_preemption(engine))
engine->emit_bb_start = gen8_emit_bb_start;
else
engine->emit_bb_start = gen8_emit_bb_start_noarb;
}
static void execlists_shutdown(struct intel_engine_cs *engine)
{
/* Synchronise with residual timers and any softirq they raise */
del_timer_sync(&engine->execlists.timer);
del_timer_sync(&engine->execlists.preempt);
tasklet_kill(&engine->execlists.tasklet);
}
static void execlists_release(struct intel_engine_cs *engine)
{
execlists_shutdown(engine);
intel_engine_cleanup_common(engine);
lrc_destroy_wa_ctx(engine);
}
static void
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overriden by each engine. */
engine->resume = execlists_resume;
engine->cops = &execlists_context_ops;
engine->request_alloc = execlists_request_alloc;
engine->emit_flush = gen8_emit_flush;
engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
if (INTEL_GEN(engine->i915) >= 12)
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb;
engine->set_default_submission = intel_execlists_set_default_submission;
if (INTEL_GEN(engine->i915) < 11) {
engine->irq_enable = gen8_logical_ring_enable_irq;
engine->irq_disable = gen8_logical_ring_disable_irq;
} else {
/*
* TODO: On Gen11 interrupt masks need to be clear
* to allow C6 entry. Keep interrupts enabled at
* and take the hit of generating extra interrupts
* until a more refined solution exists.
*/
}
}
static inline void
logical_ring_default_irqs(struct intel_engine_cs *engine)
{
unsigned int shift = 0;
if (INTEL_GEN(engine->i915) < 11) {
const u8 irq_shifts[] = {
[RCS0] = GEN8_RCS_IRQ_SHIFT,
[BCS0] = GEN8_BCS_IRQ_SHIFT,
[VCS0] = GEN8_VCS0_IRQ_SHIFT,
[VCS1] = GEN8_VCS1_IRQ_SHIFT,
[VECS0] = GEN8_VECS_IRQ_SHIFT,
};
shift = irq_shifts[engine->id];
}
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
}
static void rcs_submission_override(struct intel_engine_cs *engine)
{
switch (INTEL_GEN(engine->i915)) {
case 12:
engine->emit_flush = gen12_emit_flush_render;
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
break;
case 11:
engine->emit_flush = gen11_emit_flush_render;
engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
break;
default:
engine->emit_flush = gen8_emit_flush_render;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
break;
}
}
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
struct drm_i915_private *i915 = engine->i915;
struct intel_uncore *uncore = engine->uncore;
u32 base = engine->mmio_base;
tasklet_init(&engine->execlists.tasklet,
execlists_submission_tasklet, (unsigned long)engine);
timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
logical_ring_default_vfuncs(engine);
logical_ring_default_irqs(engine);
if (engine->class == RENDER_CLASS)
rcs_submission_override(engine);
if (intel_init_workaround_bb(engine))
/*
* We continue even if we fail to initialize WA batch
* because we only expect rare glitches but nothing
* critical to prevent us from using GPU
*/
DRM_ERROR("WA batch buffer initialization failed\n");
if (HAS_LOGICAL_RING_ELSQ(i915)) {
execlists->submit_reg = uncore->regs +
i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
execlists->ctrl_reg = uncore->regs +
i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
} else {
execlists->submit_reg = uncore->regs +
i915_mmio_reg_offset(RING_ELSP(base));
}
execlists->csb_status =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
execlists->csb_write =
&engine->status_page.addr[intel_hws_csb_write_index(i915)];
if (INTEL_GEN(i915) < 11)
execlists->csb_size = GEN8_CSB_ENTRIES;
else
execlists->csb_size = GEN11_CSB_ENTRIES;
reset_csb_pointers(engine);
/* Finally, take ownership and responsibility for cleanup! */
engine->release = execlists_release;
return 0;
}
static u32 intel_lr_indirect_ctx_offset(const struct intel_engine_cs *engine)
{
u32 indirect_ctx_offset;
switch (INTEL_GEN(engine->i915)) {
default:
MISSING_CASE(INTEL_GEN(engine->i915));
/* fall through */
case 12:
indirect_ctx_offset =
GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 11:
indirect_ctx_offset =
GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 10:
indirect_ctx_offset =
GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 9:
indirect_ctx_offset =
GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 8:
indirect_ctx_offset =
GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
}
return indirect_ctx_offset;
}
static void init_common_reg_state(u32 * const regs,
const struct intel_engine_cs *engine,
const struct intel_ring *ring,
bool inhibit)
{
u32 ctl;
ctl = _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH);
ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
if (inhibit)
ctl |= CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT;
if (INTEL_GEN(engine->i915) < 11)
ctl |= _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
CTX_CTRL_RS_CTX_ENABLE);
regs[CTX_CONTEXT_CONTROL] = ctl;
regs[CTX_RING_CTL] = RING_CTL_SIZE(ring->size) | RING_VALID;
}
static void init_wa_bb_reg_state(u32 * const regs,
const struct intel_engine_cs *engine,
u32 pos_bb_per_ctx)
{
const struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
if (wa_ctx->per_ctx.size) {
const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[pos_bb_per_ctx] =
(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
}
if (wa_ctx->indirect_ctx.size) {
const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
regs[pos_bb_per_ctx + 2] =
(ggtt_offset + wa_ctx->indirect_ctx.offset) |
(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
regs[pos_bb_per_ctx + 4] =
intel_lr_indirect_ctx_offset(engine) << 6;
}
}
static void init_ppgtt_reg_state(u32 *regs, const struct i915_ppgtt *ppgtt)
{
if (i915_vm_is_4lvl(&ppgtt->vm)) {
/* 64b PPGTT (48bit canonical)
* PDP0_DESCRIPTOR contains the base address to PML4 and
* other PDP Descriptors are ignored.
*/
ASSIGN_CTX_PML4(ppgtt, regs);
} else {
ASSIGN_CTX_PDP(ppgtt, regs, 3);
ASSIGN_CTX_PDP(ppgtt, regs, 2);
ASSIGN_CTX_PDP(ppgtt, regs, 1);
ASSIGN_CTX_PDP(ppgtt, regs, 0);
}
}
static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
{
if (i915_is_ggtt(vm))
return i915_vm_to_ggtt(vm)->alias;
else
return i915_vm_to_ppgtt(vm);
}
static void execlists_init_reg_state(u32 *regs,
const struct intel_context *ce,
const struct intel_engine_cs *engine,
const struct intel_ring *ring,
bool inhibit)
{
/*
* A context is actually a big batch buffer with several
* MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
* values we are setting here are only for the first context restore:
* on a subsequent save, the GPU will recreate this batchbuffer with new
* values (including all the missing MI_LOAD_REGISTER_IMM commands that
* we are not initializing here).
*
* Must keep consistent with virtual_update_register_offsets().
*/
set_offsets(regs, reg_offsets(engine), engine, inhibit);
init_common_reg_state(regs, engine, ring, inhibit);
init_ppgtt_reg_state(regs, vm_alias(ce->vm));
init_wa_bb_reg_state(regs, engine,
INTEL_GEN(engine->i915) >= 12 ?
GEN12_CTX_BB_PER_CTX_PTR :
CTX_BB_PER_CTX_PTR);
__reset_stop_ring(regs, engine);
}
static int
populate_lr_context(struct intel_context *ce,
struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *engine,
struct intel_ring *ring)
{
bool inhibit = true;
void *vaddr;
int ret;
vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
return ret;
}
set_redzone(vaddr, engine);
if (engine->default_state) {
void *defaults;
defaults = i915_gem_object_pin_map(engine->default_state,
I915_MAP_WB);
if (IS_ERR(defaults)) {
ret = PTR_ERR(defaults);
goto err_unpin_ctx;
}
memcpy(vaddr, defaults, engine->context_size);
i915_gem_object_unpin_map(engine->default_state);
__set_bit(CONTEXT_VALID_BIT, &ce->flags);
inhibit = false;
}
/* Clear the ppHWSP (inc. per-context counters) */
memset(vaddr, 0, PAGE_SIZE);
/*
* The second page of the context object contains some registers which
* must be set up prior to the first execution.
*/
execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
ce, engine, ring, inhibit);
ret = 0;
err_unpin_ctx:
__i915_gem_object_flush_map(ctx_obj, 0, engine->context_size);
i915_gem_object_unpin_map(ctx_obj);
return ret;
}
static int __execlists_context_alloc(struct intel_context *ce,
struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *ctx_obj;
struct intel_ring *ring;
struct i915_vma *vma;
u32 context_size;
int ret;
GEM_BUG_ON(ce->state);
context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
context_size += I915_GTT_PAGE_SIZE; /* for redzone */
ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
if (IS_ERR(ctx_obj))
return PTR_ERR(ctx_obj);
vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto error_deref_obj;
}
if (!ce->timeline) {
struct intel_timeline *tl;
struct i915_vma *hwsp;
/*
* Use the static global HWSP for the kernel context, and
* a dynamically allocated cacheline for everyone else.
*/
hwsp = NULL;
if (unlikely(intel_context_is_barrier(ce)))
hwsp = engine->status_page.vma;
tl = intel_timeline_create(engine->gt, hwsp);
if (IS_ERR(tl)) {
ret = PTR_ERR(tl);
goto error_deref_obj;
}
ce->timeline = tl;
}
ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
goto error_deref_obj;
}
ret = populate_lr_context(ce, ctx_obj, engine, ring);
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
goto error_ring_free;
}
ce->ring = ring;
ce->state = vma;
return 0;
error_ring_free:
intel_ring_put(ring);
error_deref_obj:
i915_gem_object_put(ctx_obj);
return ret;
}
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
return &ve->base.execlists.default_priolist.requests[0];
}
static void virtual_context_destroy(struct kref *kref)
{
struct virtual_engine *ve =
container_of(kref, typeof(*ve), context.ref);
unsigned int n;
GEM_BUG_ON(!list_empty(virtual_queue(ve)));
GEM_BUG_ON(ve->request);
GEM_BUG_ON(ve->context.inflight);
for (n = 0; n < ve->num_siblings; n++) {
struct intel_engine_cs *sibling = ve->siblings[n];
struct rb_node *node = &ve->nodes[sibling->id].rb;
unsigned long flags;
if (RB_EMPTY_NODE(node))
continue;
spin_lock_irqsave(&sibling->active.lock, flags);
/* Detachment is lazily performed in the execlists tasklet */
if (!RB_EMPTY_NODE(node))
rb_erase_cached(node, &sibling->execlists.virtual);
spin_unlock_irqrestore(&sibling->active.lock, flags);
}
GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
if (ve->context.state)
__execlists_context_fini(&ve->context);
intel_context_fini(&ve->context);
kfree(ve->bonds);
kfree(ve);
}
static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
int swp;
/*
* Pick a random sibling on starting to help spread the load around.
*
* New contexts are typically created with exactly the same order
* of siblings, and often started in batches. Due to the way we iterate
* the array of sibling when submitting requests, sibling[0] is
* prioritised for dequeuing. If we make sure that sibling[0] is fairly
* randomised across the system, we also help spread the load by the
* first engine we inspect being different each time.
*
* NB This does not force us to execute on this engine, it will just
* typically be the first we inspect for submission.
*/
swp = prandom_u32_max(ve->num_siblings);
if (!swp)
return;
swap(ve->siblings[swp], ve->siblings[0]);
if (!intel_engine_has_relative_mmio(ve->siblings[0]))
virtual_update_register_offsets(ve->context.lrc_reg_state,
ve->siblings[0]);
}
static int virtual_context_alloc(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
return __execlists_context_alloc(ce, ve->siblings[0]);
}
static int virtual_context_pin(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
int err;
/* Note: we must use a real engine class for setting up reg state */
err = __execlists_context_pin(ce, ve->siblings[0]);
if (err)
return err;
virtual_engine_initial_hint(ve);
return 0;
}
static void virtual_context_enter(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
unsigned int n;
for (n = 0; n < ve->num_siblings; n++)
intel_engine_pm_get(ve->siblings[n]);
intel_timeline_enter(ce->timeline);
}
static void virtual_context_exit(struct intel_context *ce)
{
struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
unsigned int n;
intel_timeline_exit(ce->timeline);
for (n = 0; n < ve->num_siblings; n++)
intel_engine_pm_put(ve->siblings[n]);
}
static const struct intel_context_ops virtual_context_ops = {
.alloc = virtual_context_alloc,
.pin = virtual_context_pin,
.unpin = execlists_context_unpin,
.enter = virtual_context_enter,
.exit = virtual_context_exit,
.destroy = virtual_context_destroy,
};
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
struct i915_request *rq;
intel_engine_mask_t mask;
rq = READ_ONCE(ve->request);
if (!rq)
return 0;
/* The rq is ready for submission; rq->execution_mask is now stable. */
mask = rq->execution_mask;
if (unlikely(!mask)) {
/* Invalid selection, submit to a random engine in error */
i915_request_set_error_once(rq, -ENODEV);
mask = ve->siblings[0]->mask;
}
ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
rq->fence.context, rq->fence.seqno,
mask, ve->base.execlists.queue_priority_hint);
return mask;
}
static void virtual_submission_tasklet(unsigned long data)
{
struct virtual_engine * const ve = (struct virtual_engine *)data;
const int prio = ve->base.execlists.queue_priority_hint;
intel_engine_mask_t mask;
unsigned int n;
rcu_read_lock();
mask = virtual_submission_mask(ve);
rcu_read_unlock();
if (unlikely(!mask))
return;
local_irq_disable();
for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
struct intel_engine_cs *sibling = ve->siblings[n];
struct ve_node * const node = &ve->nodes[sibling->id];
struct rb_node **parent, *rb;
bool first;
if (unlikely(!(mask & sibling->mask))) {
if (!RB_EMPTY_NODE(&node->rb)) {
spin_lock(&sibling->active.lock);
rb_erase_cached(&node->rb,
&sibling->execlists.virtual);
RB_CLEAR_NODE(&node->rb);
spin_unlock(&sibling->active.lock);
}
continue;
}
spin_lock(&sibling->active.lock);
if (!RB_EMPTY_NODE(&node->rb)) {
/*
* Cheat and avoid rebalancing the tree if we can
* reuse this node in situ.
*/
first = rb_first_cached(&sibling->execlists.virtual) ==
&node->rb;
if (prio == node->prio || (prio > node->prio && first))
goto submit_engine;
rb_erase_cached(&node->rb, &sibling->execlists.virtual);
}
rb = NULL;
first = true;
parent = &sibling->execlists.virtual.rb_root.rb_node;
while (*parent) {
struct ve_node *other;
rb = *parent;
other = rb_entry(rb, typeof(*other), rb);
if (prio > other->prio) {
parent = &rb->rb_left;
} else {
parent = &rb->rb_right;
first = false;
}
}
rb_link_node(&node->rb, rb, parent);
rb_insert_color_cached(&node->rb,
&sibling->execlists.virtual,
first);
submit_engine:
GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
node->prio = prio;
if (first && prio > sibling->execlists.queue_priority_hint) {
sibling->execlists.queue_priority_hint = prio;
tasklet_hi_schedule(&sibling->execlists.tasklet);
}
spin_unlock(&sibling->active.lock);
}
local_irq_enable();
}
static void virtual_submit_request(struct i915_request *rq)
{
struct virtual_engine *ve = to_virtual_engine(rq->engine);
struct i915_request *old;
unsigned long flags;
ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
rq->fence.context,
rq->fence.seqno);
GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
spin_lock_irqsave(&ve->base.active.lock, flags);
old = ve->request;
if (old) { /* background completion event from preempt-to-busy */
GEM_BUG_ON(!i915_request_completed(old));
__i915_request_submit(old);
i915_request_put(old);
}
if (i915_request_completed(rq)) {
__i915_request_submit(rq);
ve->base.execlists.queue_priority_hint = INT_MIN;
ve->request = NULL;
} else {
ve->base.execlists.queue_priority_hint = rq_prio(rq);
ve->request = i915_request_get(rq);
GEM_BUG_ON(!list_empty(virtual_queue(ve)));
list_move_tail(&rq->sched.link, virtual_queue(ve));
tasklet_schedule(&ve->base.execlists.tasklet);
}
spin_unlock_irqrestore(&ve->base.active.lock, flags);
}
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
const struct intel_engine_cs *master)
{
int i;
for (i = 0; i < ve->num_bonds; i++) {
if (ve->bonds[i].master == master)
return &ve->bonds[i];
}
return NULL;
}
static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
struct virtual_engine *ve = to_virtual_engine(rq->engine);
intel_engine_mask_t allowed, exec;
struct ve_bond *bond;
allowed = ~to_request(signal)->engine->mask;
bond = virtual_find_bond(ve, to_request(signal)->engine);
if (bond)
allowed &= bond->sibling_mask;
/* Restrict the bonded request to run on only the available engines */
exec = READ_ONCE(rq->execution_mask);
while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
;
/* Prevent the master from being re-run on the bonded engines */
to_request(signal)->execution_mask &= ~allowed;
}
struct intel_context *
intel_execlists_create_virtual(struct intel_engine_cs **siblings,
unsigned int count)
{
struct virtual_engine *ve;
unsigned int n;
int err;
if (count == 0)
return ERR_PTR(-EINVAL);
if (count == 1)
return intel_context_create(siblings[0]);
ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
if (!ve)
return ERR_PTR(-ENOMEM);
ve->base.i915 = siblings[0]->i915;
ve->base.gt = siblings[0]->gt;
ve->base.uncore = siblings[0]->uncore;
ve->base.id = -1;
ve->base.class = OTHER_CLASS;
ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
/*
* The decision on whether to submit a request using semaphores
* depends on the saturated state of the engine. We only compute
* this during HW submission of the request, and we need for this
* state to be globally applied to all requests being submitted
* to this engine. Virtual engines encompass more than one physical
* engine and so we cannot accurately tell in advance if one of those
* engines is already saturated and so cannot afford to use a semaphore
* and be pessimized in priority for doing so -- if we are the only
* context using semaphores after all other clients have stopped, we
* will be starved on the saturated system. Such a global switch for
* semaphores is less than ideal, but alas is the current compromise.
*/
ve->base.saturated = ALL_ENGINES;
snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
intel_engine_init_breadcrumbs(&ve->base);
intel_engine_init_execlists(&ve->base);
ve->base.cops = &virtual_context_ops;
ve->base.request_alloc = execlists_request_alloc;
ve->base.schedule = i915_schedule;
ve->base.submit_request = virtual_submit_request;
ve->base.bond_execute = virtual_bond_execute;
INIT_LIST_HEAD(virtual_queue(ve));
ve->base.execlists.queue_priority_hint = INT_MIN;
tasklet_init(&ve->base.execlists.tasklet,
virtual_submission_tasklet,
(unsigned long)ve);
intel_context_init(&ve->context, &ve->base);
for (n = 0; n < count; n++) {
struct intel_engine_cs *sibling = siblings[n];
GEM_BUG_ON(!is_power_of_2(sibling->mask));
if (sibling->mask & ve->base.mask) {
DRM_DEBUG("duplicate %s entry in load balancer\n",
sibling->name);
err = -EINVAL;
goto err_put;
}
/*
* The virtual engine implementation is tightly coupled to
* the execlists backend -- we push out request directly
* into a tree inside each physical engine. We could support
* layering if we handle cloning of the requests and
* submitting a copy into each backend.
*/
if (sibling->execlists.tasklet.func !=
execlists_submission_tasklet) {
err = -ENODEV;
goto err_put;
}
GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
ve->siblings[ve->num_siblings++] = sibling;
ve->base.mask |= sibling->mask;
/*
* All physical engines must be compatible for their emission
* functions (as we build the instructions during request
* construction and do not alter them before submission
* on the physical engine). We use the engine class as a guide
* here, although that could be refined.
*/
if (ve->base.class != OTHER_CLASS) {
if (ve->base.class != sibling->class) {
DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
sibling->class, ve->base.class);
err = -EINVAL;
goto err_put;
}
continue;
}
ve->base.class = sibling->class;
ve->base.uabi_class = sibling->uabi_class;
snprintf(ve->base.name, sizeof(ve->base.name),
"v%dx%d", ve->base.class, count);
ve->base.context_size = sibling->context_size;
ve->base.emit_bb_start = sibling->emit_bb_start;
ve->base.emit_flush = sibling->emit_flush;
ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
ve->base.emit_fini_breadcrumb_dw =
sibling->emit_fini_breadcrumb_dw;
ve->base.flags = sibling->flags;
}
ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
return &ve->context;
err_put:
intel_context_put(&ve->context);
return ERR_PTR(err);
}
struct intel_context *
intel_execlists_clone_virtual(struct intel_engine_cs *src)
{
struct virtual_engine *se = to_virtual_engine(src);
struct intel_context *dst;
dst = intel_execlists_create_virtual(se->siblings,
se->num_siblings);
if (IS_ERR(dst))
return dst;
if (se->num_bonds) {
struct virtual_engine *de = to_virtual_engine(dst->engine);
de->bonds = kmemdup(se->bonds,
sizeof(*se->bonds) * se->num_bonds,
GFP_KERNEL);
if (!de->bonds) {
intel_context_put(dst);
return ERR_PTR(-ENOMEM);
}
de->num_bonds = se->num_bonds;
}
return dst;
}
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
const struct intel_engine_cs *master,
const struct intel_engine_cs *sibling)
{
struct virtual_engine *ve = to_virtual_engine(engine);
struct ve_bond *bond;
int n;
/* Sanity check the sibling is part of the virtual engine */
for (n = 0; n < ve->num_siblings; n++)
if (sibling == ve->siblings[n])
break;
if (n == ve->num_siblings)
return -EINVAL;
bond = virtual_find_bond(ve, master);
if (bond) {
bond->sibling_mask |= sibling->mask;
return 0;
}
bond = krealloc(ve->bonds,
sizeof(*bond) * (ve->num_bonds + 1),
GFP_KERNEL);
if (!bond)
return -ENOMEM;
bond[ve->num_bonds].master = master;
bond[ve->num_bonds].sibling_mask = sibling->mask;
ve->bonds = bond;
ve->num_bonds++;
return 0;
}
struct intel_engine_cs *
intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
unsigned int sibling)
{
struct virtual_engine *ve = to_virtual_engine(engine);
if (sibling >= ve->num_siblings)
return NULL;
return ve->siblings[sibling];
}
void intel_execlists_show_requests(struct intel_engine_cs *engine,
struct drm_printer *m,
void (*show_request)(struct drm_printer *m,
struct i915_request *rq,
const char *prefix),
unsigned int max)
{
const struct intel_engine_execlists *execlists = &engine->execlists;
struct i915_request *rq, *last;
unsigned long flags;
unsigned int count;
struct rb_node *rb;
spin_lock_irqsave(&engine->active.lock, flags);
last = NULL;
count = 0;
list_for_each_entry(rq, &engine->active.requests, sched.link) {
if (count++ < max - 1)
show_request(m, rq, "\t\tE ");
else
last = rq;
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d executing requests...\n",
count - max);
}
show_request(m, last, "\t\tE ");
}
last = NULL;
count = 0;
if (execlists->queue_priority_hint != INT_MIN)
drm_printf(m, "\t\tQueue priority hint: %d\n",
execlists->queue_priority_hint);
for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
int i;
priolist_for_each_request(rq, p, i) {
if (count++ < max - 1)
show_request(m, rq, "\t\tQ ");
else
last = rq;
}
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d queued requests...\n",
count - max);
}
show_request(m, last, "\t\tQ ");
}
last = NULL;
count = 0;
for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
struct virtual_engine *ve =
rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
struct i915_request *rq = READ_ONCE(ve->request);
if (rq) {
if (count++ < max - 1)
show_request(m, rq, "\t\tV ");
else
last = rq;
}
}
if (last) {
if (count > max) {
drm_printf(m,
"\t\t...skipping %d virtual requests...\n",
count - max);
}
show_request(m, last, "\t\tV ");
}
spin_unlock_irqrestore(&engine->active.lock, flags);
}
void intel_lr_context_reset(struct intel_engine_cs *engine,
struct intel_context *ce,
u32 head,
bool scrub)
{
GEM_BUG_ON(!intel_context_is_pinned(ce));
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
if (scrub)
restore_default_state(ce, engine);
/* Rerun the request; its payload has been neutered (if guilty). */
__execlists_update_reg_state(ce, engine, head);
}
bool
intel_engine_in_execlists_submission_mode(const struct intel_engine_cs *engine)
{
return engine->set_default_submission ==
intel_execlists_set_default_submission;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_lrc.c"
#endif