mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-21 09:08:45 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
150 lines
3.7 KiB
C
150 lines
3.7 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Header file for the compaq Micro MFD
|
|
*/
|
|
|
|
#ifndef _MFD_IPAQ_MICRO_H_
|
|
#define _MFD_IPAQ_MICRO_H_
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/list.h>
|
|
|
|
#define TX_BUF_SIZE 32
|
|
#define RX_BUF_SIZE 16
|
|
#define CHAR_SOF 0x02
|
|
|
|
/*
|
|
* These are the different messages that can be sent to the microcontroller
|
|
* to control various aspects.
|
|
*/
|
|
#define MSG_VERSION 0x0
|
|
#define MSG_KEYBOARD 0x2
|
|
#define MSG_TOUCHSCREEN 0x3
|
|
#define MSG_EEPROM_READ 0x4
|
|
#define MSG_EEPROM_WRITE 0x5
|
|
#define MSG_THERMAL_SENSOR 0x6
|
|
#define MSG_NOTIFY_LED 0x8
|
|
#define MSG_BATTERY 0x9
|
|
#define MSG_SPI_READ 0xb
|
|
#define MSG_SPI_WRITE 0xc
|
|
#define MSG_BACKLIGHT 0xd /* H3600 only */
|
|
#define MSG_CODEC_CTRL 0xe /* H3100 only */
|
|
#define MSG_DISPLAY_CTRL 0xf /* H3100 only */
|
|
|
|
/* state of receiver parser */
|
|
enum rx_state {
|
|
STATE_SOF = 0, /* Next byte should be start of frame */
|
|
STATE_ID, /* Next byte is ID & message length */
|
|
STATE_DATA, /* Next byte is a data byte */
|
|
STATE_CHKSUM /* Next byte should be checksum */
|
|
};
|
|
|
|
/**
|
|
* struct ipaq_micro_txdev - TX state
|
|
* @len: length of message in TX buffer
|
|
* @index: current index into TX buffer
|
|
* @buf: TX buffer
|
|
*/
|
|
struct ipaq_micro_txdev {
|
|
u8 len;
|
|
u8 index;
|
|
u8 buf[TX_BUF_SIZE];
|
|
};
|
|
|
|
/**
|
|
* struct ipaq_micro_rxdev - RX state
|
|
* @state: context of RX state machine
|
|
* @chksum: calculated checksum
|
|
* @id: message ID from packet
|
|
* @len: RX buffer length
|
|
* @index: RX buffer index
|
|
* @buf: RX buffer
|
|
*/
|
|
struct ipaq_micro_rxdev {
|
|
enum rx_state state;
|
|
unsigned char chksum;
|
|
u8 id;
|
|
unsigned int len;
|
|
unsigned int index;
|
|
u8 buf[RX_BUF_SIZE];
|
|
};
|
|
|
|
/**
|
|
* struct ipaq_micro_msg - message to the iPAQ microcontroller
|
|
* @id: 4-bit ID of the message
|
|
* @tx_len: length of TX data
|
|
* @tx_data: TX data to send
|
|
* @rx_len: length of receieved RX data
|
|
* @rx_data: RX data to recieve
|
|
* @ack: a completion that will be completed when RX is complete
|
|
* @node: list node if message gets queued
|
|
*/
|
|
struct ipaq_micro_msg {
|
|
u8 id;
|
|
u8 tx_len;
|
|
u8 tx_data[TX_BUF_SIZE];
|
|
u8 rx_len;
|
|
u8 rx_data[RX_BUF_SIZE];
|
|
struct completion ack;
|
|
struct list_head node;
|
|
};
|
|
|
|
/**
|
|
* struct ipaq_micro - iPAQ microcontroller state
|
|
* @dev: corresponding platform device
|
|
* @base: virtual memory base for underlying serial device
|
|
* @sdlc: virtual memory base for Synchronous Data Link Controller
|
|
* @version: version string
|
|
* @tx: TX state
|
|
* @rx: RX state
|
|
* @lock: lock for this state container
|
|
* @msg: current message
|
|
* @queue: message queue
|
|
* @key: callback for asynchronous key events
|
|
* @key_data: data to pass along with key events
|
|
* @ts: callback for asynchronous touchscreen events
|
|
* @ts_data: data to pass along with key events
|
|
*/
|
|
struct ipaq_micro {
|
|
struct device *dev;
|
|
void __iomem *base;
|
|
void __iomem *sdlc;
|
|
char version[5];
|
|
struct ipaq_micro_txdev tx; /* transmit ISR state */
|
|
struct ipaq_micro_rxdev rx; /* receive ISR state */
|
|
spinlock_t lock;
|
|
struct ipaq_micro_msg *msg;
|
|
struct list_head queue;
|
|
void (*key) (void *data, int len, unsigned char *rxdata);
|
|
void *key_data;
|
|
void (*ts) (void *data, int len, unsigned char *rxdata);
|
|
void *ts_data;
|
|
};
|
|
|
|
extern int
|
|
ipaq_micro_tx_msg(struct ipaq_micro *micro, struct ipaq_micro_msg *msg);
|
|
|
|
static inline int
|
|
ipaq_micro_tx_msg_sync(struct ipaq_micro *micro,
|
|
struct ipaq_micro_msg *msg)
|
|
{
|
|
int ret;
|
|
|
|
init_completion(&msg->ack);
|
|
ret = ipaq_micro_tx_msg(micro, msg);
|
|
wait_for_completion(&msg->ack);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int
|
|
ipaq_micro_tx_msg_async(struct ipaq_micro *micro,
|
|
struct ipaq_micro_msg *msg)
|
|
{
|
|
init_completion(&msg->ack);
|
|
return ipaq_micro_tx_msg(micro, msg);
|
|
}
|
|
|
|
#endif /* _MFD_IPAQ_MICRO_H_ */
|