mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 00:06:51 +07:00
2a4885abf5
In double buffer mode, during residue calculation, the DMA can automatically switch to the next transfer. Indeed the CT bit that gives position in the double buffer can has been updated by the hardware, during calculation. In this case the SxNDTR register value can not be trusted. If a transition is detected we consider that the DMA has switched to the beginning of next sg. Signed-off-by: Arnaud Pouliquen <arnaud.pouliquen@st.com> Signed-off-by: Pierre-Yves MORDRET <pierre-yves.mordret@st.com> Signed-off-by: Vinod Koul <vkoul@kernel.org>
1460 lines
40 KiB
C
1460 lines
40 KiB
C
/*
|
|
* Driver for STM32 DMA controller
|
|
*
|
|
* Inspired by dma-jz4740.c and tegra20-apb-dma.c
|
|
*
|
|
* Copyright (C) M'boumba Cedric Madianga 2015
|
|
* Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
|
|
* Pierre-Yves Mordret <pierre-yves.mordret@st.com>
|
|
*
|
|
* License terms: GNU General Public License (GPL), version 2
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "virt-dma.h"
|
|
|
|
#define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
|
|
#define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
|
|
#define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
|
|
#define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
|
|
#define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
|
|
#define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
|
|
#define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
|
|
#define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
|
|
#define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
|
|
#define STM32_DMA_MASKI (STM32_DMA_TCI \
|
|
| STM32_DMA_TEI \
|
|
| STM32_DMA_DMEI \
|
|
| STM32_DMA_FEI)
|
|
|
|
/* DMA Stream x Configuration Register */
|
|
#define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
|
|
#define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
|
|
#define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
|
|
#define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
|
|
#define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
|
|
#define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
|
|
#define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
|
|
#define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
|
|
#define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
|
|
#define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
|
|
#define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
|
|
#define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
|
|
#define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
|
|
#define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
|
|
#define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
|
|
#define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
|
|
#define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
|
|
#define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
|
|
#define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
|
|
#define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
|
|
#define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
|
|
#define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
|
|
#define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
|
|
*/
|
|
#define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
|
|
#define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
|
|
#define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
|
|
#define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
|
|
| STM32_DMA_SCR_MINC \
|
|
| STM32_DMA_SCR_PINCOS \
|
|
| STM32_DMA_SCR_PL_MASK)
|
|
#define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
|
|
| STM32_DMA_SCR_TEIE \
|
|
| STM32_DMA_SCR_DMEIE)
|
|
|
|
/* DMA Stream x number of data register */
|
|
#define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
|
|
|
|
/* DMA stream peripheral address register */
|
|
#define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
|
|
|
|
/* DMA stream x memory 0 address register */
|
|
#define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
|
|
|
|
/* DMA stream x memory 1 address register */
|
|
#define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
|
|
|
|
/* DMA stream x FIFO control register */
|
|
#define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
|
|
#define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
|
|
#define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
|
|
#define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
|
|
#define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
|
|
#define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
|
|
| STM32_DMA_SFCR_DMDIS)
|
|
|
|
/* DMA direction */
|
|
#define STM32_DMA_DEV_TO_MEM 0x00
|
|
#define STM32_DMA_MEM_TO_DEV 0x01
|
|
#define STM32_DMA_MEM_TO_MEM 0x02
|
|
|
|
/* DMA priority level */
|
|
#define STM32_DMA_PRIORITY_LOW 0x00
|
|
#define STM32_DMA_PRIORITY_MEDIUM 0x01
|
|
#define STM32_DMA_PRIORITY_HIGH 0x02
|
|
#define STM32_DMA_PRIORITY_VERY_HIGH 0x03
|
|
|
|
/* DMA FIFO threshold selection */
|
|
#define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
|
|
#define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
|
|
#define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
|
|
#define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
|
|
|
|
#define STM32_DMA_MAX_DATA_ITEMS 0xffff
|
|
/*
|
|
* Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
|
|
* gather at boundary. Thus it's safer to round down this value on FIFO
|
|
* size (16 Bytes)
|
|
*/
|
|
#define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
|
|
ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
|
|
#define STM32_DMA_MAX_CHANNELS 0x08
|
|
#define STM32_DMA_MAX_REQUEST_ID 0x08
|
|
#define STM32_DMA_MAX_DATA_PARAM 0x03
|
|
#define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
|
|
#define STM32_DMA_MIN_BURST 4
|
|
#define STM32_DMA_MAX_BURST 16
|
|
|
|
/* DMA Features */
|
|
#define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
|
|
#define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
|
|
|
|
enum stm32_dma_width {
|
|
STM32_DMA_BYTE,
|
|
STM32_DMA_HALF_WORD,
|
|
STM32_DMA_WORD,
|
|
};
|
|
|
|
enum stm32_dma_burst_size {
|
|
STM32_DMA_BURST_SINGLE,
|
|
STM32_DMA_BURST_INCR4,
|
|
STM32_DMA_BURST_INCR8,
|
|
STM32_DMA_BURST_INCR16,
|
|
};
|
|
|
|
/**
|
|
* struct stm32_dma_cfg - STM32 DMA custom configuration
|
|
* @channel_id: channel ID
|
|
* @request_line: DMA request
|
|
* @stream_config: 32bit mask specifying the DMA channel configuration
|
|
* @features: 32bit mask specifying the DMA Feature list
|
|
*/
|
|
struct stm32_dma_cfg {
|
|
u32 channel_id;
|
|
u32 request_line;
|
|
u32 stream_config;
|
|
u32 features;
|
|
};
|
|
|
|
struct stm32_dma_chan_reg {
|
|
u32 dma_lisr;
|
|
u32 dma_hisr;
|
|
u32 dma_lifcr;
|
|
u32 dma_hifcr;
|
|
u32 dma_scr;
|
|
u32 dma_sndtr;
|
|
u32 dma_spar;
|
|
u32 dma_sm0ar;
|
|
u32 dma_sm1ar;
|
|
u32 dma_sfcr;
|
|
};
|
|
|
|
struct stm32_dma_sg_req {
|
|
u32 len;
|
|
struct stm32_dma_chan_reg chan_reg;
|
|
};
|
|
|
|
struct stm32_dma_desc {
|
|
struct virt_dma_desc vdesc;
|
|
bool cyclic;
|
|
u32 num_sgs;
|
|
struct stm32_dma_sg_req sg_req[];
|
|
};
|
|
|
|
struct stm32_dma_chan {
|
|
struct virt_dma_chan vchan;
|
|
bool config_init;
|
|
bool busy;
|
|
u32 id;
|
|
u32 irq;
|
|
struct stm32_dma_desc *desc;
|
|
u32 next_sg;
|
|
struct dma_slave_config dma_sconfig;
|
|
struct stm32_dma_chan_reg chan_reg;
|
|
u32 threshold;
|
|
u32 mem_burst;
|
|
u32 mem_width;
|
|
};
|
|
|
|
struct stm32_dma_device {
|
|
struct dma_device ddev;
|
|
void __iomem *base;
|
|
struct clk *clk;
|
|
struct reset_control *rst;
|
|
bool mem2mem;
|
|
struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
|
|
};
|
|
|
|
static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
|
|
{
|
|
return container_of(chan->vchan.chan.device, struct stm32_dma_device,
|
|
ddev);
|
|
}
|
|
|
|
static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct stm32_dma_chan, vchan.chan);
|
|
}
|
|
|
|
static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
return container_of(vdesc, struct stm32_dma_desc, vdesc);
|
|
}
|
|
|
|
static struct device *chan2dev(struct stm32_dma_chan *chan)
|
|
{
|
|
return &chan->vchan.chan.dev->device;
|
|
}
|
|
|
|
static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
|
|
{
|
|
return readl_relaxed(dmadev->base + reg);
|
|
}
|
|
|
|
static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
|
|
{
|
|
writel_relaxed(val, dmadev->base + reg);
|
|
}
|
|
|
|
static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs)
|
|
{
|
|
return kzalloc(sizeof(struct stm32_dma_desc) +
|
|
sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT);
|
|
}
|
|
|
|
static int stm32_dma_get_width(struct stm32_dma_chan *chan,
|
|
enum dma_slave_buswidth width)
|
|
{
|
|
switch (width) {
|
|
case DMA_SLAVE_BUSWIDTH_1_BYTE:
|
|
return STM32_DMA_BYTE;
|
|
case DMA_SLAVE_BUSWIDTH_2_BYTES:
|
|
return STM32_DMA_HALF_WORD;
|
|
case DMA_SLAVE_BUSWIDTH_4_BYTES:
|
|
return STM32_DMA_WORD;
|
|
default:
|
|
dev_err(chan2dev(chan), "Dma bus width not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
|
|
u32 threshold)
|
|
{
|
|
enum dma_slave_buswidth max_width;
|
|
|
|
if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
|
|
max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
else
|
|
max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
|
|
while ((buf_len < max_width || buf_len % max_width) &&
|
|
max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
|
|
max_width = max_width >> 1;
|
|
|
|
return max_width;
|
|
}
|
|
|
|
static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
|
|
enum dma_slave_buswidth width)
|
|
{
|
|
u32 remaining;
|
|
|
|
if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
|
|
if (burst != 0) {
|
|
/*
|
|
* If number of beats fit in several whole bursts
|
|
* this configuration is allowed.
|
|
*/
|
|
remaining = ((STM32_DMA_FIFO_SIZE / width) *
|
|
(threshold + 1) / 4) % burst;
|
|
|
|
if (remaining == 0)
|
|
return true;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
|
|
{
|
|
/*
|
|
* Buffer or period length has to be aligned on FIFO depth.
|
|
* Otherwise bytes may be stuck within FIFO at buffer or period
|
|
* length.
|
|
*/
|
|
return ((buf_len % ((threshold + 1) * 4)) == 0);
|
|
}
|
|
|
|
static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
|
|
enum dma_slave_buswidth width)
|
|
{
|
|
u32 best_burst = max_burst;
|
|
|
|
if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
|
|
return 0;
|
|
|
|
while ((buf_len < best_burst * width && best_burst > 1) ||
|
|
!stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
|
|
width)) {
|
|
if (best_burst > STM32_DMA_MIN_BURST)
|
|
best_burst = best_burst >> 1;
|
|
else
|
|
best_burst = 0;
|
|
}
|
|
|
|
return best_burst;
|
|
}
|
|
|
|
static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
|
|
{
|
|
switch (maxburst) {
|
|
case 0:
|
|
case 1:
|
|
return STM32_DMA_BURST_SINGLE;
|
|
case 4:
|
|
return STM32_DMA_BURST_INCR4;
|
|
case 8:
|
|
return STM32_DMA_BURST_INCR8;
|
|
case 16:
|
|
return STM32_DMA_BURST_INCR16;
|
|
default:
|
|
dev_err(chan2dev(chan), "Dma burst size not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
|
|
u32 src_burst, u32 dst_burst)
|
|
{
|
|
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
|
|
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
|
|
|
|
if (!src_burst && !dst_burst) {
|
|
/* Using direct mode */
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
|
|
} else {
|
|
/* Using FIFO mode */
|
|
chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
|
|
}
|
|
}
|
|
|
|
static int stm32_dma_slave_config(struct dma_chan *c,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
|
|
memcpy(&chan->dma_sconfig, config, sizeof(*config));
|
|
|
|
chan->config_init = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 flags, dma_isr;
|
|
|
|
/*
|
|
* Read "flags" from DMA_xISR register corresponding to the selected
|
|
* DMA channel at the correct bit offset inside that register.
|
|
*
|
|
* If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
|
|
* If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
|
|
*/
|
|
|
|
if (chan->id & 4)
|
|
dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
|
|
else
|
|
dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
|
|
|
|
flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
|
|
|
|
return flags & STM32_DMA_MASKI;
|
|
}
|
|
|
|
static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 dma_ifcr;
|
|
|
|
/*
|
|
* Write "flags" to the DMA_xIFCR register corresponding to the selected
|
|
* DMA channel at the correct bit offset inside that register.
|
|
*
|
|
* If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
|
|
* If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
|
|
*/
|
|
flags &= STM32_DMA_MASKI;
|
|
dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
|
|
|
|
if (chan->id & 4)
|
|
stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
|
|
else
|
|
stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
|
|
}
|
|
|
|
static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(5000);
|
|
u32 dma_scr, id;
|
|
|
|
id = chan->id;
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
|
|
if (dma_scr & STM32_DMA_SCR_EN) {
|
|
dma_scr &= ~STM32_DMA_SCR_EN;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
|
|
|
|
do {
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
dma_scr &= STM32_DMA_SCR_EN;
|
|
if (!dma_scr)
|
|
break;
|
|
|
|
if (time_after_eq(jiffies, timeout)) {
|
|
dev_err(chan2dev(chan), "%s: timeout!\n",
|
|
__func__);
|
|
return -EBUSY;
|
|
}
|
|
cond_resched();
|
|
} while (1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma_stop(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 dma_scr, dma_sfcr, status;
|
|
int ret;
|
|
|
|
/* Disable interrupts */
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
|
|
dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
|
|
dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
|
|
stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
|
|
|
|
/* Disable DMA */
|
|
ret = stm32_dma_disable_chan(chan);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
/* Clear interrupt status if it is there */
|
|
status = stm32_dma_irq_status(chan);
|
|
if (status) {
|
|
dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
|
|
__func__, status);
|
|
stm32_dma_irq_clear(chan, status);
|
|
}
|
|
|
|
chan->busy = false;
|
|
}
|
|
|
|
static int stm32_dma_terminate_all(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
|
|
if (chan->busy) {
|
|
stm32_dma_stop(chan);
|
|
chan->desc = NULL;
|
|
}
|
|
|
|
vchan_get_all_descriptors(&chan->vchan, &head);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
vchan_dma_desc_free_list(&chan->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma_synchronize(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
|
|
vchan_synchronize(&chan->vchan);
|
|
}
|
|
|
|
static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
|
|
u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
|
|
u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
|
|
u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
|
|
u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
|
|
|
|
dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
|
|
dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
|
|
dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
|
|
dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
|
|
dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
|
|
dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
|
|
}
|
|
|
|
static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
|
|
|
|
static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
struct stm32_dma_sg_req *sg_req;
|
|
struct stm32_dma_chan_reg *reg;
|
|
u32 status;
|
|
int ret;
|
|
|
|
ret = stm32_dma_disable_chan(chan);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
if (!chan->desc) {
|
|
vdesc = vchan_next_desc(&chan->vchan);
|
|
if (!vdesc)
|
|
return;
|
|
|
|
chan->desc = to_stm32_dma_desc(vdesc);
|
|
chan->next_sg = 0;
|
|
}
|
|
|
|
if (chan->next_sg == chan->desc->num_sgs)
|
|
chan->next_sg = 0;
|
|
|
|
sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
reg = &sg_req->chan_reg;
|
|
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
|
|
stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
|
|
stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
|
|
stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
|
|
stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
|
|
stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
|
|
|
|
chan->next_sg++;
|
|
|
|
/* Clear interrupt status if it is there */
|
|
status = stm32_dma_irq_status(chan);
|
|
if (status)
|
|
stm32_dma_irq_clear(chan, status);
|
|
|
|
if (chan->desc->cyclic)
|
|
stm32_dma_configure_next_sg(chan);
|
|
|
|
stm32_dma_dump_reg(chan);
|
|
|
|
/* Start DMA */
|
|
reg->dma_scr |= STM32_DMA_SCR_EN;
|
|
stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
|
|
|
|
chan->busy = true;
|
|
|
|
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
|
|
}
|
|
|
|
static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct stm32_dma_sg_req *sg_req;
|
|
u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
|
|
|
|
id = chan->id;
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
|
|
if (dma_scr & STM32_DMA_SCR_DBM) {
|
|
if (chan->next_sg == chan->desc->num_sgs)
|
|
chan->next_sg = 0;
|
|
|
|
sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
|
|
if (dma_scr & STM32_DMA_SCR_CT) {
|
|
dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
|
|
stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
|
|
dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
|
|
stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
|
|
} else {
|
|
dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
|
|
stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
|
|
dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
|
|
stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
|
|
{
|
|
if (chan->desc) {
|
|
if (chan->desc->cyclic) {
|
|
vchan_cyclic_callback(&chan->desc->vdesc);
|
|
chan->next_sg++;
|
|
stm32_dma_configure_next_sg(chan);
|
|
} else {
|
|
chan->busy = false;
|
|
if (chan->next_sg == chan->desc->num_sgs) {
|
|
list_del(&chan->desc->vdesc.node);
|
|
vchan_cookie_complete(&chan->desc->vdesc);
|
|
chan->desc = NULL;
|
|
}
|
|
stm32_dma_start_transfer(chan);
|
|
}
|
|
}
|
|
}
|
|
|
|
static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
|
|
{
|
|
struct stm32_dma_chan *chan = devid;
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
u32 status, scr, sfcr;
|
|
|
|
spin_lock(&chan->vchan.lock);
|
|
|
|
status = stm32_dma_irq_status(chan);
|
|
scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
|
|
|
|
if (status & STM32_DMA_TCI) {
|
|
stm32_dma_irq_clear(chan, STM32_DMA_TCI);
|
|
if (scr & STM32_DMA_SCR_TCIE)
|
|
stm32_dma_handle_chan_done(chan);
|
|
status &= ~STM32_DMA_TCI;
|
|
}
|
|
if (status & STM32_DMA_HTI) {
|
|
stm32_dma_irq_clear(chan, STM32_DMA_HTI);
|
|
status &= ~STM32_DMA_HTI;
|
|
}
|
|
if (status & STM32_DMA_FEI) {
|
|
stm32_dma_irq_clear(chan, STM32_DMA_FEI);
|
|
status &= ~STM32_DMA_FEI;
|
|
if (sfcr & STM32_DMA_SFCR_FEIE) {
|
|
if (!(scr & STM32_DMA_SCR_EN))
|
|
dev_err(chan2dev(chan), "FIFO Error\n");
|
|
else
|
|
dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
|
|
}
|
|
}
|
|
if (status) {
|
|
stm32_dma_irq_clear(chan, status);
|
|
dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
|
|
if (!(scr & STM32_DMA_SCR_EN))
|
|
dev_err(chan2dev(chan), "chan disabled by HW\n");
|
|
}
|
|
|
|
spin_unlock(&chan->vchan.lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void stm32_dma_issue_pending(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
|
|
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
|
|
stm32_dma_start_transfer(chan);
|
|
|
|
}
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
|
|
enum dma_transfer_direction direction,
|
|
enum dma_slave_buswidth *buswidth,
|
|
u32 buf_len)
|
|
{
|
|
enum dma_slave_buswidth src_addr_width, dst_addr_width;
|
|
int src_bus_width, dst_bus_width;
|
|
int src_burst_size, dst_burst_size;
|
|
u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
|
|
u32 dma_scr, threshold;
|
|
|
|
src_addr_width = chan->dma_sconfig.src_addr_width;
|
|
dst_addr_width = chan->dma_sconfig.dst_addr_width;
|
|
src_maxburst = chan->dma_sconfig.src_maxburst;
|
|
dst_maxburst = chan->dma_sconfig.dst_maxburst;
|
|
threshold = chan->threshold;
|
|
|
|
switch (direction) {
|
|
case DMA_MEM_TO_DEV:
|
|
/* Set device data size */
|
|
dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
|
|
if (dst_bus_width < 0)
|
|
return dst_bus_width;
|
|
|
|
/* Set device burst size */
|
|
dst_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
dst_maxburst,
|
|
threshold,
|
|
dst_addr_width);
|
|
|
|
dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
|
|
if (dst_burst_size < 0)
|
|
return dst_burst_size;
|
|
|
|
/* Set memory data size */
|
|
src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
|
|
chan->mem_width = src_addr_width;
|
|
src_bus_width = stm32_dma_get_width(chan, src_addr_width);
|
|
if (src_bus_width < 0)
|
|
return src_bus_width;
|
|
|
|
/* Set memory burst size */
|
|
src_maxburst = STM32_DMA_MAX_BURST;
|
|
src_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
src_maxburst,
|
|
threshold,
|
|
src_addr_width);
|
|
src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
|
|
if (src_burst_size < 0)
|
|
return src_burst_size;
|
|
|
|
dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
|
|
STM32_DMA_SCR_PSIZE(dst_bus_width) |
|
|
STM32_DMA_SCR_MSIZE(src_bus_width) |
|
|
STM32_DMA_SCR_PBURST(dst_burst_size) |
|
|
STM32_DMA_SCR_MBURST(src_burst_size);
|
|
|
|
/* Set FIFO threshold */
|
|
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
|
|
chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
|
|
|
|
/* Set peripheral address */
|
|
chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
|
|
*buswidth = dst_addr_width;
|
|
break;
|
|
|
|
case DMA_DEV_TO_MEM:
|
|
/* Set device data size */
|
|
src_bus_width = stm32_dma_get_width(chan, src_addr_width);
|
|
if (src_bus_width < 0)
|
|
return src_bus_width;
|
|
|
|
/* Set device burst size */
|
|
src_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
src_maxburst,
|
|
threshold,
|
|
src_addr_width);
|
|
chan->mem_burst = src_best_burst;
|
|
src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
|
|
if (src_burst_size < 0)
|
|
return src_burst_size;
|
|
|
|
/* Set memory data size */
|
|
dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
|
|
chan->mem_width = dst_addr_width;
|
|
dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
|
|
if (dst_bus_width < 0)
|
|
return dst_bus_width;
|
|
|
|
/* Set memory burst size */
|
|
dst_maxburst = STM32_DMA_MAX_BURST;
|
|
dst_best_burst = stm32_dma_get_best_burst(buf_len,
|
|
dst_maxburst,
|
|
threshold,
|
|
dst_addr_width);
|
|
chan->mem_burst = dst_best_burst;
|
|
dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
|
|
if (dst_burst_size < 0)
|
|
return dst_burst_size;
|
|
|
|
dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
|
|
STM32_DMA_SCR_PSIZE(src_bus_width) |
|
|
STM32_DMA_SCR_MSIZE(dst_bus_width) |
|
|
STM32_DMA_SCR_PBURST(src_burst_size) |
|
|
STM32_DMA_SCR_MBURST(dst_burst_size);
|
|
|
|
/* Set FIFO threshold */
|
|
chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
|
|
chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
|
|
|
|
/* Set peripheral address */
|
|
chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
|
|
*buswidth = chan->dma_sconfig.src_addr_width;
|
|
break;
|
|
|
|
default:
|
|
dev_err(chan2dev(chan), "Dma direction is not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
|
|
|
|
/* Set DMA control register */
|
|
chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
|
|
STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
|
|
STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
|
|
chan->chan_reg.dma_scr |= dma_scr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
|
|
{
|
|
memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
|
|
struct dma_chan *c, struct scatterlist *sgl,
|
|
u32 sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_desc *desc;
|
|
struct scatterlist *sg;
|
|
enum dma_slave_buswidth buswidth;
|
|
u32 nb_data_items;
|
|
int i, ret;
|
|
|
|
if (!chan->config_init) {
|
|
dev_err(chan2dev(chan), "dma channel is not configured\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (sg_len < 1) {
|
|
dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
|
|
return NULL;
|
|
}
|
|
|
|
desc = stm32_dma_alloc_desc(sg_len);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
/* Set peripheral flow controller */
|
|
if (chan->dma_sconfig.device_fc)
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
|
|
else
|
|
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
|
|
sg_dma_len(sg));
|
|
if (ret < 0)
|
|
goto err;
|
|
|
|
desc->sg_req[i].len = sg_dma_len(sg);
|
|
|
|
nb_data_items = desc->sg_req[i].len / buswidth;
|
|
if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
|
|
dev_err(chan2dev(chan), "nb items not supported\n");
|
|
goto err;
|
|
}
|
|
|
|
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
|
|
desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
|
|
desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
|
|
desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
|
|
desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
|
|
desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
|
|
desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
|
|
}
|
|
|
|
desc->num_sgs = sg_len;
|
|
desc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
|
|
err:
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
|
|
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_desc *desc;
|
|
enum dma_slave_buswidth buswidth;
|
|
u32 num_periods, nb_data_items;
|
|
int i, ret;
|
|
|
|
if (!buf_len || !period_len) {
|
|
dev_err(chan2dev(chan), "Invalid buffer/period len\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (!chan->config_init) {
|
|
dev_err(chan2dev(chan), "dma channel is not configured\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (buf_len % period_len) {
|
|
dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* We allow to take more number of requests till DMA is
|
|
* not started. The driver will loop over all requests.
|
|
* Once DMA is started then new requests can be queued only after
|
|
* terminating the DMA.
|
|
*/
|
|
if (chan->busy) {
|
|
dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
|
|
return NULL;
|
|
}
|
|
|
|
ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
|
|
if (ret < 0)
|
|
return NULL;
|
|
|
|
nb_data_items = period_len / buswidth;
|
|
if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
|
|
dev_err(chan2dev(chan), "number of items not supported\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Enable Circular mode or double buffer mode */
|
|
if (buf_len == period_len)
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
|
|
else
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
|
|
|
|
/* Clear periph ctrl if client set it */
|
|
chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
|
|
|
|
num_periods = buf_len / period_len;
|
|
|
|
desc = stm32_dma_alloc_desc(num_periods);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for (i = 0; i < num_periods; i++) {
|
|
desc->sg_req[i].len = period_len;
|
|
|
|
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
|
|
desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
|
|
desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
|
|
desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
|
|
desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
|
|
desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
|
|
desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
|
|
buf_addr += period_len;
|
|
}
|
|
|
|
desc->num_sgs = num_periods;
|
|
desc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
|
|
struct dma_chan *c, dma_addr_t dest,
|
|
dma_addr_t src, size_t len, unsigned long flags)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
enum dma_slave_buswidth max_width;
|
|
struct stm32_dma_desc *desc;
|
|
size_t xfer_count, offset;
|
|
u32 num_sgs, best_burst, dma_burst, threshold;
|
|
int i;
|
|
|
|
num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
|
|
desc = stm32_dma_alloc_desc(num_sgs);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
threshold = chan->threshold;
|
|
|
|
for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
|
|
xfer_count = min_t(size_t, len - offset,
|
|
STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
|
|
|
|
/* Compute best burst size */
|
|
max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
|
|
threshold, max_width);
|
|
dma_burst = stm32_dma_get_burst(chan, best_burst);
|
|
|
|
stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
|
|
desc->sg_req[i].chan_reg.dma_scr =
|
|
STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
|
|
STM32_DMA_SCR_PBURST(dma_burst) |
|
|
STM32_DMA_SCR_MBURST(dma_burst) |
|
|
STM32_DMA_SCR_MINC |
|
|
STM32_DMA_SCR_PINC |
|
|
STM32_DMA_SCR_TCIE |
|
|
STM32_DMA_SCR_TEIE;
|
|
desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
|
|
desc->sg_req[i].chan_reg.dma_sfcr |=
|
|
STM32_DMA_SFCR_FTH(threshold);
|
|
desc->sg_req[i].chan_reg.dma_spar = src + offset;
|
|
desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
|
|
desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
|
|
desc->sg_req[i].len = xfer_count;
|
|
}
|
|
|
|
desc->num_sgs = num_sgs;
|
|
desc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
|
|
{
|
|
u32 dma_scr, width, ndtr;
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
|
|
width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
|
|
ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
|
|
|
|
return ndtr << width;
|
|
}
|
|
|
|
/**
|
|
* stm32_dma_is_current_sg - check that expected sg_req is currently transferred
|
|
* @chan: dma channel
|
|
*
|
|
* This function called when IRQ are disable, checks that the hardware has not
|
|
* switched on the next transfer in double buffer mode. The test is done by
|
|
* comparing the next_sg memory address with the hardware related register
|
|
* (based on CT bit value).
|
|
*
|
|
* Returns true if expected current transfer is still running or double
|
|
* buffer mode is not activated.
|
|
*/
|
|
static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
|
|
{
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
struct stm32_dma_sg_req *sg_req;
|
|
u32 dma_scr, dma_smar, id;
|
|
|
|
id = chan->id;
|
|
dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
|
|
|
|
if (!(dma_scr & STM32_DMA_SCR_DBM))
|
|
return true;
|
|
|
|
sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
|
|
if (dma_scr & STM32_DMA_SCR_CT) {
|
|
dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
|
|
return (dma_smar == sg_req->chan_reg.dma_sm0ar);
|
|
}
|
|
|
|
dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
|
|
|
|
return (dma_smar == sg_req->chan_reg.dma_sm1ar);
|
|
}
|
|
|
|
static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
|
|
struct stm32_dma_desc *desc,
|
|
u32 next_sg)
|
|
{
|
|
u32 modulo, burst_size;
|
|
u32 residue;
|
|
u32 n_sg = next_sg;
|
|
struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
|
|
int i;
|
|
|
|
/*
|
|
* Calculate the residue means compute the descriptors
|
|
* information:
|
|
* - the sg_req currently transferred
|
|
* - the Hardware remaining position in this sg (NDTR bits field).
|
|
*
|
|
* A race condition may occur if DMA is running in cyclic or double
|
|
* buffer mode, since the DMA register are automatically reloaded at end
|
|
* of period transfer. The hardware may have switched to the next
|
|
* transfer (CT bit updated) just before the position (SxNDTR reg) is
|
|
* read.
|
|
* In this case the SxNDTR reg could (or not) correspond to the new
|
|
* transfer position, and not the expected one.
|
|
* The strategy implemented in the stm32 driver is to:
|
|
* - read the SxNDTR register
|
|
* - crosscheck that hardware is still in current transfer.
|
|
* In case of switch, we can assume that the DMA is at the beginning of
|
|
* the next transfer. So we approximate the residue in consequence, by
|
|
* pointing on the beginning of next transfer.
|
|
*
|
|
* This race condition doesn't apply for none cyclic mode, as double
|
|
* buffer is not used. In such situation registers are updated by the
|
|
* software.
|
|
*/
|
|
|
|
residue = stm32_dma_get_remaining_bytes(chan);
|
|
|
|
if (!stm32_dma_is_current_sg(chan)) {
|
|
n_sg++;
|
|
if (n_sg == chan->desc->num_sgs)
|
|
n_sg = 0;
|
|
residue = sg_req->len;
|
|
}
|
|
|
|
/*
|
|
* In cyclic mode, for the last period, residue = remaining bytes
|
|
* from NDTR,
|
|
* else for all other periods in cyclic mode, and in sg mode,
|
|
* residue = remaining bytes from NDTR + remaining
|
|
* periods/sg to be transferred
|
|
*/
|
|
if (!chan->desc->cyclic || n_sg != 0)
|
|
for (i = n_sg; i < desc->num_sgs; i++)
|
|
residue += desc->sg_req[i].len;
|
|
|
|
if (!chan->mem_burst)
|
|
return residue;
|
|
|
|
burst_size = chan->mem_burst * chan->mem_width;
|
|
modulo = residue % burst_size;
|
|
if (modulo)
|
|
residue = residue - modulo + burst_size;
|
|
|
|
return residue;
|
|
}
|
|
|
|
static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *state)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct virt_dma_desc *vdesc;
|
|
enum dma_status status;
|
|
unsigned long flags;
|
|
u32 residue = 0;
|
|
|
|
status = dma_cookie_status(c, cookie, state);
|
|
if (status == DMA_COMPLETE || !state)
|
|
return status;
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
vdesc = vchan_find_desc(&chan->vchan, cookie);
|
|
if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
|
|
residue = stm32_dma_desc_residue(chan, chan->desc,
|
|
chan->next_sg);
|
|
else if (vdesc)
|
|
residue = stm32_dma_desc_residue(chan,
|
|
to_stm32_dma_desc(vdesc), 0);
|
|
dma_set_residue(state, residue);
|
|
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
int ret;
|
|
|
|
chan->config_init = false;
|
|
|
|
ret = pm_runtime_get_sync(dmadev->ddev.dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = stm32_dma_disable_chan(chan);
|
|
if (ret < 0)
|
|
pm_runtime_put(dmadev->ddev.dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void stm32_dma_free_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
|
|
struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
|
|
|
|
if (chan->busy) {
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
stm32_dma_stop(chan);
|
|
chan->desc = NULL;
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
pm_runtime_put(dmadev->ddev.dev);
|
|
|
|
vchan_free_chan_resources(to_virt_chan(c));
|
|
}
|
|
|
|
static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
|
|
}
|
|
|
|
static void stm32_dma_set_config(struct stm32_dma_chan *chan,
|
|
struct stm32_dma_cfg *cfg)
|
|
{
|
|
stm32_dma_clear_reg(&chan->chan_reg);
|
|
|
|
chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
|
|
|
|
/* Enable Interrupts */
|
|
chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
|
|
|
|
chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
|
|
}
|
|
|
|
static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct stm32_dma_device *dmadev = ofdma->of_dma_data;
|
|
struct device *dev = dmadev->ddev.dev;
|
|
struct stm32_dma_cfg cfg;
|
|
struct stm32_dma_chan *chan;
|
|
struct dma_chan *c;
|
|
|
|
if (dma_spec->args_count < 4) {
|
|
dev_err(dev, "Bad number of cells\n");
|
|
return NULL;
|
|
}
|
|
|
|
cfg.channel_id = dma_spec->args[0];
|
|
cfg.request_line = dma_spec->args[1];
|
|
cfg.stream_config = dma_spec->args[2];
|
|
cfg.features = dma_spec->args[3];
|
|
|
|
if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
|
|
cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
|
|
dev_err(dev, "Bad channel and/or request id\n");
|
|
return NULL;
|
|
}
|
|
|
|
chan = &dmadev->chan[cfg.channel_id];
|
|
|
|
c = dma_get_slave_channel(&chan->vchan.chan);
|
|
if (!c) {
|
|
dev_err(dev, "No more channels available\n");
|
|
return NULL;
|
|
}
|
|
|
|
stm32_dma_set_config(chan, &cfg);
|
|
|
|
return c;
|
|
}
|
|
|
|
static const struct of_device_id stm32_dma_of_match[] = {
|
|
{ .compatible = "st,stm32-dma", },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
|
|
|
|
static int stm32_dma_probe(struct platform_device *pdev)
|
|
{
|
|
struct stm32_dma_chan *chan;
|
|
struct stm32_dma_device *dmadev;
|
|
struct dma_device *dd;
|
|
const struct of_device_id *match;
|
|
struct resource *res;
|
|
int i, ret;
|
|
|
|
match = of_match_device(stm32_dma_of_match, &pdev->dev);
|
|
if (!match) {
|
|
dev_err(&pdev->dev, "Error: No device match found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
|
|
if (!dmadev)
|
|
return -ENOMEM;
|
|
|
|
dd = &dmadev->ddev;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
dmadev->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(dmadev->base))
|
|
return PTR_ERR(dmadev->base);
|
|
|
|
dmadev->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(dmadev->clk)) {
|
|
dev_err(&pdev->dev, "Error: Missing controller clock\n");
|
|
return PTR_ERR(dmadev->clk);
|
|
}
|
|
|
|
ret = clk_prepare_enable(dmadev->clk);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
|
|
"st,mem2mem");
|
|
|
|
dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
|
|
if (!IS_ERR(dmadev->rst)) {
|
|
reset_control_assert(dmadev->rst);
|
|
udelay(2);
|
|
reset_control_deassert(dmadev->rst);
|
|
}
|
|
|
|
dma_cap_set(DMA_SLAVE, dd->cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, dd->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dd->cap_mask);
|
|
dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
|
|
dd->device_free_chan_resources = stm32_dma_free_chan_resources;
|
|
dd->device_tx_status = stm32_dma_tx_status;
|
|
dd->device_issue_pending = stm32_dma_issue_pending;
|
|
dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
|
|
dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
|
|
dd->device_config = stm32_dma_slave_config;
|
|
dd->device_terminate_all = stm32_dma_terminate_all;
|
|
dd->device_synchronize = stm32_dma_synchronize;
|
|
dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
|
|
dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
dd->max_burst = STM32_DMA_MAX_BURST;
|
|
dd->dev = &pdev->dev;
|
|
INIT_LIST_HEAD(&dd->channels);
|
|
|
|
if (dmadev->mem2mem) {
|
|
dma_cap_set(DMA_MEMCPY, dd->cap_mask);
|
|
dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
|
|
dd->directions |= BIT(DMA_MEM_TO_MEM);
|
|
}
|
|
|
|
for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
|
|
chan = &dmadev->chan[i];
|
|
chan->id = i;
|
|
chan->vchan.desc_free = stm32_dma_desc_free;
|
|
vchan_init(&chan->vchan, dd);
|
|
}
|
|
|
|
ret = dma_async_device_register(dd);
|
|
if (ret)
|
|
goto clk_free;
|
|
|
|
for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
|
|
chan = &dmadev->chan[i];
|
|
chan->irq = platform_get_irq(pdev, i);
|
|
ret = platform_get_irq(pdev, i);
|
|
if (ret < 0) {
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(&pdev->dev,
|
|
"No irq resource for chan %d\n", i);
|
|
goto err_unregister;
|
|
}
|
|
chan->irq = ret;
|
|
|
|
ret = devm_request_irq(&pdev->dev, chan->irq,
|
|
stm32_dma_chan_irq, 0,
|
|
dev_name(chan2dev(chan)), chan);
|
|
if (ret) {
|
|
dev_err(&pdev->dev,
|
|
"request_irq failed with err %d channel %d\n",
|
|
ret, i);
|
|
goto err_unregister;
|
|
}
|
|
}
|
|
|
|
ret = of_dma_controller_register(pdev->dev.of_node,
|
|
stm32_dma_of_xlate, dmadev);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev,
|
|
"STM32 DMA DMA OF registration failed %d\n", ret);
|
|
goto err_unregister;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, dmadev);
|
|
|
|
pm_runtime_set_active(&pdev->dev);
|
|
pm_runtime_enable(&pdev->dev);
|
|
pm_runtime_get_noresume(&pdev->dev);
|
|
pm_runtime_put(&pdev->dev);
|
|
|
|
dev_info(&pdev->dev, "STM32 DMA driver registered\n");
|
|
|
|
return 0;
|
|
|
|
err_unregister:
|
|
dma_async_device_unregister(dd);
|
|
clk_free:
|
|
clk_disable_unprepare(dmadev->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int stm32_dma_runtime_suspend(struct device *dev)
|
|
{
|
|
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(dmadev->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_dma_runtime_resume(struct device *dev)
|
|
{
|
|
struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(dmadev->clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to prepare_enable clock\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops stm32_dma_pm_ops = {
|
|
SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
|
|
stm32_dma_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct platform_driver stm32_dma_driver = {
|
|
.driver = {
|
|
.name = "stm32-dma",
|
|
.of_match_table = stm32_dma_of_match,
|
|
.pm = &stm32_dma_pm_ops,
|
|
},
|
|
};
|
|
|
|
static int __init stm32_dma_init(void)
|
|
{
|
|
return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
|
|
}
|
|
subsys_initcall(stm32_dma_init);
|