linux_dsm_epyc7002/drivers/crypto/allwinner/sun8i-ce/sun8i-ce-cipher.c
Corentin Labbe 4b0ec91af8 crypto: sun8i-ce - remove dead code
Some code were left in the final driver but without any use.

Signed-off-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-01-16 15:18:13 +08:00

433 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sun8i-ce-cipher.c - hardware cryptographic offloader for
* Allwinner H3/A64/H5/H2+/H6/R40 SoC
*
* Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com>
*
* This file add support for AES cipher with 128,192,256 bits keysize in
* CBC and ECB mode.
*
* You could find a link for the datasheet in Documentation/arm/sunxi/README
*/
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include "sun8i-ce.h"
static int sun8i_ce_cipher_need_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct scatterlist *sg;
if (sg_nents(areq->src) > MAX_SG || sg_nents(areq->dst) > MAX_SG)
return true;
if (areq->cryptlen < crypto_skcipher_ivsize(tfm))
return true;
if (areq->cryptlen == 0 || areq->cryptlen % 16)
return true;
sg = areq->src;
while (sg) {
if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
return true;
sg = sg_next(sg);
}
sg = areq->dst;
while (sg) {
if (sg->length % 4 || !IS_ALIGNED(sg->offset, sizeof(u32)))
return true;
sg = sg_next(sg);
}
return false;
}
static int sun8i_ce_cipher_fallback(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
int err;
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ce_alg_template *algt;
#endif
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, op->fallback_tfm);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
algt->stat_fb++;
#endif
skcipher_request_set_sync_tfm(subreq, op->fallback_tfm);
skcipher_request_set_callback(subreq, areq->base.flags, NULL, NULL);
skcipher_request_set_crypt(subreq, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->op_dir & CE_DECRYPTION)
err = crypto_skcipher_decrypt(subreq);
else
err = crypto_skcipher_encrypt(subreq);
skcipher_request_zero(subreq);
return err;
}
static int sun8i_ce_cipher(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ce_dev *ce = op->ce;
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct sun8i_ce_alg_template *algt;
struct sun8i_ce_flow *chan;
struct ce_task *cet;
struct scatterlist *sg;
unsigned int todo, len, offset, ivsize;
dma_addr_t addr_iv = 0, addr_key = 0;
void *backup_iv = NULL;
u32 common, sym;
int flow, i;
int nr_sgs = 0;
int nr_sgd = 0;
int err = 0;
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
dev_dbg(ce->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__,
crypto_tfm_alg_name(areq->base.tfm),
areq->cryptlen,
rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm),
op->keylen);
#ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG
algt->stat_req++;
#endif
flow = rctx->flow;
chan = &ce->chanlist[flow];
cet = chan->tl;
memset(cet, 0, sizeof(struct ce_task));
cet->t_id = cpu_to_le32(flow);
common = ce->variant->alg_cipher[algt->ce_algo_id];
common |= rctx->op_dir | CE_COMM_INT;
cet->t_common_ctl = cpu_to_le32(common);
/* CTS and recent CE (H6) need length in bytes, in word otherwise */
if (ce->variant->has_t_dlen_in_bytes)
cet->t_dlen = cpu_to_le32(areq->cryptlen);
else
cet->t_dlen = cpu_to_le32(areq->cryptlen / 4);
sym = ce->variant->op_mode[algt->ce_blockmode];
len = op->keylen;
switch (len) {
case 128 / 8:
sym |= CE_AES_128BITS;
break;
case 192 / 8:
sym |= CE_AES_192BITS;
break;
case 256 / 8:
sym |= CE_AES_256BITS;
break;
}
cet->t_sym_ctl = cpu_to_le32(sym);
cet->t_asym_ctl = 0;
addr_key = dma_map_single(ce->dev, op->key, op->keylen, DMA_TO_DEVICE);
cet->t_key = cpu_to_le32(addr_key);
if (dma_mapping_error(ce->dev, addr_key)) {
dev_err(ce->dev, "Cannot DMA MAP KEY\n");
err = -EFAULT;
goto theend;
}
ivsize = crypto_skcipher_ivsize(tfm);
if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) {
chan->ivlen = ivsize;
chan->bounce_iv = kzalloc(ivsize, GFP_KERNEL | GFP_DMA);
if (!chan->bounce_iv) {
err = -ENOMEM;
goto theend_key;
}
if (rctx->op_dir & CE_DECRYPTION) {
backup_iv = kzalloc(ivsize, GFP_KERNEL);
if (!backup_iv) {
err = -ENOMEM;
goto theend_key;
}
offset = areq->cryptlen - ivsize;
scatterwalk_map_and_copy(backup_iv, areq->src, offset,
ivsize, 0);
}
memcpy(chan->bounce_iv, areq->iv, ivsize);
addr_iv = dma_map_single(ce->dev, chan->bounce_iv, chan->ivlen,
DMA_TO_DEVICE);
cet->t_iv = cpu_to_le32(addr_iv);
if (dma_mapping_error(ce->dev, addr_iv)) {
dev_err(ce->dev, "Cannot DMA MAP IV\n");
err = -ENOMEM;
goto theend_iv;
}
}
if (areq->src == areq->dst) {
nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
DMA_BIDIRECTIONAL);
if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = nr_sgs;
} else {
nr_sgs = dma_map_sg(ce->dev, areq->src, sg_nents(areq->src),
DMA_TO_DEVICE);
if (nr_sgs <= 0 || nr_sgs > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs);
err = -EINVAL;
goto theend_iv;
}
nr_sgd = dma_map_sg(ce->dev, areq->dst, sg_nents(areq->dst),
DMA_FROM_DEVICE);
if (nr_sgd <= 0 || nr_sgd > MAX_SG) {
dev_err(ce->dev, "Invalid sg number %d\n", nr_sgd);
err = -EINVAL;
goto theend_sgs;
}
}
len = areq->cryptlen;
for_each_sg(areq->src, sg, nr_sgs, i) {
cet->t_src[i].addr = cpu_to_le32(sg_dma_address(sg));
todo = min(len, sg_dma_len(sg));
cet->t_src[i].len = cpu_to_le32(todo / 4);
dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, cet->t_src[i].len, sg->offset, todo);
len -= todo;
}
if (len > 0) {
dev_err(ce->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
len = areq->cryptlen;
for_each_sg(areq->dst, sg, nr_sgd, i) {
cet->t_dst[i].addr = cpu_to_le32(sg_dma_address(sg));
todo = min(len, sg_dma_len(sg));
cet->t_dst[i].len = cpu_to_le32(todo / 4);
dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__,
areq->cryptlen, i, cet->t_dst[i].len, sg->offset, todo);
len -= todo;
}
if (len > 0) {
dev_err(ce->dev, "remaining len %d\n", len);
err = -EINVAL;
goto theend_sgs;
}
chan->timeout = areq->cryptlen;
err = sun8i_ce_run_task(ce, flow, crypto_tfm_alg_name(areq->base.tfm));
theend_sgs:
if (areq->src == areq->dst) {
dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL);
} else {
if (nr_sgs > 0)
dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_TO_DEVICE);
dma_unmap_sg(ce->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE);
}
theend_iv:
if (areq->iv && ivsize > 0) {
if (addr_iv)
dma_unmap_single(ce->dev, addr_iv, chan->ivlen,
DMA_TO_DEVICE);
offset = areq->cryptlen - ivsize;
if (rctx->op_dir & CE_DECRYPTION) {
memcpy(areq->iv, backup_iv, ivsize);
kzfree(backup_iv);
} else {
scatterwalk_map_and_copy(areq->iv, areq->dst, offset,
ivsize, 0);
}
kfree(chan->bounce_iv);
}
theend_key:
dma_unmap_single(ce->dev, addr_key, op->keylen, DMA_TO_DEVICE);
theend:
return err;
}
static int sun8i_ce_handle_cipher_request(struct crypto_engine *engine, void *areq)
{
int err;
struct skcipher_request *breq = container_of(areq, struct skcipher_request, base);
err = sun8i_ce_cipher(breq);
crypto_finalize_skcipher_request(engine, breq, err);
return 0;
}
int sun8i_ce_skdecrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = CE_DECRYPTION;
if (sun8i_ce_cipher_need_fallback(areq))
return sun8i_ce_cipher_fallback(areq);
e = sun8i_ce_get_engine_number(op->ce);
rctx->flow = e;
engine = op->ce->chanlist[e].engine;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ce_skencrypt(struct skcipher_request *areq)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq);
struct crypto_engine *engine;
int e;
rctx->op_dir = CE_ENCRYPTION;
if (sun8i_ce_cipher_need_fallback(areq))
return sun8i_ce_cipher_fallback(areq);
e = sun8i_ce_get_engine_number(op->ce);
rctx->flow = e;
engine = op->ce->chanlist[e].engine;
return crypto_transfer_skcipher_request_to_engine(engine, areq);
}
int sun8i_ce_cipher_init(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
struct sun8i_ce_alg_template *algt;
const char *name = crypto_tfm_alg_name(tfm);
struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(sktfm);
int err;
memset(op, 0, sizeof(struct sun8i_cipher_tfm_ctx));
algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher);
op->ce = algt->ce;
sktfm->reqsize = sizeof(struct sun8i_cipher_req_ctx);
op->fallback_tfm = crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(op->fallback_tfm)) {
dev_err(op->ce->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(op->fallback_tfm));
return PTR_ERR(op->fallback_tfm);
}
dev_info(op->ce->dev, "Fallback for %s is %s\n",
crypto_tfm_alg_driver_name(&sktfm->base),
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(&op->fallback_tfm->base)));
op->enginectx.op.do_one_request = sun8i_ce_handle_cipher_request;
op->enginectx.op.prepare_request = NULL;
op->enginectx.op.unprepare_request = NULL;
err = pm_runtime_get_sync(op->ce->dev);
if (err < 0)
goto error_pm;
return 0;
error_pm:
crypto_free_sync_skcipher(op->fallback_tfm);
return err;
}
void sun8i_ce_cipher_exit(struct crypto_tfm *tfm)
{
struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm);
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
crypto_free_sync_skcipher(op->fallback_tfm);
pm_runtime_put_sync_suspend(op->ce->dev);
}
int sun8i_ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
struct sun8i_ce_dev *ce = op->ce;
switch (keylen) {
case 128 / 8:
break;
case 192 / 8:
break;
case 256 / 8:
break;
default:
dev_dbg(ce->dev, "ERROR: Invalid keylen %u\n", keylen);
return -EINVAL;
}
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}
int sun8i_ce_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm);
int err;
err = verify_skcipher_des3_key(tfm, key);
if (err)
return err;
if (op->key) {
memzero_explicit(op->key, op->keylen);
kfree(op->key);
}
op->keylen = keylen;
op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
if (!op->key)
return -ENOMEM;
crypto_sync_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(op->fallback_tfm, key, keylen);
}