linux_dsm_epyc7002/arch/x86/xen/setup.c
David Vrabel f3f436e33b xen: release all pages within 1-1 p2m mappings
In xen_memory_setup() all reserved regions and gaps are set to an
identity (1-1) p2m mapping.  If an available page has a PFN within one
of these 1-1 mappings it will become inaccessible (as it MFN is lost)
so release them before setting up the mapping.

This can make an additional 256 MiB or more of RAM available
(depending on the size of the reserved regions in the memory map) if
the initial pages overlap with reserved regions.

The 1:1 p2m mappings are also extended to cover partial pages.  This
fixes an issue with (for example) systems with a BIOS that puts the
DMI tables in a reserved region that begins on a non-page boundary.

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2011-09-29 11:12:15 -04:00

416 lines
11 KiB
C

/*
* Machine specific setup for xen
*
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/pm.h>
#include <linux/memblock.h>
#include <linux/cpuidle.h>
#include <asm/elf.h>
#include <asm/vdso.h>
#include <asm/e820.h>
#include <asm/setup.h>
#include <asm/acpi.h>
#include <asm/xen/hypervisor.h>
#include <asm/xen/hypercall.h>
#include <xen/xen.h>
#include <xen/page.h>
#include <xen/interface/callback.h>
#include <xen/interface/memory.h>
#include <xen/interface/physdev.h>
#include <xen/features.h>
#include "xen-ops.h"
#include "vdso.h"
/* These are code, but not functions. Defined in entry.S */
extern const char xen_hypervisor_callback[];
extern const char xen_failsafe_callback[];
extern void xen_sysenter_target(void);
extern void xen_syscall_target(void);
extern void xen_syscall32_target(void);
/* Amount of extra memory space we add to the e820 ranges */
struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
/* Number of pages released from the initial allocation. */
unsigned long xen_released_pages;
/*
* The maximum amount of extra memory compared to the base size. The
* main scaling factor is the size of struct page. At extreme ratios
* of base:extra, all the base memory can be filled with page
* structures for the extra memory, leaving no space for anything
* else.
*
* 10x seems like a reasonable balance between scaling flexibility and
* leaving a practically usable system.
*/
#define EXTRA_MEM_RATIO (10)
static void __init xen_add_extra_mem(u64 start, u64 size)
{
unsigned long pfn;
int i;
for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
/* Add new region. */
if (xen_extra_mem[i].size == 0) {
xen_extra_mem[i].start = start;
xen_extra_mem[i].size = size;
break;
}
/* Append to existing region. */
if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
xen_extra_mem[i].size += size;
break;
}
}
if (i == XEN_EXTRA_MEM_MAX_REGIONS)
printk(KERN_WARNING "Warning: not enough extra memory regions\n");
memblock_x86_reserve_range(start, start + size, "XEN EXTRA");
xen_max_p2m_pfn = PFN_DOWN(start + size);
for (pfn = PFN_DOWN(start); pfn <= xen_max_p2m_pfn; pfn++)
__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
}
static unsigned long __init xen_release_chunk(unsigned long start,
unsigned long end)
{
struct xen_memory_reservation reservation = {
.address_bits = 0,
.extent_order = 0,
.domid = DOMID_SELF
};
unsigned long len = 0;
unsigned long pfn;
int ret;
for(pfn = start; pfn < end; pfn++) {
unsigned long mfn = pfn_to_mfn(pfn);
/* Make sure pfn exists to start with */
if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
continue;
set_xen_guest_handle(reservation.extent_start, &mfn);
reservation.nr_extents = 1;
ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
&reservation);
WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
if (ret == 1) {
__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
len++;
}
}
printk(KERN_INFO "Freeing %lx-%lx pfn range: %lu pages freed\n",
start, end, len);
return len;
}
static unsigned long __init xen_set_identity_and_release(
const struct e820entry *list, size_t map_size, unsigned long nr_pages)
{
phys_addr_t start = 0;
unsigned long released = 0;
unsigned long identity = 0;
const struct e820entry *entry;
int i;
/*
* Combine non-RAM regions and gaps until a RAM region (or the
* end of the map) is reached, then set the 1:1 map and
* release the pages (if available) in those non-RAM regions.
*
* The combined non-RAM regions are rounded to a whole number
* of pages so any partial pages are accessible via the 1:1
* mapping. This is needed for some BIOSes that put (for
* example) the DMI tables in a reserved region that begins on
* a non-page boundary.
*/
for (i = 0, entry = list; i < map_size; i++, entry++) {
phys_addr_t end = entry->addr + entry->size;
if (entry->type == E820_RAM || i == map_size - 1) {
unsigned long start_pfn = PFN_DOWN(start);
unsigned long end_pfn = PFN_UP(end);
if (entry->type == E820_RAM)
end_pfn = PFN_UP(entry->addr);
if (start_pfn < end_pfn) {
if (start_pfn < nr_pages)
released += xen_release_chunk(
start_pfn, min(end_pfn, nr_pages));
identity += set_phys_range_identity(
start_pfn, end_pfn);
}
start = end;
}
}
printk(KERN_INFO "Released %lu pages of unused memory\n", released);
printk(KERN_INFO "Set %ld page(s) to 1-1 mapping\n", identity);
return released;
}
static unsigned long __init xen_get_max_pages(void)
{
unsigned long max_pages = MAX_DOMAIN_PAGES;
domid_t domid = DOMID_SELF;
int ret;
ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
if (ret > 0)
max_pages = ret;
return min(max_pages, MAX_DOMAIN_PAGES);
}
static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
{
u64 end = start + size;
/* Align RAM regions to page boundaries. */
if (type == E820_RAM) {
start = PAGE_ALIGN(start);
end &= ~((u64)PAGE_SIZE - 1);
}
e820_add_region(start, end - start, type);
}
/**
* machine_specific_memory_setup - Hook for machine specific memory setup.
**/
char * __init xen_memory_setup(void)
{
static struct e820entry map[E820MAX] __initdata;
unsigned long max_pfn = xen_start_info->nr_pages;
unsigned long long mem_end;
int rc;
struct xen_memory_map memmap;
unsigned long max_pages;
unsigned long extra_pages = 0;
int i;
int op;
max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
mem_end = PFN_PHYS(max_pfn);
memmap.nr_entries = E820MAX;
set_xen_guest_handle(memmap.buffer, map);
op = xen_initial_domain() ?
XENMEM_machine_memory_map :
XENMEM_memory_map;
rc = HYPERVISOR_memory_op(op, &memmap);
if (rc == -ENOSYS) {
BUG_ON(xen_initial_domain());
memmap.nr_entries = 1;
map[0].addr = 0ULL;
map[0].size = mem_end;
/* 8MB slack (to balance backend allocations). */
map[0].size += 8ULL << 20;
map[0].type = E820_RAM;
rc = 0;
}
BUG_ON(rc);
/* Make sure the Xen-supplied memory map is well-ordered. */
sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
max_pages = xen_get_max_pages();
if (max_pages > max_pfn)
extra_pages += max_pages - max_pfn;
/*
* Set P2M for all non-RAM pages and E820 gaps to be identity
* type PFNs. Any RAM pages that would be made inaccesible by
* this are first released.
*/
xen_released_pages = xen_set_identity_and_release(
map, memmap.nr_entries, max_pfn);
extra_pages += xen_released_pages;
/*
* Clamp the amount of extra memory to a EXTRA_MEM_RATIO
* factor the base size. On non-highmem systems, the base
* size is the full initial memory allocation; on highmem it
* is limited to the max size of lowmem, so that it doesn't
* get completely filled.
*
* In principle there could be a problem in lowmem systems if
* the initial memory is also very large with respect to
* lowmem, but we won't try to deal with that here.
*/
extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
extra_pages);
i = 0;
while (i < memmap.nr_entries) {
u64 addr = map[i].addr;
u64 size = map[i].size;
u32 type = map[i].type;
if (type == E820_RAM) {
if (addr < mem_end) {
size = min(size, mem_end - addr);
} else if (extra_pages) {
size = min(size, (u64)extra_pages * PAGE_SIZE);
extra_pages -= size / PAGE_SIZE;
xen_add_extra_mem(addr, size);
} else
type = E820_UNUSABLE;
}
xen_align_and_add_e820_region(addr, size, type);
map[i].addr += size;
map[i].size -= size;
if (map[i].size == 0)
i++;
}
/*
* In domU, the ISA region is normal, usable memory, but we
* reserve ISA memory anyway because too many things poke
* about in there.
*/
e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
E820_RESERVED);
/*
* Reserve Xen bits:
* - mfn_list
* - xen_start_info
* See comment above "struct start_info" in <xen/interface/xen.h>
*/
memblock_x86_reserve_range(__pa(xen_start_info->mfn_list),
__pa(xen_start_info->pt_base),
"XEN START INFO");
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
return "Xen";
}
/*
* Set the bit indicating "nosegneg" library variants should be used.
* We only need to bother in pure 32-bit mode; compat 32-bit processes
* can have un-truncated segments, so wrapping around is allowed.
*/
static void __init fiddle_vdso(void)
{
#ifdef CONFIG_X86_32
u32 *mask;
mask = VDSO32_SYMBOL(&vdso32_int80_start, NOTE_MASK);
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
mask = VDSO32_SYMBOL(&vdso32_sysenter_start, NOTE_MASK);
*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
#endif
}
static int __cpuinit register_callback(unsigned type, const void *func)
{
struct callback_register callback = {
.type = type,
.address = XEN_CALLBACK(__KERNEL_CS, func),
.flags = CALLBACKF_mask_events,
};
return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
}
void __cpuinit xen_enable_sysenter(void)
{
int ret;
unsigned sysenter_feature;
#ifdef CONFIG_X86_32
sysenter_feature = X86_FEATURE_SEP;
#else
sysenter_feature = X86_FEATURE_SYSENTER32;
#endif
if (!boot_cpu_has(sysenter_feature))
return;
ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
if(ret != 0)
setup_clear_cpu_cap(sysenter_feature);
}
void __cpuinit xen_enable_syscall(void)
{
#ifdef CONFIG_X86_64
int ret;
ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
if (ret != 0) {
printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
/* Pretty fatal; 64-bit userspace has no other
mechanism for syscalls. */
}
if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
ret = register_callback(CALLBACKTYPE_syscall32,
xen_syscall32_target);
if (ret != 0)
setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
}
#endif /* CONFIG_X86_64 */
}
void __init xen_arch_setup(void)
{
xen_panic_handler_init();
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
if (!xen_feature(XENFEAT_auto_translated_physmap))
HYPERVISOR_vm_assist(VMASST_CMD_enable,
VMASST_TYPE_pae_extended_cr3);
if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
BUG();
xen_enable_sysenter();
xen_enable_syscall();
#ifdef CONFIG_ACPI
if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
disable_acpi();
}
#endif
memcpy(boot_command_line, xen_start_info->cmd_line,
MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
/* Set up idle, making sure it calls safe_halt() pvop */
#ifdef CONFIG_X86_32
boot_cpu_data.hlt_works_ok = 1;
#endif
disable_cpuidle();
boot_option_idle_override = IDLE_HALT;
fiddle_vdso();
}