mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 19:21:17 +07:00
8d8b60046d
mips: drivers/ata/sata_mv.c: In function `mv_port_free_dma_mem': drivers/ata/sata_mv.c:1080: error: implicit declaration of function `dma_pool_free' Cc: Jeff Garzik <jeff@garzik.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
3203 lines
84 KiB
C
3203 lines
84 KiB
C
/*
|
|
* sata_mv.c - Marvell SATA support
|
|
*
|
|
* Copyright 2005: EMC Corporation, all rights reserved.
|
|
* Copyright 2005 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org on emails.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*/
|
|
|
|
/*
|
|
sata_mv TODO list:
|
|
|
|
1) Needs a full errata audit for all chipsets. I implemented most
|
|
of the errata workarounds found in the Marvell vendor driver, but
|
|
I distinctly remember a couple workarounds (one related to PCI-X)
|
|
are still needed.
|
|
|
|
2) Improve/fix IRQ and error handling sequences.
|
|
|
|
3) ATAPI support (Marvell claims the 60xx/70xx chips can do it).
|
|
|
|
4) Think about TCQ support here, and for libata in general
|
|
with controllers that suppport it via host-queuing hardware
|
|
(a software-only implementation could be a nightmare).
|
|
|
|
5) Investigate problems with PCI Message Signalled Interrupts (MSI).
|
|
|
|
6) Add port multiplier support (intermediate)
|
|
|
|
8) Develop a low-power-consumption strategy, and implement it.
|
|
|
|
9) [Experiment, low priority] See if ATAPI can be supported using
|
|
"unknown FIS" or "vendor-specific FIS" support, or something creative
|
|
like that.
|
|
|
|
10) [Experiment, low priority] Investigate interrupt coalescing.
|
|
Quite often, especially with PCI Message Signalled Interrupts (MSI),
|
|
the overhead reduced by interrupt mitigation is quite often not
|
|
worth the latency cost.
|
|
|
|
11) [Experiment, Marvell value added] Is it possible to use target
|
|
mode to cross-connect two Linux boxes with Marvell cards? If so,
|
|
creating LibATA target mode support would be very interesting.
|
|
|
|
Target mode, for those without docs, is the ability to directly
|
|
connect two SATA controllers.
|
|
|
|
*/
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/ata_platform.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <linux/libata.h>
|
|
|
|
#define DRV_NAME "sata_mv"
|
|
#define DRV_VERSION "1.20"
|
|
|
|
enum {
|
|
/* BAR's are enumerated in terms of pci_resource_start() terms */
|
|
MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
|
|
MV_IO_BAR = 2, /* offset 0x18: IO space */
|
|
MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
|
|
|
|
MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
|
|
MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
|
|
|
|
MV_PCI_REG_BASE = 0,
|
|
MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
|
|
MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
|
|
MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
|
|
MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
|
|
MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
|
|
MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
|
|
|
|
MV_SATAHC0_REG_BASE = 0x20000,
|
|
MV_FLASH_CTL = 0x1046c,
|
|
MV_GPIO_PORT_CTL = 0x104f0,
|
|
MV_RESET_CFG = 0x180d8,
|
|
|
|
MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
|
|
MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
|
|
MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
|
|
MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
|
|
|
|
MV_MAX_Q_DEPTH = 32,
|
|
MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
|
|
|
|
/* CRQB needs alignment on a 1KB boundary. Size == 1KB
|
|
* CRPB needs alignment on a 256B boundary. Size == 256B
|
|
* ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
|
|
*/
|
|
MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
|
|
MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
|
|
MV_MAX_SG_CT = 256,
|
|
MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
|
|
|
|
MV_PORTS_PER_HC = 4,
|
|
/* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
|
|
MV_PORT_HC_SHIFT = 2,
|
|
/* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
|
|
MV_PORT_MASK = 3,
|
|
|
|
/* Host Flags */
|
|
MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
|
|
MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
|
|
/* SoC integrated controllers, no PCI interface */
|
|
MV_FLAG_SOC = (1 << 28),
|
|
|
|
MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
|
|
ATA_FLAG_MMIO | ATA_FLAG_NO_ATAPI |
|
|
ATA_FLAG_PIO_POLLING,
|
|
MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
|
|
|
|
CRQB_FLAG_READ = (1 << 0),
|
|
CRQB_TAG_SHIFT = 1,
|
|
CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
|
|
CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
|
|
CRQB_CMD_ADDR_SHIFT = 8,
|
|
CRQB_CMD_CS = (0x2 << 11),
|
|
CRQB_CMD_LAST = (1 << 15),
|
|
|
|
CRPB_FLAG_STATUS_SHIFT = 8,
|
|
CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
|
|
CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
|
|
|
|
EPRD_FLAG_END_OF_TBL = (1 << 31),
|
|
|
|
/* PCI interface registers */
|
|
|
|
PCI_COMMAND_OFS = 0xc00,
|
|
|
|
PCI_MAIN_CMD_STS_OFS = 0xd30,
|
|
STOP_PCI_MASTER = (1 << 2),
|
|
PCI_MASTER_EMPTY = (1 << 3),
|
|
GLOB_SFT_RST = (1 << 4),
|
|
|
|
MV_PCI_MODE = 0xd00,
|
|
MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
|
|
MV_PCI_DISC_TIMER = 0xd04,
|
|
MV_PCI_MSI_TRIGGER = 0xc38,
|
|
MV_PCI_SERR_MASK = 0xc28,
|
|
MV_PCI_XBAR_TMOUT = 0x1d04,
|
|
MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
|
|
MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
|
|
MV_PCI_ERR_ATTRIBUTE = 0x1d48,
|
|
MV_PCI_ERR_COMMAND = 0x1d50,
|
|
|
|
PCI_IRQ_CAUSE_OFS = 0x1d58,
|
|
PCI_IRQ_MASK_OFS = 0x1d5c,
|
|
PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
|
|
|
|
PCIE_IRQ_CAUSE_OFS = 0x1900,
|
|
PCIE_IRQ_MASK_OFS = 0x1910,
|
|
PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
|
|
|
|
HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
|
|
HC_MAIN_IRQ_MASK_OFS = 0x1d64,
|
|
HC_SOC_MAIN_IRQ_CAUSE_OFS = 0x20020,
|
|
HC_SOC_MAIN_IRQ_MASK_OFS = 0x20024,
|
|
PORT0_ERR = (1 << 0), /* shift by port # */
|
|
PORT0_DONE = (1 << 1), /* shift by port # */
|
|
HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
|
|
HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
|
|
PCI_ERR = (1 << 18),
|
|
TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
|
|
TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
|
|
PORTS_0_3_COAL_DONE = (1 << 8),
|
|
PORTS_4_7_COAL_DONE = (1 << 17),
|
|
PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
|
|
GPIO_INT = (1 << 22),
|
|
SELF_INT = (1 << 23),
|
|
TWSI_INT = (1 << 24),
|
|
HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
|
|
HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
|
|
HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
|
|
HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
|
|
PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
|
|
HC_MAIN_RSVD),
|
|
HC_MAIN_MASKED_IRQS_5 = (PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
|
|
HC_MAIN_RSVD_5),
|
|
HC_MAIN_MASKED_IRQS_SOC = (PORTS_0_3_COAL_DONE | HC_MAIN_RSVD_SOC),
|
|
|
|
/* SATAHC registers */
|
|
HC_CFG_OFS = 0,
|
|
|
|
HC_IRQ_CAUSE_OFS = 0x14,
|
|
CRPB_DMA_DONE = (1 << 0), /* shift by port # */
|
|
HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
|
|
DEV_IRQ = (1 << 8), /* shift by port # */
|
|
|
|
/* Shadow block registers */
|
|
SHD_BLK_OFS = 0x100,
|
|
SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
|
|
|
|
/* SATA registers */
|
|
SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
|
|
SATA_ACTIVE_OFS = 0x350,
|
|
SATA_FIS_IRQ_CAUSE_OFS = 0x364,
|
|
PHY_MODE3 = 0x310,
|
|
PHY_MODE4 = 0x314,
|
|
PHY_MODE2 = 0x330,
|
|
MV5_PHY_MODE = 0x74,
|
|
MV5_LT_MODE = 0x30,
|
|
MV5_PHY_CTL = 0x0C,
|
|
SATA_INTERFACE_CTL = 0x050,
|
|
|
|
MV_M2_PREAMP_MASK = 0x7e0,
|
|
|
|
/* Port registers */
|
|
EDMA_CFG_OFS = 0,
|
|
EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
|
|
EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
|
|
EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
|
|
EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
|
|
EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
|
|
|
|
EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
|
|
EDMA_ERR_IRQ_MASK_OFS = 0xc,
|
|
EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
|
|
EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
|
|
EDMA_ERR_DEV = (1 << 2), /* device error */
|
|
EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
|
|
EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
|
|
EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
|
|
EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
|
|
EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
|
|
EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
|
|
EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
|
|
EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
|
|
EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
|
|
EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
|
|
EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
|
|
|
|
EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
|
|
EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
|
|
EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
|
|
EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
|
|
EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
|
|
|
|
EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
|
|
|
|
EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
|
|
EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
|
|
EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
|
|
EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
|
|
EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
|
|
EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
|
|
|
|
EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
|
|
|
|
EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
|
|
EDMA_ERR_OVERRUN_5 = (1 << 5),
|
|
EDMA_ERR_UNDERRUN_5 = (1 << 6),
|
|
|
|
EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
|
|
EDMA_ERR_LNK_CTRL_RX_1 |
|
|
EDMA_ERR_LNK_CTRL_RX_3 |
|
|
EDMA_ERR_LNK_CTRL_TX,
|
|
|
|
EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
|
|
EDMA_ERR_PRD_PAR |
|
|
EDMA_ERR_DEV_DCON |
|
|
EDMA_ERR_DEV_CON |
|
|
EDMA_ERR_SERR |
|
|
EDMA_ERR_SELF_DIS |
|
|
EDMA_ERR_CRQB_PAR |
|
|
EDMA_ERR_CRPB_PAR |
|
|
EDMA_ERR_INTRL_PAR |
|
|
EDMA_ERR_IORDY |
|
|
EDMA_ERR_LNK_CTRL_RX_2 |
|
|
EDMA_ERR_LNK_DATA_RX |
|
|
EDMA_ERR_LNK_DATA_TX |
|
|
EDMA_ERR_TRANS_PROTO,
|
|
EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
|
|
EDMA_ERR_PRD_PAR |
|
|
EDMA_ERR_DEV_DCON |
|
|
EDMA_ERR_DEV_CON |
|
|
EDMA_ERR_OVERRUN_5 |
|
|
EDMA_ERR_UNDERRUN_5 |
|
|
EDMA_ERR_SELF_DIS_5 |
|
|
EDMA_ERR_CRQB_PAR |
|
|
EDMA_ERR_CRPB_PAR |
|
|
EDMA_ERR_INTRL_PAR |
|
|
EDMA_ERR_IORDY,
|
|
|
|
EDMA_REQ_Q_BASE_HI_OFS = 0x10,
|
|
EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
|
|
|
|
EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
|
|
EDMA_REQ_Q_PTR_SHIFT = 5,
|
|
|
|
EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
|
|
EDMA_RSP_Q_IN_PTR_OFS = 0x20,
|
|
EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
|
|
EDMA_RSP_Q_PTR_SHIFT = 3,
|
|
|
|
EDMA_CMD_OFS = 0x28, /* EDMA command register */
|
|
EDMA_EN = (1 << 0), /* enable EDMA */
|
|
EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
|
|
ATA_RST = (1 << 2), /* reset trans/link/phy */
|
|
|
|
EDMA_IORDY_TMOUT = 0x34,
|
|
EDMA_ARB_CFG = 0x38,
|
|
|
|
/* Host private flags (hp_flags) */
|
|
MV_HP_FLAG_MSI = (1 << 0),
|
|
MV_HP_ERRATA_50XXB0 = (1 << 1),
|
|
MV_HP_ERRATA_50XXB2 = (1 << 2),
|
|
MV_HP_ERRATA_60X1B2 = (1 << 3),
|
|
MV_HP_ERRATA_60X1C0 = (1 << 4),
|
|
MV_HP_ERRATA_XX42A0 = (1 << 5),
|
|
MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
|
|
MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
|
|
MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
|
|
MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
|
|
|
|
/* Port private flags (pp_flags) */
|
|
MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
|
|
MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
|
|
MV_PP_FLAG_HAD_A_RESET = (1 << 2), /* 1st hard reset complete? */
|
|
};
|
|
|
|
#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
|
|
#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
|
|
#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
|
|
#define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
|
|
|
|
enum {
|
|
/* DMA boundary 0xffff is required by the s/g splitting
|
|
* we need on /length/ in mv_fill-sg().
|
|
*/
|
|
MV_DMA_BOUNDARY = 0xffffU,
|
|
|
|
/* mask of register bits containing lower 32 bits
|
|
* of EDMA request queue DMA address
|
|
*/
|
|
EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
|
|
|
|
/* ditto, for response queue */
|
|
EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
|
|
};
|
|
|
|
enum chip_type {
|
|
chip_504x,
|
|
chip_508x,
|
|
chip_5080,
|
|
chip_604x,
|
|
chip_608x,
|
|
chip_6042,
|
|
chip_7042,
|
|
chip_soc,
|
|
};
|
|
|
|
/* Command ReQuest Block: 32B */
|
|
struct mv_crqb {
|
|
__le32 sg_addr;
|
|
__le32 sg_addr_hi;
|
|
__le16 ctrl_flags;
|
|
__le16 ata_cmd[11];
|
|
};
|
|
|
|
struct mv_crqb_iie {
|
|
__le32 addr;
|
|
__le32 addr_hi;
|
|
__le32 flags;
|
|
__le32 len;
|
|
__le32 ata_cmd[4];
|
|
};
|
|
|
|
/* Command ResPonse Block: 8B */
|
|
struct mv_crpb {
|
|
__le16 id;
|
|
__le16 flags;
|
|
__le32 tmstmp;
|
|
};
|
|
|
|
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
|
|
struct mv_sg {
|
|
__le32 addr;
|
|
__le32 flags_size;
|
|
__le32 addr_hi;
|
|
__le32 reserved;
|
|
};
|
|
|
|
struct mv_port_priv {
|
|
struct mv_crqb *crqb;
|
|
dma_addr_t crqb_dma;
|
|
struct mv_crpb *crpb;
|
|
dma_addr_t crpb_dma;
|
|
struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
|
|
dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
|
|
|
|
unsigned int req_idx;
|
|
unsigned int resp_idx;
|
|
|
|
u32 pp_flags;
|
|
};
|
|
|
|
struct mv_port_signal {
|
|
u32 amps;
|
|
u32 pre;
|
|
};
|
|
|
|
struct mv_host_priv {
|
|
u32 hp_flags;
|
|
struct mv_port_signal signal[8];
|
|
const struct mv_hw_ops *ops;
|
|
int n_ports;
|
|
void __iomem *base;
|
|
void __iomem *main_cause_reg_addr;
|
|
void __iomem *main_mask_reg_addr;
|
|
u32 irq_cause_ofs;
|
|
u32 irq_mask_ofs;
|
|
u32 unmask_all_irqs;
|
|
/*
|
|
* These consistent DMA memory pools give us guaranteed
|
|
* alignment for hardware-accessed data structures,
|
|
* and less memory waste in accomplishing the alignment.
|
|
*/
|
|
struct dma_pool *crqb_pool;
|
|
struct dma_pool *crpb_pool;
|
|
struct dma_pool *sg_tbl_pool;
|
|
};
|
|
|
|
struct mv_hw_ops {
|
|
void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port);
|
|
void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc);
|
|
void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
|
|
};
|
|
|
|
static void mv_irq_clear(struct ata_port *ap);
|
|
static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
|
|
static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
|
|
static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val);
|
|
static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
|
|
static int mv_port_start(struct ata_port *ap);
|
|
static void mv_port_stop(struct ata_port *ap);
|
|
static void mv_qc_prep(struct ata_queued_cmd *qc);
|
|
static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
|
|
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
|
|
static void mv_error_handler(struct ata_port *ap);
|
|
static void mv_eh_freeze(struct ata_port *ap);
|
|
static void mv_eh_thaw(struct ata_port *ap);
|
|
static void mv6_dev_config(struct ata_device *dev);
|
|
|
|
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port);
|
|
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc);
|
|
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
|
|
|
|
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port);
|
|
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc);
|
|
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
|
|
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio);
|
|
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio);
|
|
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int n_hc);
|
|
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio);
|
|
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
|
|
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
|
|
static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port_no);
|
|
static void mv_edma_cfg(struct mv_port_priv *pp, struct mv_host_priv *hpriv,
|
|
void __iomem *port_mmio, int want_ncq);
|
|
static int __mv_stop_dma(struct ata_port *ap);
|
|
|
|
/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
|
|
* because we have to allow room for worst case splitting of
|
|
* PRDs for 64K boundaries in mv_fill_sg().
|
|
*/
|
|
static struct scsi_host_template mv5_sht = {
|
|
.module = THIS_MODULE,
|
|
.name = DRV_NAME,
|
|
.ioctl = ata_scsi_ioctl,
|
|
.queuecommand = ata_scsi_queuecmd,
|
|
.can_queue = ATA_DEF_QUEUE,
|
|
.this_id = ATA_SHT_THIS_ID,
|
|
.sg_tablesize = MV_MAX_SG_CT / 2,
|
|
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
|
|
.emulated = ATA_SHT_EMULATED,
|
|
.use_clustering = 1,
|
|
.proc_name = DRV_NAME,
|
|
.dma_boundary = MV_DMA_BOUNDARY,
|
|
.slave_configure = ata_scsi_slave_config,
|
|
.slave_destroy = ata_scsi_slave_destroy,
|
|
.bios_param = ata_std_bios_param,
|
|
};
|
|
|
|
static struct scsi_host_template mv6_sht = {
|
|
.module = THIS_MODULE,
|
|
.name = DRV_NAME,
|
|
.ioctl = ata_scsi_ioctl,
|
|
.queuecommand = ata_scsi_queuecmd,
|
|
.change_queue_depth = ata_scsi_change_queue_depth,
|
|
.can_queue = MV_MAX_Q_DEPTH - 1,
|
|
.this_id = ATA_SHT_THIS_ID,
|
|
.sg_tablesize = MV_MAX_SG_CT / 2,
|
|
.cmd_per_lun = ATA_SHT_CMD_PER_LUN,
|
|
.emulated = ATA_SHT_EMULATED,
|
|
.use_clustering = 1,
|
|
.proc_name = DRV_NAME,
|
|
.dma_boundary = MV_DMA_BOUNDARY,
|
|
.slave_configure = ata_scsi_slave_config,
|
|
.slave_destroy = ata_scsi_slave_destroy,
|
|
.bios_param = ata_std_bios_param,
|
|
};
|
|
|
|
static const struct ata_port_operations mv5_ops = {
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.cable_detect = ata_cable_sata,
|
|
|
|
.qc_prep = mv_qc_prep,
|
|
.qc_issue = mv_qc_issue,
|
|
.data_xfer = ata_data_xfer,
|
|
|
|
.irq_clear = mv_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
|
|
.error_handler = mv_error_handler,
|
|
.freeze = mv_eh_freeze,
|
|
.thaw = mv_eh_thaw,
|
|
|
|
.scr_read = mv5_scr_read,
|
|
.scr_write = mv5_scr_write,
|
|
|
|
.port_start = mv_port_start,
|
|
.port_stop = mv_port_stop,
|
|
};
|
|
|
|
static const struct ata_port_operations mv6_ops = {
|
|
.dev_config = mv6_dev_config,
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.cable_detect = ata_cable_sata,
|
|
|
|
.qc_prep = mv_qc_prep,
|
|
.qc_issue = mv_qc_issue,
|
|
.data_xfer = ata_data_xfer,
|
|
|
|
.irq_clear = mv_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
|
|
.error_handler = mv_error_handler,
|
|
.freeze = mv_eh_freeze,
|
|
.thaw = mv_eh_thaw,
|
|
.qc_defer = ata_std_qc_defer,
|
|
|
|
.scr_read = mv_scr_read,
|
|
.scr_write = mv_scr_write,
|
|
|
|
.port_start = mv_port_start,
|
|
.port_stop = mv_port_stop,
|
|
};
|
|
|
|
static const struct ata_port_operations mv_iie_ops = {
|
|
.tf_load = ata_tf_load,
|
|
.tf_read = ata_tf_read,
|
|
.check_status = ata_check_status,
|
|
.exec_command = ata_exec_command,
|
|
.dev_select = ata_std_dev_select,
|
|
|
|
.cable_detect = ata_cable_sata,
|
|
|
|
.qc_prep = mv_qc_prep_iie,
|
|
.qc_issue = mv_qc_issue,
|
|
.data_xfer = ata_data_xfer,
|
|
|
|
.irq_clear = mv_irq_clear,
|
|
.irq_on = ata_irq_on,
|
|
|
|
.error_handler = mv_error_handler,
|
|
.freeze = mv_eh_freeze,
|
|
.thaw = mv_eh_thaw,
|
|
.qc_defer = ata_std_qc_defer,
|
|
|
|
.scr_read = mv_scr_read,
|
|
.scr_write = mv_scr_write,
|
|
|
|
.port_start = mv_port_start,
|
|
.port_stop = mv_port_stop,
|
|
};
|
|
|
|
static const struct ata_port_info mv_port_info[] = {
|
|
{ /* chip_504x */
|
|
.flags = MV_COMMON_FLAGS,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv5_ops,
|
|
},
|
|
{ /* chip_508x */
|
|
.flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv5_ops,
|
|
},
|
|
{ /* chip_5080 */
|
|
.flags = MV_COMMON_FLAGS | MV_FLAG_DUAL_HC,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv5_ops,
|
|
},
|
|
{ /* chip_604x */
|
|
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
|
|
ATA_FLAG_NCQ,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv6_ops,
|
|
},
|
|
{ /* chip_608x */
|
|
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
|
|
ATA_FLAG_NCQ | MV_FLAG_DUAL_HC,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv6_ops,
|
|
},
|
|
{ /* chip_6042 */
|
|
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
|
|
ATA_FLAG_NCQ,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv_iie_ops,
|
|
},
|
|
{ /* chip_7042 */
|
|
.flags = MV_COMMON_FLAGS | MV_6XXX_FLAGS |
|
|
ATA_FLAG_NCQ,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv_iie_ops,
|
|
},
|
|
{ /* chip_soc */
|
|
.flags = MV_COMMON_FLAGS | MV_FLAG_SOC,
|
|
.pio_mask = 0x1f, /* pio0-4 */
|
|
.udma_mask = ATA_UDMA6,
|
|
.port_ops = &mv_iie_ops,
|
|
},
|
|
};
|
|
|
|
static const struct pci_device_id mv_pci_tbl[] = {
|
|
{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
|
|
{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
|
|
{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
|
|
{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
|
|
/* RocketRAID 1740/174x have different identifiers */
|
|
{ PCI_VDEVICE(TTI, 0x1740), chip_508x },
|
|
{ PCI_VDEVICE(TTI, 0x1742), chip_508x },
|
|
|
|
{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
|
|
{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
|
|
{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
|
|
{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
|
|
{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
|
|
|
|
{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
|
|
|
|
/* Adaptec 1430SA */
|
|
{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
|
|
|
|
/* Marvell 7042 support */
|
|
{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
|
|
|
|
/* Highpoint RocketRAID PCIe series */
|
|
{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
|
|
{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
|
|
|
|
{ } /* terminate list */
|
|
};
|
|
|
|
static const struct mv_hw_ops mv5xxx_ops = {
|
|
.phy_errata = mv5_phy_errata,
|
|
.enable_leds = mv5_enable_leds,
|
|
.read_preamp = mv5_read_preamp,
|
|
.reset_hc = mv5_reset_hc,
|
|
.reset_flash = mv5_reset_flash,
|
|
.reset_bus = mv5_reset_bus,
|
|
};
|
|
|
|
static const struct mv_hw_ops mv6xxx_ops = {
|
|
.phy_errata = mv6_phy_errata,
|
|
.enable_leds = mv6_enable_leds,
|
|
.read_preamp = mv6_read_preamp,
|
|
.reset_hc = mv6_reset_hc,
|
|
.reset_flash = mv6_reset_flash,
|
|
.reset_bus = mv_reset_pci_bus,
|
|
};
|
|
|
|
static const struct mv_hw_ops mv_soc_ops = {
|
|
.phy_errata = mv6_phy_errata,
|
|
.enable_leds = mv_soc_enable_leds,
|
|
.read_preamp = mv_soc_read_preamp,
|
|
.reset_hc = mv_soc_reset_hc,
|
|
.reset_flash = mv_soc_reset_flash,
|
|
.reset_bus = mv_soc_reset_bus,
|
|
};
|
|
|
|
/*
|
|
* Functions
|
|
*/
|
|
|
|
static inline void writelfl(unsigned long data, void __iomem *addr)
|
|
{
|
|
writel(data, addr);
|
|
(void) readl(addr); /* flush to avoid PCI posted write */
|
|
}
|
|
|
|
static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
|
|
{
|
|
return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
|
|
}
|
|
|
|
static inline unsigned int mv_hc_from_port(unsigned int port)
|
|
{
|
|
return port >> MV_PORT_HC_SHIFT;
|
|
}
|
|
|
|
static inline unsigned int mv_hardport_from_port(unsigned int port)
|
|
{
|
|
return port & MV_PORT_MASK;
|
|
}
|
|
|
|
static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
|
|
unsigned int port)
|
|
{
|
|
return mv_hc_base(base, mv_hc_from_port(port));
|
|
}
|
|
|
|
static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
|
|
{
|
|
return mv_hc_base_from_port(base, port) +
|
|
MV_SATAHC_ARBTR_REG_SZ +
|
|
(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
|
|
}
|
|
|
|
static inline void __iomem *mv_host_base(struct ata_host *host)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
return hpriv->base;
|
|
}
|
|
|
|
static inline void __iomem *mv_ap_base(struct ata_port *ap)
|
|
{
|
|
return mv_port_base(mv_host_base(ap->host), ap->port_no);
|
|
}
|
|
|
|
static inline int mv_get_hc_count(unsigned long port_flags)
|
|
{
|
|
return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
|
|
}
|
|
|
|
static void mv_irq_clear(struct ata_port *ap)
|
|
{
|
|
}
|
|
|
|
static void mv_set_edma_ptrs(void __iomem *port_mmio,
|
|
struct mv_host_priv *hpriv,
|
|
struct mv_port_priv *pp)
|
|
{
|
|
u32 index;
|
|
|
|
/*
|
|
* initialize request queue
|
|
*/
|
|
index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
|
|
|
|
WARN_ON(pp->crqb_dma & 0x3ff);
|
|
writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
|
|
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
|
|
port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
|
|
|
|
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
|
|
writelfl((pp->crqb_dma & 0xffffffff) | index,
|
|
port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
|
|
else
|
|
writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
|
|
|
|
/*
|
|
* initialize response queue
|
|
*/
|
|
index = (pp->resp_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_RSP_Q_PTR_SHIFT;
|
|
|
|
WARN_ON(pp->crpb_dma & 0xff);
|
|
writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
|
|
|
|
if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
|
|
writelfl((pp->crpb_dma & 0xffffffff) | index,
|
|
port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
|
|
else
|
|
writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
|
|
|
|
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
|
|
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
|
|
}
|
|
|
|
/**
|
|
* mv_start_dma - Enable eDMA engine
|
|
* @base: port base address
|
|
* @pp: port private data
|
|
*
|
|
* Verify the local cache of the eDMA state is accurate with a
|
|
* WARN_ON.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_start_dma(struct ata_port *ap, void __iomem *port_mmio,
|
|
struct mv_port_priv *pp, u8 protocol)
|
|
{
|
|
int want_ncq = (protocol == ATA_PROT_NCQ);
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
|
|
int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
|
|
if (want_ncq != using_ncq)
|
|
__mv_stop_dma(ap);
|
|
}
|
|
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
int hard_port = mv_hardport_from_port(ap->port_no);
|
|
void __iomem *hc_mmio = mv_hc_base_from_port(
|
|
ap->host->iomap[MV_PRIMARY_BAR], hard_port);
|
|
u32 hc_irq_cause, ipending;
|
|
|
|
/* clear EDMA event indicators, if any */
|
|
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
/* clear EDMA interrupt indicator, if any */
|
|
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
ipending = (DEV_IRQ << hard_port) |
|
|
(CRPB_DMA_DONE << hard_port);
|
|
if (hc_irq_cause & ipending) {
|
|
writelfl(hc_irq_cause & ~ipending,
|
|
hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
}
|
|
|
|
mv_edma_cfg(pp, hpriv, port_mmio, want_ncq);
|
|
|
|
/* clear FIS IRQ Cause */
|
|
writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
|
|
|
|
mv_set_edma_ptrs(port_mmio, hpriv, pp);
|
|
|
|
writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
|
|
pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
|
|
}
|
|
WARN_ON(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
|
|
}
|
|
|
|
/**
|
|
* __mv_stop_dma - Disable eDMA engine
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Verify the local cache of the eDMA state is accurate with a
|
|
* WARN_ON.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int __mv_stop_dma(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
u32 reg;
|
|
int i, err = 0;
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
|
|
/* Disable EDMA if active. The disable bit auto clears.
|
|
*/
|
|
writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
} else {
|
|
WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
|
|
}
|
|
|
|
/* now properly wait for the eDMA to stop */
|
|
for (i = 1000; i > 0; i--) {
|
|
reg = readl(port_mmio + EDMA_CMD_OFS);
|
|
if (!(reg & EDMA_EN))
|
|
break;
|
|
|
|
udelay(100);
|
|
}
|
|
|
|
if (reg & EDMA_EN) {
|
|
ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
|
|
err = -EIO;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv_stop_dma(struct ata_port *ap)
|
|
{
|
|
unsigned long flags;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(&ap->host->lock, flags);
|
|
rc = __mv_stop_dma(ap);
|
|
spin_unlock_irqrestore(&ap->host->lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#ifdef ATA_DEBUG
|
|
static void mv_dump_mem(void __iomem *start, unsigned bytes)
|
|
{
|
|
int b, w;
|
|
for (b = 0; b < bytes; ) {
|
|
DPRINTK("%p: ", start + b);
|
|
for (w = 0; b < bytes && w < 4; w++) {
|
|
printk("%08x ", readl(start + b));
|
|
b += sizeof(u32);
|
|
}
|
|
printk("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
|
|
{
|
|
#ifdef ATA_DEBUG
|
|
int b, w;
|
|
u32 dw;
|
|
for (b = 0; b < bytes; ) {
|
|
DPRINTK("%02x: ", b);
|
|
for (w = 0; b < bytes && w < 4; w++) {
|
|
(void) pci_read_config_dword(pdev, b, &dw);
|
|
printk("%08x ", dw);
|
|
b += sizeof(u32);
|
|
}
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
}
|
|
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
|
|
struct pci_dev *pdev)
|
|
{
|
|
#ifdef ATA_DEBUG
|
|
void __iomem *hc_base = mv_hc_base(mmio_base,
|
|
port >> MV_PORT_HC_SHIFT);
|
|
void __iomem *port_base;
|
|
int start_port, num_ports, p, start_hc, num_hcs, hc;
|
|
|
|
if (0 > port) {
|
|
start_hc = start_port = 0;
|
|
num_ports = 8; /* shld be benign for 4 port devs */
|
|
num_hcs = 2;
|
|
} else {
|
|
start_hc = port >> MV_PORT_HC_SHIFT;
|
|
start_port = port;
|
|
num_ports = num_hcs = 1;
|
|
}
|
|
DPRINTK("All registers for port(s) %u-%u:\n", start_port,
|
|
num_ports > 1 ? num_ports - 1 : start_port);
|
|
|
|
if (NULL != pdev) {
|
|
DPRINTK("PCI config space regs:\n");
|
|
mv_dump_pci_cfg(pdev, 0x68);
|
|
}
|
|
DPRINTK("PCI regs:\n");
|
|
mv_dump_mem(mmio_base+0xc00, 0x3c);
|
|
mv_dump_mem(mmio_base+0xd00, 0x34);
|
|
mv_dump_mem(mmio_base+0xf00, 0x4);
|
|
mv_dump_mem(mmio_base+0x1d00, 0x6c);
|
|
for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
|
|
hc_base = mv_hc_base(mmio_base, hc);
|
|
DPRINTK("HC regs (HC %i):\n", hc);
|
|
mv_dump_mem(hc_base, 0x1c);
|
|
}
|
|
for (p = start_port; p < start_port + num_ports; p++) {
|
|
port_base = mv_port_base(mmio_base, p);
|
|
DPRINTK("EDMA regs (port %i):\n", p);
|
|
mv_dump_mem(port_base, 0x54);
|
|
DPRINTK("SATA regs (port %i):\n", p);
|
|
mv_dump_mem(port_base+0x300, 0x60);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static unsigned int mv_scr_offset(unsigned int sc_reg_in)
|
|
{
|
|
unsigned int ofs;
|
|
|
|
switch (sc_reg_in) {
|
|
case SCR_STATUS:
|
|
case SCR_CONTROL:
|
|
case SCR_ERROR:
|
|
ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
|
|
break;
|
|
case SCR_ACTIVE:
|
|
ofs = SATA_ACTIVE_OFS; /* active is not with the others */
|
|
break;
|
|
default:
|
|
ofs = 0xffffffffU;
|
|
break;
|
|
}
|
|
return ofs;
|
|
}
|
|
|
|
static int mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
|
|
{
|
|
unsigned int ofs = mv_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
*val = readl(mv_ap_base(ap) + ofs);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
|
|
{
|
|
unsigned int ofs = mv_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
writelfl(val, mv_ap_base(ap) + ofs);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void mv6_dev_config(struct ata_device *adev)
|
|
{
|
|
/*
|
|
* We don't have hob_nsect when doing NCQ commands on Gen-II.
|
|
* See mv_qc_prep() for more info.
|
|
*/
|
|
if (adev->flags & ATA_DFLAG_NCQ)
|
|
if (adev->max_sectors > ATA_MAX_SECTORS)
|
|
adev->max_sectors = ATA_MAX_SECTORS;
|
|
}
|
|
|
|
static void mv_edma_cfg(struct mv_port_priv *pp, struct mv_host_priv *hpriv,
|
|
void __iomem *port_mmio, int want_ncq)
|
|
{
|
|
u32 cfg;
|
|
|
|
/* set up non-NCQ EDMA configuration */
|
|
cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
|
|
|
|
if (IS_GEN_I(hpriv))
|
|
cfg |= (1 << 8); /* enab config burst size mask */
|
|
|
|
else if (IS_GEN_II(hpriv))
|
|
cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
|
|
|
|
else if (IS_GEN_IIE(hpriv)) {
|
|
cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
|
|
cfg |= (1 << 22); /* enab 4-entry host queue cache */
|
|
cfg |= (1 << 18); /* enab early completion */
|
|
cfg |= (1 << 17); /* enab cut-through (dis stor&forwrd) */
|
|
}
|
|
|
|
if (want_ncq) {
|
|
cfg |= EDMA_CFG_NCQ;
|
|
pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
|
|
} else
|
|
pp->pp_flags &= ~MV_PP_FLAG_NCQ_EN;
|
|
|
|
writelfl(cfg, port_mmio + EDMA_CFG_OFS);
|
|
}
|
|
|
|
static void mv_port_free_dma_mem(struct ata_port *ap)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
int tag;
|
|
|
|
if (pp->crqb) {
|
|
dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
|
|
pp->crqb = NULL;
|
|
}
|
|
if (pp->crpb) {
|
|
dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
|
|
pp->crpb = NULL;
|
|
}
|
|
/*
|
|
* For GEN_I, there's no NCQ, so we have only a single sg_tbl.
|
|
* For later hardware, we have one unique sg_tbl per NCQ tag.
|
|
*/
|
|
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
|
|
if (pp->sg_tbl[tag]) {
|
|
if (tag == 0 || !IS_GEN_I(hpriv))
|
|
dma_pool_free(hpriv->sg_tbl_pool,
|
|
pp->sg_tbl[tag],
|
|
pp->sg_tbl_dma[tag]);
|
|
pp->sg_tbl[tag] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_port_start - Port specific init/start routine.
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Allocate and point to DMA memory, init port private memory,
|
|
* zero indices.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_port_start(struct ata_port *ap)
|
|
{
|
|
struct device *dev = ap->host->dev;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
struct mv_port_priv *pp;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
unsigned long flags;
|
|
int tag, rc;
|
|
|
|
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
|
|
if (!pp)
|
|
return -ENOMEM;
|
|
ap->private_data = pp;
|
|
|
|
rc = ata_pad_alloc(ap, dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
|
|
if (!pp->crqb)
|
|
return -ENOMEM;
|
|
memset(pp->crqb, 0, MV_CRQB_Q_SZ);
|
|
|
|
pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
|
|
if (!pp->crpb)
|
|
goto out_port_free_dma_mem;
|
|
memset(pp->crpb, 0, MV_CRPB_Q_SZ);
|
|
|
|
/*
|
|
* For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
|
|
* For later hardware, we need one unique sg_tbl per NCQ tag.
|
|
*/
|
|
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
|
|
if (tag == 0 || !IS_GEN_I(hpriv)) {
|
|
pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
|
|
GFP_KERNEL, &pp->sg_tbl_dma[tag]);
|
|
if (!pp->sg_tbl[tag])
|
|
goto out_port_free_dma_mem;
|
|
} else {
|
|
pp->sg_tbl[tag] = pp->sg_tbl[0];
|
|
pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&ap->host->lock, flags);
|
|
|
|
mv_edma_cfg(pp, hpriv, port_mmio, 0);
|
|
mv_set_edma_ptrs(port_mmio, hpriv, pp);
|
|
|
|
spin_unlock_irqrestore(&ap->host->lock, flags);
|
|
|
|
/* Don't turn on EDMA here...do it before DMA commands only. Else
|
|
* we'll be unable to send non-data, PIO, etc due to restricted access
|
|
* to shadow regs.
|
|
*/
|
|
return 0;
|
|
|
|
out_port_free_dma_mem:
|
|
mv_port_free_dma_mem(ap);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* mv_port_stop - Port specific cleanup/stop routine.
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Stop DMA, cleanup port memory.
|
|
*
|
|
* LOCKING:
|
|
* This routine uses the host lock to protect the DMA stop.
|
|
*/
|
|
static void mv_port_stop(struct ata_port *ap)
|
|
{
|
|
mv_stop_dma(ap);
|
|
mv_port_free_dma_mem(ap);
|
|
}
|
|
|
|
/**
|
|
* mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
|
|
* @qc: queued command whose SG list to source from
|
|
*
|
|
* Populate the SG list and mark the last entry.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_fill_sg(struct ata_queued_cmd *qc)
|
|
{
|
|
struct mv_port_priv *pp = qc->ap->private_data;
|
|
struct scatterlist *sg;
|
|
struct mv_sg *mv_sg, *last_sg = NULL;
|
|
unsigned int si;
|
|
|
|
mv_sg = pp->sg_tbl[qc->tag];
|
|
for_each_sg(qc->sg, sg, qc->n_elem, si) {
|
|
dma_addr_t addr = sg_dma_address(sg);
|
|
u32 sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
u32 offset = addr & 0xffff;
|
|
u32 len = sg_len;
|
|
|
|
if ((offset + sg_len > 0x10000))
|
|
len = 0x10000 - offset;
|
|
|
|
mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
|
|
mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
|
|
mv_sg->flags_size = cpu_to_le32(len & 0xffff);
|
|
|
|
sg_len -= len;
|
|
addr += len;
|
|
|
|
last_sg = mv_sg;
|
|
mv_sg++;
|
|
}
|
|
}
|
|
|
|
if (likely(last_sg))
|
|
last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
|
|
}
|
|
|
|
static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
|
|
{
|
|
u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
|
|
(last ? CRQB_CMD_LAST : 0);
|
|
*cmdw = cpu_to_le16(tmp);
|
|
}
|
|
|
|
/**
|
|
* mv_qc_prep - Host specific command preparation.
|
|
* @qc: queued command to prepare
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it handles prep of the CRQB
|
|
* (command request block), does some sanity checking, and calls
|
|
* the SG load routine.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
__le16 *cw;
|
|
struct ata_taskfile *tf;
|
|
u16 flags = 0;
|
|
unsigned in_index;
|
|
|
|
if ((qc->tf.protocol != ATA_PROT_DMA) &&
|
|
(qc->tf.protocol != ATA_PROT_NCQ))
|
|
return;
|
|
|
|
/* Fill in command request block
|
|
*/
|
|
if (!(qc->tf.flags & ATA_TFLAG_WRITE))
|
|
flags |= CRQB_FLAG_READ;
|
|
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
|
|
flags |= qc->tag << CRQB_TAG_SHIFT;
|
|
|
|
/* get current queue index from software */
|
|
in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
|
|
|
|
pp->crqb[in_index].sg_addr =
|
|
cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
|
|
pp->crqb[in_index].sg_addr_hi =
|
|
cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
|
|
pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
|
|
|
|
cw = &pp->crqb[in_index].ata_cmd[0];
|
|
tf = &qc->tf;
|
|
|
|
/* Sadly, the CRQB cannot accomodate all registers--there are
|
|
* only 11 bytes...so we must pick and choose required
|
|
* registers based on the command. So, we drop feature and
|
|
* hob_feature for [RW] DMA commands, but they are needed for
|
|
* NCQ. NCQ will drop hob_nsect.
|
|
*/
|
|
switch (tf->command) {
|
|
case ATA_CMD_READ:
|
|
case ATA_CMD_READ_EXT:
|
|
case ATA_CMD_WRITE:
|
|
case ATA_CMD_WRITE_EXT:
|
|
case ATA_CMD_WRITE_FUA_EXT:
|
|
mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
|
|
break;
|
|
case ATA_CMD_FPDMA_READ:
|
|
case ATA_CMD_FPDMA_WRITE:
|
|
mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
|
|
break;
|
|
default:
|
|
/* The only other commands EDMA supports in non-queued and
|
|
* non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
|
|
* of which are defined/used by Linux. If we get here, this
|
|
* driver needs work.
|
|
*
|
|
* FIXME: modify libata to give qc_prep a return value and
|
|
* return error here.
|
|
*/
|
|
BUG_ON(tf->command);
|
|
break;
|
|
}
|
|
mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
|
|
mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
|
|
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
mv_fill_sg(qc);
|
|
}
|
|
|
|
/**
|
|
* mv_qc_prep_iie - Host specific command preparation.
|
|
* @qc: queued command to prepare
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it handles prep of the CRQB
|
|
* (command request block), does some sanity checking, and calls
|
|
* the SG load routine.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct mv_crqb_iie *crqb;
|
|
struct ata_taskfile *tf;
|
|
unsigned in_index;
|
|
u32 flags = 0;
|
|
|
|
if ((qc->tf.protocol != ATA_PROT_DMA) &&
|
|
(qc->tf.protocol != ATA_PROT_NCQ))
|
|
return;
|
|
|
|
/* Fill in Gen IIE command request block
|
|
*/
|
|
if (!(qc->tf.flags & ATA_TFLAG_WRITE))
|
|
flags |= CRQB_FLAG_READ;
|
|
|
|
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
|
|
flags |= qc->tag << CRQB_TAG_SHIFT;
|
|
flags |= qc->tag << CRQB_HOSTQ_SHIFT;
|
|
|
|
/* get current queue index from software */
|
|
in_index = pp->req_idx & MV_MAX_Q_DEPTH_MASK;
|
|
|
|
crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
|
|
crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
|
|
crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
|
|
crqb->flags = cpu_to_le32(flags);
|
|
|
|
tf = &qc->tf;
|
|
crqb->ata_cmd[0] = cpu_to_le32(
|
|
(tf->command << 16) |
|
|
(tf->feature << 24)
|
|
);
|
|
crqb->ata_cmd[1] = cpu_to_le32(
|
|
(tf->lbal << 0) |
|
|
(tf->lbam << 8) |
|
|
(tf->lbah << 16) |
|
|
(tf->device << 24)
|
|
);
|
|
crqb->ata_cmd[2] = cpu_to_le32(
|
|
(tf->hob_lbal << 0) |
|
|
(tf->hob_lbam << 8) |
|
|
(tf->hob_lbah << 16) |
|
|
(tf->hob_feature << 24)
|
|
);
|
|
crqb->ata_cmd[3] = cpu_to_le32(
|
|
(tf->nsect << 0) |
|
|
(tf->hob_nsect << 8)
|
|
);
|
|
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
mv_fill_sg(qc);
|
|
}
|
|
|
|
/**
|
|
* mv_qc_issue - Initiate a command to the host
|
|
* @qc: queued command to start
|
|
*
|
|
* This routine simply redirects to the general purpose routine
|
|
* if command is not DMA. Else, it sanity checks our local
|
|
* caches of the request producer/consumer indices then enables
|
|
* DMA and bumps the request producer index.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
u32 in_index;
|
|
|
|
if ((qc->tf.protocol != ATA_PROT_DMA) &&
|
|
(qc->tf.protocol != ATA_PROT_NCQ)) {
|
|
/* We're about to send a non-EDMA capable command to the
|
|
* port. Turn off EDMA so there won't be problems accessing
|
|
* shadow block, etc registers.
|
|
*/
|
|
__mv_stop_dma(ap);
|
|
return ata_qc_issue_prot(qc);
|
|
}
|
|
|
|
mv_start_dma(ap, port_mmio, pp, qc->tf.protocol);
|
|
|
|
pp->req_idx++;
|
|
|
|
in_index = (pp->req_idx & MV_MAX_Q_DEPTH_MASK) << EDMA_REQ_Q_PTR_SHIFT;
|
|
|
|
/* and write the request in pointer to kick the EDMA to life */
|
|
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
|
|
port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_err_intr - Handle error interrupts on the port
|
|
* @ap: ATA channel to manipulate
|
|
* @reset_allowed: bool: 0 == don't trigger from reset here
|
|
*
|
|
* In most cases, just clear the interrupt and move on. However,
|
|
* some cases require an eDMA reset, which is done right before
|
|
* the COMRESET in mv_phy_reset(). The SERR case requires a
|
|
* clear of pending errors in the SATA SERROR register. Finally,
|
|
* if the port disabled DMA, update our cached copy to match.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_err_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 edma_err_cause, eh_freeze_mask, serr = 0;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
unsigned int edma_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
|
|
unsigned int action = 0, err_mask = 0;
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
|
|
ata_ehi_clear_desc(ehi);
|
|
|
|
if (!edma_enabled) {
|
|
/* just a guess: do we need to do this? should we
|
|
* expand this, and do it in all cases?
|
|
*/
|
|
sata_scr_read(&ap->link, SCR_ERROR, &serr);
|
|
sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
|
|
}
|
|
|
|
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
ata_ehi_push_desc(ehi, "edma_err 0x%08x", edma_err_cause);
|
|
|
|
/*
|
|
* all generations share these EDMA error cause bits
|
|
*/
|
|
|
|
if (edma_err_cause & EDMA_ERR_DEV)
|
|
err_mask |= AC_ERR_DEV;
|
|
if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
|
|
EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
|
|
EDMA_ERR_INTRL_PAR)) {
|
|
err_mask |= AC_ERR_ATA_BUS;
|
|
action |= ATA_EH_HARDRESET;
|
|
ata_ehi_push_desc(ehi, "parity error");
|
|
}
|
|
if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
|
|
ata_ehi_hotplugged(ehi);
|
|
ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
|
|
"dev disconnect" : "dev connect");
|
|
action |= ATA_EH_HARDRESET;
|
|
}
|
|
|
|
if (IS_GEN_I(hpriv)) {
|
|
eh_freeze_mask = EDMA_EH_FREEZE_5;
|
|
|
|
if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
ata_ehi_push_desc(ehi, "EDMA self-disable");
|
|
}
|
|
} else {
|
|
eh_freeze_mask = EDMA_EH_FREEZE;
|
|
|
|
if (edma_err_cause & EDMA_ERR_SELF_DIS) {
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
|
|
ata_ehi_push_desc(ehi, "EDMA self-disable");
|
|
}
|
|
|
|
if (edma_err_cause & EDMA_ERR_SERR) {
|
|
sata_scr_read(&ap->link, SCR_ERROR, &serr);
|
|
sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
|
|
err_mask = AC_ERR_ATA_BUS;
|
|
action |= ATA_EH_HARDRESET;
|
|
}
|
|
}
|
|
|
|
/* Clear EDMA now that SERR cleanup done */
|
|
writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
if (!err_mask) {
|
|
err_mask = AC_ERR_OTHER;
|
|
action |= ATA_EH_HARDRESET;
|
|
}
|
|
|
|
ehi->serror |= serr;
|
|
ehi->action |= action;
|
|
|
|
if (qc)
|
|
qc->err_mask |= err_mask;
|
|
else
|
|
ehi->err_mask |= err_mask;
|
|
|
|
if (edma_err_cause & eh_freeze_mask)
|
|
ata_port_freeze(ap);
|
|
else
|
|
ata_port_abort(ap);
|
|
}
|
|
|
|
static void mv_intr_pio(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
u8 ata_status;
|
|
|
|
/* ignore spurious intr if drive still BUSY */
|
|
ata_status = readb(ap->ioaddr.status_addr);
|
|
if (unlikely(ata_status & ATA_BUSY))
|
|
return;
|
|
|
|
/* get active ATA command */
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (unlikely(!qc)) /* no active tag */
|
|
return;
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING) /* polling; we don't own qc */
|
|
return;
|
|
|
|
/* and finally, complete the ATA command */
|
|
qc->err_mask |= ac_err_mask(ata_status);
|
|
ata_qc_complete(qc);
|
|
}
|
|
|
|
static void mv_intr_edma(struct ata_port *ap)
|
|
{
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct ata_queued_cmd *qc;
|
|
u32 out_index, in_index;
|
|
bool work_done = false;
|
|
|
|
/* get h/w response queue pointer */
|
|
in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
|
|
>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
|
|
|
|
while (1) {
|
|
u16 status;
|
|
unsigned int tag;
|
|
|
|
/* get s/w response queue last-read pointer, and compare */
|
|
out_index = pp->resp_idx & MV_MAX_Q_DEPTH_MASK;
|
|
if (in_index == out_index)
|
|
break;
|
|
|
|
/* 50xx: get active ATA command */
|
|
if (IS_GEN_I(hpriv))
|
|
tag = ap->link.active_tag;
|
|
|
|
/* Gen II/IIE: get active ATA command via tag, to enable
|
|
* support for queueing. this works transparently for
|
|
* queued and non-queued modes.
|
|
*/
|
|
else
|
|
tag = le16_to_cpu(pp->crpb[out_index].id) & 0x1f;
|
|
|
|
qc = ata_qc_from_tag(ap, tag);
|
|
|
|
/* For non-NCQ mode, the lower 8 bits of status
|
|
* are from EDMA_ERR_IRQ_CAUSE_OFS,
|
|
* which should be zero if all went well.
|
|
*/
|
|
status = le16_to_cpu(pp->crpb[out_index].flags);
|
|
if ((status & 0xff) && !(pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
|
|
mv_err_intr(ap, qc);
|
|
return;
|
|
}
|
|
|
|
/* and finally, complete the ATA command */
|
|
if (qc) {
|
|
qc->err_mask |=
|
|
ac_err_mask(status >> CRPB_FLAG_STATUS_SHIFT);
|
|
ata_qc_complete(qc);
|
|
}
|
|
|
|
/* advance software response queue pointer, to
|
|
* indicate (after the loop completes) to hardware
|
|
* that we have consumed a response queue entry.
|
|
*/
|
|
work_done = true;
|
|
pp->resp_idx++;
|
|
}
|
|
|
|
if (work_done)
|
|
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
|
|
(out_index << EDMA_RSP_Q_PTR_SHIFT),
|
|
port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
|
|
}
|
|
|
|
/**
|
|
* mv_host_intr - Handle all interrupts on the given host controller
|
|
* @host: host specific structure
|
|
* @relevant: port error bits relevant to this host controller
|
|
* @hc: which host controller we're to look at
|
|
*
|
|
* Read then write clear the HC interrupt status then walk each
|
|
* port connected to the HC and see if it needs servicing. Port
|
|
* success ints are reported in the HC interrupt status reg, the
|
|
* port error ints are reported in the higher level main
|
|
* interrupt status register and thus are passed in via the
|
|
* 'relevant' argument.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
u32 hc_irq_cause;
|
|
int port, port0, last_port;
|
|
|
|
if (hc == 0)
|
|
port0 = 0;
|
|
else
|
|
port0 = MV_PORTS_PER_HC;
|
|
|
|
if (HAS_PCI(host))
|
|
last_port = port0 + MV_PORTS_PER_HC;
|
|
else
|
|
last_port = port0 + hpriv->n_ports;
|
|
/* we'll need the HC success int register in most cases */
|
|
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
if (!hc_irq_cause)
|
|
return;
|
|
|
|
writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
|
|
VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
|
|
hc, relevant, hc_irq_cause);
|
|
|
|
for (port = port0; port < port0 + last_port; port++) {
|
|
struct ata_port *ap = host->ports[port];
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
int have_err_bits, hard_port, shift;
|
|
|
|
if ((!ap) || (ap->flags & ATA_FLAG_DISABLED))
|
|
continue;
|
|
|
|
shift = port << 1; /* (port * 2) */
|
|
if (port >= MV_PORTS_PER_HC) {
|
|
shift++; /* skip bit 8 in the HC Main IRQ reg */
|
|
}
|
|
have_err_bits = ((PORT0_ERR << shift) & relevant);
|
|
|
|
if (unlikely(have_err_bits)) {
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
|
|
continue;
|
|
|
|
mv_err_intr(ap, qc);
|
|
continue;
|
|
}
|
|
|
|
hard_port = mv_hardport_from_port(port); /* range 0..3 */
|
|
|
|
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
|
|
if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause)
|
|
mv_intr_edma(ap);
|
|
} else {
|
|
if ((DEV_IRQ << hard_port) & hc_irq_cause)
|
|
mv_intr_pio(ap);
|
|
}
|
|
}
|
|
VPRINTK("EXIT\n");
|
|
}
|
|
|
|
static void mv_pci_error(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
struct ata_port *ap;
|
|
struct ata_queued_cmd *qc;
|
|
struct ata_eh_info *ehi;
|
|
unsigned int i, err_mask, printed = 0;
|
|
u32 err_cause;
|
|
|
|
err_cause = readl(mmio + hpriv->irq_cause_ofs);
|
|
|
|
dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
|
|
err_cause);
|
|
|
|
DPRINTK("All regs @ PCI error\n");
|
|
mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
|
|
|
|
writelfl(0, mmio + hpriv->irq_cause_ofs);
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
ap = host->ports[i];
|
|
if (!ata_link_offline(&ap->link)) {
|
|
ehi = &ap->link.eh_info;
|
|
ata_ehi_clear_desc(ehi);
|
|
if (!printed++)
|
|
ata_ehi_push_desc(ehi,
|
|
"PCI err cause 0x%08x", err_cause);
|
|
err_mask = AC_ERR_HOST_BUS;
|
|
ehi->action = ATA_EH_HARDRESET;
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc)
|
|
qc->err_mask |= err_mask;
|
|
else
|
|
ehi->err_mask |= err_mask;
|
|
|
|
ata_port_freeze(ap);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mv_interrupt - Main interrupt event handler
|
|
* @irq: unused
|
|
* @dev_instance: private data; in this case the host structure
|
|
*
|
|
* Read the read only register to determine if any host
|
|
* controllers have pending interrupts. If so, call lower level
|
|
* routine to handle. Also check for PCI errors which are only
|
|
* reported here.
|
|
*
|
|
* LOCKING:
|
|
* This routine holds the host lock while processing pending
|
|
* interrupts.
|
|
*/
|
|
static irqreturn_t mv_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct ata_host *host = dev_instance;
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
unsigned int hc, handled = 0, n_hcs;
|
|
void __iomem *mmio = hpriv->base;
|
|
u32 irq_stat, irq_mask;
|
|
|
|
spin_lock(&host->lock);
|
|
|
|
irq_stat = readl(hpriv->main_cause_reg_addr);
|
|
irq_mask = readl(hpriv->main_mask_reg_addr);
|
|
|
|
/* check the cases where we either have nothing pending or have read
|
|
* a bogus register value which can indicate HW removal or PCI fault
|
|
*/
|
|
if (!(irq_stat & irq_mask) || (0xffffffffU == irq_stat))
|
|
goto out_unlock;
|
|
|
|
n_hcs = mv_get_hc_count(host->ports[0]->flags);
|
|
|
|
if (unlikely((irq_stat & PCI_ERR) && HAS_PCI(host))) {
|
|
mv_pci_error(host, mmio);
|
|
handled = 1;
|
|
goto out_unlock; /* skip all other HC irq handling */
|
|
}
|
|
|
|
for (hc = 0; hc < n_hcs; hc++) {
|
|
u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
|
|
if (relevant) {
|
|
mv_host_intr(host, relevant, hc);
|
|
handled = 1;
|
|
}
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock(&host->lock);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
|
|
{
|
|
void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
|
|
unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
|
|
|
|
return hc_mmio + ofs;
|
|
}
|
|
|
|
static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
|
|
{
|
|
unsigned int ofs;
|
|
|
|
switch (sc_reg_in) {
|
|
case SCR_STATUS:
|
|
case SCR_ERROR:
|
|
case SCR_CONTROL:
|
|
ofs = sc_reg_in * sizeof(u32);
|
|
break;
|
|
default:
|
|
ofs = 0xffffffffU;
|
|
break;
|
|
}
|
|
return ofs;
|
|
}
|
|
|
|
static int mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in, u32 *val)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
|
|
unsigned int ofs = mv5_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
*val = readl(addr + ofs);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
|
|
unsigned int ofs = mv5_scr_offset(sc_reg_in);
|
|
|
|
if (ofs != 0xffffffffU) {
|
|
writelfl(val, addr + ofs);
|
|
return 0;
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(host->dev);
|
|
int early_5080;
|
|
|
|
early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
|
|
|
|
if (!early_5080) {
|
|
u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
tmp |= (1 << 0);
|
|
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
}
|
|
|
|
mv_reset_pci_bus(host, mmio);
|
|
}
|
|
|
|
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
writel(0x0fcfffff, mmio + MV_FLASH_CTL);
|
|
}
|
|
|
|
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
|
|
u32 tmp;
|
|
|
|
tmp = readl(phy_mmio + MV5_PHY_MODE);
|
|
|
|
hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
|
|
hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
|
|
}
|
|
|
|
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
u32 tmp;
|
|
|
|
writel(0, mmio + MV_GPIO_PORT_CTL);
|
|
|
|
/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
|
|
|
|
tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
tmp |= ~(1 << 0);
|
|
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
|
|
}
|
|
|
|
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port)
|
|
{
|
|
void __iomem *phy_mmio = mv5_phy_base(mmio, port);
|
|
const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
|
|
u32 tmp;
|
|
int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
|
|
|
|
if (fix_apm_sq) {
|
|
tmp = readl(phy_mmio + MV5_LT_MODE);
|
|
tmp |= (1 << 19);
|
|
writel(tmp, phy_mmio + MV5_LT_MODE);
|
|
|
|
tmp = readl(phy_mmio + MV5_PHY_CTL);
|
|
tmp &= ~0x3;
|
|
tmp |= 0x1;
|
|
writel(tmp, phy_mmio + MV5_PHY_CTL);
|
|
}
|
|
|
|
tmp = readl(phy_mmio + MV5_PHY_MODE);
|
|
tmp &= ~mask;
|
|
tmp |= hpriv->signal[port].pre;
|
|
tmp |= hpriv->signal[port].amps;
|
|
writel(tmp, phy_mmio + MV5_PHY_MODE);
|
|
}
|
|
|
|
|
|
#undef ZERO
|
|
#define ZERO(reg) writel(0, port_mmio + (reg))
|
|
static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
|
|
|
|
mv_channel_reset(hpriv, mmio, port);
|
|
|
|
ZERO(0x028); /* command */
|
|
writel(0x11f, port_mmio + EDMA_CFG_OFS);
|
|
ZERO(0x004); /* timer */
|
|
ZERO(0x008); /* irq err cause */
|
|
ZERO(0x00c); /* irq err mask */
|
|
ZERO(0x010); /* rq bah */
|
|
ZERO(0x014); /* rq inp */
|
|
ZERO(0x018); /* rq outp */
|
|
ZERO(0x01c); /* respq bah */
|
|
ZERO(0x024); /* respq outp */
|
|
ZERO(0x020); /* respq inp */
|
|
ZERO(0x02c); /* test control */
|
|
writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
|
|
}
|
|
#undef ZERO
|
|
|
|
#define ZERO(reg) writel(0, hc_mmio + (reg))
|
|
static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int hc)
|
|
{
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
u32 tmp;
|
|
|
|
ZERO(0x00c);
|
|
ZERO(0x010);
|
|
ZERO(0x014);
|
|
ZERO(0x018);
|
|
|
|
tmp = readl(hc_mmio + 0x20);
|
|
tmp &= 0x1c1c1c1c;
|
|
tmp |= 0x03030303;
|
|
writel(tmp, hc_mmio + 0x20);
|
|
}
|
|
#undef ZERO
|
|
|
|
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc)
|
|
{
|
|
unsigned int hc, port;
|
|
|
|
for (hc = 0; hc < n_hc; hc++) {
|
|
for (port = 0; port < MV_PORTS_PER_HC; port++)
|
|
mv5_reset_hc_port(hpriv, mmio,
|
|
(hc * MV_PORTS_PER_HC) + port);
|
|
|
|
mv5_reset_one_hc(hpriv, mmio, hc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#undef ZERO
|
|
#define ZERO(reg) writel(0, mmio + (reg))
|
|
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
u32 tmp;
|
|
|
|
tmp = readl(mmio + MV_PCI_MODE);
|
|
tmp &= 0xff00ffff;
|
|
writel(tmp, mmio + MV_PCI_MODE);
|
|
|
|
ZERO(MV_PCI_DISC_TIMER);
|
|
ZERO(MV_PCI_MSI_TRIGGER);
|
|
writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
|
|
ZERO(HC_MAIN_IRQ_MASK_OFS);
|
|
ZERO(MV_PCI_SERR_MASK);
|
|
ZERO(hpriv->irq_cause_ofs);
|
|
ZERO(hpriv->irq_mask_ofs);
|
|
ZERO(MV_PCI_ERR_LOW_ADDRESS);
|
|
ZERO(MV_PCI_ERR_HIGH_ADDRESS);
|
|
ZERO(MV_PCI_ERR_ATTRIBUTE);
|
|
ZERO(MV_PCI_ERR_COMMAND);
|
|
}
|
|
#undef ZERO
|
|
|
|
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
u32 tmp;
|
|
|
|
mv5_reset_flash(hpriv, mmio);
|
|
|
|
tmp = readl(mmio + MV_GPIO_PORT_CTL);
|
|
tmp &= 0x3;
|
|
tmp |= (1 << 5) | (1 << 6);
|
|
writel(tmp, mmio + MV_GPIO_PORT_CTL);
|
|
}
|
|
|
|
/**
|
|
* mv6_reset_hc - Perform the 6xxx global soft reset
|
|
* @mmio: base address of the HBA
|
|
*
|
|
* This routine only applies to 6xxx parts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int n_hc)
|
|
{
|
|
void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
|
|
int i, rc = 0;
|
|
u32 t;
|
|
|
|
/* Following procedure defined in PCI "main command and status
|
|
* register" table.
|
|
*/
|
|
t = readl(reg);
|
|
writel(t | STOP_PCI_MASTER, reg);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
udelay(1);
|
|
t = readl(reg);
|
|
if (PCI_MASTER_EMPTY & t)
|
|
break;
|
|
}
|
|
if (!(PCI_MASTER_EMPTY & t)) {
|
|
printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
|
|
rc = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* set reset */
|
|
i = 5;
|
|
do {
|
|
writel(t | GLOB_SFT_RST, reg);
|
|
t = readl(reg);
|
|
udelay(1);
|
|
} while (!(GLOB_SFT_RST & t) && (i-- > 0));
|
|
|
|
if (!(GLOB_SFT_RST & t)) {
|
|
printk(KERN_ERR DRV_NAME ": can't set global reset\n");
|
|
rc = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* clear reset and *reenable the PCI master* (not mentioned in spec) */
|
|
i = 5;
|
|
do {
|
|
writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
|
|
t = readl(reg);
|
|
udelay(1);
|
|
} while ((GLOB_SFT_RST & t) && (i-- > 0));
|
|
|
|
if (GLOB_SFT_RST & t) {
|
|
printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
|
|
rc = 1;
|
|
}
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *port_mmio;
|
|
u32 tmp;
|
|
|
|
tmp = readl(mmio + MV_RESET_CFG);
|
|
if ((tmp & (1 << 0)) == 0) {
|
|
hpriv->signal[idx].amps = 0x7 << 8;
|
|
hpriv->signal[idx].pre = 0x1 << 5;
|
|
return;
|
|
}
|
|
|
|
port_mmio = mv_port_base(mmio, idx);
|
|
tmp = readl(port_mmio + PHY_MODE2);
|
|
|
|
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
|
|
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
|
|
}
|
|
|
|
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
|
|
{
|
|
writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
|
|
}
|
|
|
|
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
u32 hp_flags = hpriv->hp_flags;
|
|
int fix_phy_mode2 =
|
|
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
|
|
int fix_phy_mode4 =
|
|
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
|
|
u32 m2, tmp;
|
|
|
|
if (fix_phy_mode2) {
|
|
m2 = readl(port_mmio + PHY_MODE2);
|
|
m2 &= ~(1 << 16);
|
|
m2 |= (1 << 31);
|
|
writel(m2, port_mmio + PHY_MODE2);
|
|
|
|
udelay(200);
|
|
|
|
m2 = readl(port_mmio + PHY_MODE2);
|
|
m2 &= ~((1 << 16) | (1 << 31));
|
|
writel(m2, port_mmio + PHY_MODE2);
|
|
|
|
udelay(200);
|
|
}
|
|
|
|
/* who knows what this magic does */
|
|
tmp = readl(port_mmio + PHY_MODE3);
|
|
tmp &= ~0x7F800000;
|
|
tmp |= 0x2A800000;
|
|
writel(tmp, port_mmio + PHY_MODE3);
|
|
|
|
if (fix_phy_mode4) {
|
|
u32 m4;
|
|
|
|
m4 = readl(port_mmio + PHY_MODE4);
|
|
|
|
if (hp_flags & MV_HP_ERRATA_60X1B2)
|
|
tmp = readl(port_mmio + 0x310);
|
|
|
|
m4 = (m4 & ~(1 << 1)) | (1 << 0);
|
|
|
|
writel(m4, port_mmio + PHY_MODE4);
|
|
|
|
if (hp_flags & MV_HP_ERRATA_60X1B2)
|
|
writel(tmp, port_mmio + 0x310);
|
|
}
|
|
|
|
/* Revert values of pre-emphasis and signal amps to the saved ones */
|
|
m2 = readl(port_mmio + PHY_MODE2);
|
|
|
|
m2 &= ~MV_M2_PREAMP_MASK;
|
|
m2 |= hpriv->signal[port].amps;
|
|
m2 |= hpriv->signal[port].pre;
|
|
m2 &= ~(1 << 16);
|
|
|
|
/* according to mvSata 3.6.1, some IIE values are fixed */
|
|
if (IS_GEN_IIE(hpriv)) {
|
|
m2 &= ~0xC30FF01F;
|
|
m2 |= 0x0000900F;
|
|
}
|
|
|
|
writel(m2, port_mmio + PHY_MODE2);
|
|
}
|
|
|
|
/* TODO: use the generic LED interface to configure the SATA Presence */
|
|
/* & Acitivy LEDs on the board */
|
|
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *port_mmio;
|
|
u32 tmp;
|
|
|
|
port_mmio = mv_port_base(mmio, idx);
|
|
tmp = readl(port_mmio + PHY_MODE2);
|
|
|
|
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
|
|
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
|
|
}
|
|
|
|
#undef ZERO
|
|
#define ZERO(reg) writel(0, port_mmio + (reg))
|
|
static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int port)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
|
|
|
|
mv_channel_reset(hpriv, mmio, port);
|
|
|
|
ZERO(0x028); /* command */
|
|
writel(0x101f, port_mmio + EDMA_CFG_OFS);
|
|
ZERO(0x004); /* timer */
|
|
ZERO(0x008); /* irq err cause */
|
|
ZERO(0x00c); /* irq err mask */
|
|
ZERO(0x010); /* rq bah */
|
|
ZERO(0x014); /* rq inp */
|
|
ZERO(0x018); /* rq outp */
|
|
ZERO(0x01c); /* respq bah */
|
|
ZERO(0x024); /* respq outp */
|
|
ZERO(0x020); /* respq inp */
|
|
ZERO(0x02c); /* test control */
|
|
writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
|
|
}
|
|
|
|
#undef ZERO
|
|
|
|
#define ZERO(reg) writel(0, hc_mmio + (reg))
|
|
static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio)
|
|
{
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, 0);
|
|
|
|
ZERO(0x00c);
|
|
ZERO(0x010);
|
|
ZERO(0x014);
|
|
|
|
}
|
|
|
|
#undef ZERO
|
|
|
|
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio, unsigned int n_hc)
|
|
{
|
|
unsigned int port;
|
|
|
|
for (port = 0; port < hpriv->n_ports; port++)
|
|
mv_soc_reset_hc_port(hpriv, mmio, port);
|
|
|
|
mv_soc_reset_one_hc(hpriv, mmio);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
|
|
void __iomem *mmio)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
|
|
unsigned int port_no)
|
|
{
|
|
void __iomem *port_mmio = mv_port_base(mmio, port_no);
|
|
|
|
writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
|
|
|
|
if (IS_GEN_II(hpriv)) {
|
|
u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
|
|
ifctl |= (1 << 7); /* enable gen2i speed */
|
|
ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
|
|
writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
|
|
}
|
|
|
|
udelay(25); /* allow reset propagation */
|
|
|
|
/* Spec never mentions clearing the bit. Marvell's driver does
|
|
* clear the bit, however.
|
|
*/
|
|
writelfl(0, port_mmio + EDMA_CMD_OFS);
|
|
|
|
hpriv->ops->phy_errata(hpriv, mmio, port_no);
|
|
|
|
if (IS_GEN_I(hpriv))
|
|
mdelay(1);
|
|
}
|
|
|
|
/**
|
|
* mv_phy_reset - Perform eDMA reset followed by COMRESET
|
|
* @ap: ATA channel to manipulate
|
|
*
|
|
* Part of this is taken from __sata_phy_reset and modified to
|
|
* not sleep since this routine gets called from interrupt level.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller. This is coded to safe to call at
|
|
* interrupt level, i.e. it does not sleep.
|
|
*/
|
|
static void mv_phy_reset(struct ata_port *ap, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
int retry = 5;
|
|
u32 sstatus;
|
|
|
|
VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
|
|
|
|
#ifdef DEBUG
|
|
{
|
|
u32 sstatus, serror, scontrol;
|
|
|
|
mv_scr_read(ap, SCR_STATUS, &sstatus);
|
|
mv_scr_read(ap, SCR_ERROR, &serror);
|
|
mv_scr_read(ap, SCR_CONTROL, &scontrol);
|
|
DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
|
|
"SCtrl 0x%08x\n", sstatus, serror, scontrol);
|
|
}
|
|
#endif
|
|
|
|
/* Issue COMRESET via SControl */
|
|
comreset_retry:
|
|
sata_scr_write_flush(&ap->link, SCR_CONTROL, 0x301);
|
|
msleep(1);
|
|
|
|
sata_scr_write_flush(&ap->link, SCR_CONTROL, 0x300);
|
|
msleep(20);
|
|
|
|
do {
|
|
sata_scr_read(&ap->link, SCR_STATUS, &sstatus);
|
|
if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
|
|
break;
|
|
|
|
msleep(1);
|
|
} while (time_before(jiffies, deadline));
|
|
|
|
/* work around errata */
|
|
if (IS_GEN_II(hpriv) &&
|
|
(sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
|
|
(retry-- > 0))
|
|
goto comreset_retry;
|
|
|
|
#ifdef DEBUG
|
|
{
|
|
u32 sstatus, serror, scontrol;
|
|
|
|
mv_scr_read(ap, SCR_STATUS, &sstatus);
|
|
mv_scr_read(ap, SCR_ERROR, &serror);
|
|
mv_scr_read(ap, SCR_CONTROL, &scontrol);
|
|
DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
|
|
"SCtrl 0x%08x\n", sstatus, serror, scontrol);
|
|
}
|
|
#endif
|
|
|
|
if (ata_link_offline(&ap->link)) {
|
|
*class = ATA_DEV_NONE;
|
|
return;
|
|
}
|
|
|
|
/* even after SStatus reflects that device is ready,
|
|
* it seems to take a while for link to be fully
|
|
* established (and thus Status no longer 0x80/0x7F),
|
|
* so we poll a bit for that, here.
|
|
*/
|
|
retry = 20;
|
|
while (1) {
|
|
u8 drv_stat = ata_check_status(ap);
|
|
if ((drv_stat != 0x80) && (drv_stat != 0x7f))
|
|
break;
|
|
msleep(500);
|
|
if (retry-- <= 0)
|
|
break;
|
|
if (time_after(jiffies, deadline))
|
|
break;
|
|
}
|
|
|
|
/* FIXME: if we passed the deadline, the following
|
|
* code probably produces an invalid result
|
|
*/
|
|
|
|
/* finally, read device signature from TF registers */
|
|
*class = ata_dev_try_classify(ap->link.device, 1, NULL);
|
|
|
|
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
WARN_ON(pp->pp_flags & MV_PP_FLAG_EDMA_EN);
|
|
|
|
VPRINTK("EXIT\n");
|
|
}
|
|
|
|
static int mv_prereset(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct mv_port_priv *pp = ap->private_data;
|
|
struct ata_eh_context *ehc = &link->eh_context;
|
|
int rc;
|
|
|
|
rc = mv_stop_dma(ap);
|
|
if (rc)
|
|
ehc->i.action |= ATA_EH_HARDRESET;
|
|
|
|
if (!(pp->pp_flags & MV_PP_FLAG_HAD_A_RESET)) {
|
|
pp->pp_flags |= MV_PP_FLAG_HAD_A_RESET;
|
|
ehc->i.action |= ATA_EH_HARDRESET;
|
|
}
|
|
|
|
/* if we're about to do hardreset, nothing more to do */
|
|
if (ehc->i.action & ATA_EH_HARDRESET)
|
|
return 0;
|
|
|
|
if (ata_link_online(link))
|
|
rc = ata_wait_ready(ap, deadline);
|
|
else
|
|
rc = -ENODEV;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int mv_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
|
|
mv_stop_dma(ap);
|
|
|
|
mv_channel_reset(hpriv, mmio, ap->port_no);
|
|
|
|
mv_phy_reset(ap, class, deadline);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mv_postreset(struct ata_link *link, unsigned int *classes)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
u32 serr;
|
|
|
|
/* print link status */
|
|
sata_print_link_status(link);
|
|
|
|
/* clear SError */
|
|
sata_scr_read(link, SCR_ERROR, &serr);
|
|
sata_scr_write_flush(link, SCR_ERROR, serr);
|
|
|
|
/* bail out if no device is present */
|
|
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
|
|
DPRINTK("EXIT, no device\n");
|
|
return;
|
|
}
|
|
|
|
/* set up device control */
|
|
iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
|
|
}
|
|
|
|
static void mv_error_handler(struct ata_port *ap)
|
|
{
|
|
ata_do_eh(ap, mv_prereset, ata_std_softreset,
|
|
mv_hardreset, mv_postreset);
|
|
}
|
|
|
|
static void mv_eh_freeze(struct ata_port *ap)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
unsigned int hc = (ap->port_no > 3) ? 1 : 0;
|
|
u32 tmp, mask;
|
|
unsigned int shift;
|
|
|
|
/* FIXME: handle coalescing completion events properly */
|
|
|
|
shift = ap->port_no * 2;
|
|
if (hc > 0)
|
|
shift++;
|
|
|
|
mask = 0x3 << shift;
|
|
|
|
/* disable assertion of portN err, done events */
|
|
tmp = readl(hpriv->main_mask_reg_addr);
|
|
writelfl(tmp & ~mask, hpriv->main_mask_reg_addr);
|
|
}
|
|
|
|
static void mv_eh_thaw(struct ata_port *ap)
|
|
{
|
|
struct mv_host_priv *hpriv = ap->host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
unsigned int hc = (ap->port_no > 3) ? 1 : 0;
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
void __iomem *port_mmio = mv_ap_base(ap);
|
|
u32 tmp, mask, hc_irq_cause;
|
|
unsigned int shift, hc_port_no = ap->port_no;
|
|
|
|
/* FIXME: handle coalescing completion events properly */
|
|
|
|
shift = ap->port_no * 2;
|
|
if (hc > 0) {
|
|
shift++;
|
|
hc_port_no -= 4;
|
|
}
|
|
|
|
mask = 0x3 << shift;
|
|
|
|
/* clear EDMA errors on this port */
|
|
writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
/* clear pending irq events */
|
|
hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
hc_irq_cause &= ~(1 << hc_port_no); /* clear CRPB-done */
|
|
hc_irq_cause &= ~(1 << (hc_port_no + 8)); /* clear Device int */
|
|
writel(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
|
|
/* enable assertion of portN err, done events */
|
|
tmp = readl(hpriv->main_mask_reg_addr);
|
|
writelfl(tmp | mask, hpriv->main_mask_reg_addr);
|
|
}
|
|
|
|
/**
|
|
* mv_port_init - Perform some early initialization on a single port.
|
|
* @port: libata data structure storing shadow register addresses
|
|
* @port_mmio: base address of the port
|
|
*
|
|
* Initialize shadow register mmio addresses, clear outstanding
|
|
* interrupts on the port, and unmask interrupts for the future
|
|
* start of the port.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
|
|
{
|
|
void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
|
|
unsigned serr_ofs;
|
|
|
|
/* PIO related setup
|
|
*/
|
|
port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
|
|
port->error_addr =
|
|
port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
|
|
port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
|
|
port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
|
|
port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
|
|
port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
|
|
port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
|
|
port->status_addr =
|
|
port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
|
|
/* special case: control/altstatus doesn't have ATA_REG_ address */
|
|
port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
|
|
|
|
/* unused: */
|
|
port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
|
|
|
|
/* Clear any currently outstanding port interrupt conditions */
|
|
serr_ofs = mv_scr_offset(SCR_ERROR);
|
|
writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
|
|
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
|
|
|
|
/* unmask all non-transient EDMA error interrupts */
|
|
writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
|
|
|
|
VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
|
|
readl(port_mmio + EDMA_CFG_OFS),
|
|
readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
|
|
readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
|
|
}
|
|
|
|
static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(host->dev);
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
u32 hp_flags = hpriv->hp_flags;
|
|
|
|
switch (board_idx) {
|
|
case chip_5080:
|
|
hpriv->ops = &mv5xxx_ops;
|
|
hp_flags |= MV_HP_GEN_I;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x1:
|
|
hp_flags |= MV_HP_ERRATA_50XXB0;
|
|
break;
|
|
case 0x3:
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
default:
|
|
dev_printk(KERN_WARNING, &pdev->dev,
|
|
"Applying 50XXB2 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case chip_504x:
|
|
case chip_508x:
|
|
hpriv->ops = &mv5xxx_ops;
|
|
hp_flags |= MV_HP_GEN_I;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x0:
|
|
hp_flags |= MV_HP_ERRATA_50XXB0;
|
|
break;
|
|
case 0x3:
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
default:
|
|
dev_printk(KERN_WARNING, &pdev->dev,
|
|
"Applying B2 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_50XXB2;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case chip_604x:
|
|
case chip_608x:
|
|
hpriv->ops = &mv6xxx_ops;
|
|
hp_flags |= MV_HP_GEN_II;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x7:
|
|
hp_flags |= MV_HP_ERRATA_60X1B2;
|
|
break;
|
|
case 0x9:
|
|
hp_flags |= MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
default:
|
|
dev_printk(KERN_WARNING, &pdev->dev,
|
|
"Applying B2 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_60X1B2;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case chip_7042:
|
|
hp_flags |= MV_HP_PCIE;
|
|
if (pdev->vendor == PCI_VENDOR_ID_TTI &&
|
|
(pdev->device == 0x2300 || pdev->device == 0x2310))
|
|
{
|
|
/*
|
|
* Highpoint RocketRAID PCIe 23xx series cards:
|
|
*
|
|
* Unconfigured drives are treated as "Legacy"
|
|
* by the BIOS, and it overwrites sector 8 with
|
|
* a "Lgcy" metadata block prior to Linux boot.
|
|
*
|
|
* Configured drives (RAID or JBOD) leave sector 8
|
|
* alone, but instead overwrite a high numbered
|
|
* sector for the RAID metadata. This sector can
|
|
* be determined exactly, by truncating the physical
|
|
* drive capacity to a nice even GB value.
|
|
*
|
|
* RAID metadata is at: (dev->n_sectors & ~0xfffff)
|
|
*
|
|
* Warn the user, lest they think we're just buggy.
|
|
*/
|
|
printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
|
|
" BIOS CORRUPTS DATA on all attached drives,"
|
|
" regardless of if/how they are configured."
|
|
" BEWARE!\n");
|
|
printk(KERN_WARNING DRV_NAME ": For data safety, do not"
|
|
" use sectors 8-9 on \"Legacy\" drives,"
|
|
" and avoid the final two gigabytes on"
|
|
" all RocketRAID BIOS initialized drives.\n");
|
|
}
|
|
case chip_6042:
|
|
hpriv->ops = &mv6xxx_ops;
|
|
hp_flags |= MV_HP_GEN_IIE;
|
|
|
|
switch (pdev->revision) {
|
|
case 0x0:
|
|
hp_flags |= MV_HP_ERRATA_XX42A0;
|
|
break;
|
|
case 0x1:
|
|
hp_flags |= MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
default:
|
|
dev_printk(KERN_WARNING, &pdev->dev,
|
|
"Applying 60X1C0 workarounds to unknown rev\n");
|
|
hp_flags |= MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
}
|
|
break;
|
|
case chip_soc:
|
|
hpriv->ops = &mv_soc_ops;
|
|
hp_flags |= MV_HP_ERRATA_60X1C0;
|
|
break;
|
|
|
|
default:
|
|
dev_printk(KERN_ERR, host->dev,
|
|
"BUG: invalid board index %u\n", board_idx);
|
|
return 1;
|
|
}
|
|
|
|
hpriv->hp_flags = hp_flags;
|
|
if (hp_flags & MV_HP_PCIE) {
|
|
hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
|
|
hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
|
|
hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
|
|
} else {
|
|
hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
|
|
hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
|
|
hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_init_host - Perform some early initialization of the host.
|
|
* @host: ATA host to initialize
|
|
* @board_idx: controller index
|
|
*
|
|
* If possible, do an early global reset of the host. Then do
|
|
* our port init and clear/unmask all/relevant host interrupts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_init_host(struct ata_host *host, unsigned int board_idx)
|
|
{
|
|
int rc = 0, n_hc, port, hc;
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *mmio = hpriv->base;
|
|
|
|
rc = mv_chip_id(host, board_idx);
|
|
if (rc)
|
|
goto done;
|
|
|
|
if (HAS_PCI(host)) {
|
|
hpriv->main_cause_reg_addr = hpriv->base +
|
|
HC_MAIN_IRQ_CAUSE_OFS;
|
|
hpriv->main_mask_reg_addr = hpriv->base + HC_MAIN_IRQ_MASK_OFS;
|
|
} else {
|
|
hpriv->main_cause_reg_addr = hpriv->base +
|
|
HC_SOC_MAIN_IRQ_CAUSE_OFS;
|
|
hpriv->main_mask_reg_addr = hpriv->base +
|
|
HC_SOC_MAIN_IRQ_MASK_OFS;
|
|
}
|
|
/* global interrupt mask */
|
|
writel(0, hpriv->main_mask_reg_addr);
|
|
|
|
n_hc = mv_get_hc_count(host->ports[0]->flags);
|
|
|
|
for (port = 0; port < host->n_ports; port++)
|
|
hpriv->ops->read_preamp(hpriv, port, mmio);
|
|
|
|
rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
|
|
if (rc)
|
|
goto done;
|
|
|
|
hpriv->ops->reset_flash(hpriv, mmio);
|
|
hpriv->ops->reset_bus(host, mmio);
|
|
hpriv->ops->enable_leds(hpriv, mmio);
|
|
|
|
for (port = 0; port < host->n_ports; port++) {
|
|
if (IS_GEN_II(hpriv)) {
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
|
|
ifctl |= (1 << 7); /* enable gen2i speed */
|
|
ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
|
|
writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
|
|
}
|
|
|
|
hpriv->ops->phy_errata(hpriv, mmio, port);
|
|
}
|
|
|
|
for (port = 0; port < host->n_ports; port++) {
|
|
struct ata_port *ap = host->ports[port];
|
|
void __iomem *port_mmio = mv_port_base(mmio, port);
|
|
|
|
mv_port_init(&ap->ioaddr, port_mmio);
|
|
|
|
#ifdef CONFIG_PCI
|
|
if (HAS_PCI(host)) {
|
|
unsigned int offset = port_mmio - mmio;
|
|
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
|
|
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (hc = 0; hc < n_hc; hc++) {
|
|
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
|
|
|
|
VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
|
|
"(before clear)=0x%08x\n", hc,
|
|
readl(hc_mmio + HC_CFG_OFS),
|
|
readl(hc_mmio + HC_IRQ_CAUSE_OFS));
|
|
|
|
/* Clear any currently outstanding hc interrupt conditions */
|
|
writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
|
|
}
|
|
|
|
if (HAS_PCI(host)) {
|
|
/* Clear any currently outstanding host interrupt conditions */
|
|
writelfl(0, mmio + hpriv->irq_cause_ofs);
|
|
|
|
/* and unmask interrupt generation for host regs */
|
|
writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
|
|
if (IS_GEN_I(hpriv))
|
|
writelfl(~HC_MAIN_MASKED_IRQS_5,
|
|
hpriv->main_mask_reg_addr);
|
|
else
|
|
writelfl(~HC_MAIN_MASKED_IRQS,
|
|
hpriv->main_mask_reg_addr);
|
|
|
|
VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
|
|
"PCI int cause/mask=0x%08x/0x%08x\n",
|
|
readl(hpriv->main_cause_reg_addr),
|
|
readl(hpriv->main_mask_reg_addr),
|
|
readl(mmio + hpriv->irq_cause_ofs),
|
|
readl(mmio + hpriv->irq_mask_ofs));
|
|
} else {
|
|
writelfl(~HC_MAIN_MASKED_IRQS_SOC,
|
|
hpriv->main_mask_reg_addr);
|
|
VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
|
|
readl(hpriv->main_cause_reg_addr),
|
|
readl(hpriv->main_mask_reg_addr));
|
|
}
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* mv_platform_probe - handle a positive probe of an soc Marvell
|
|
* host
|
|
* @pdev: platform device found
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_platform_probe(struct platform_device *pdev)
|
|
{
|
|
static int printed_version;
|
|
const struct mv_sata_platform_data *mv_platform_data;
|
|
const struct ata_port_info *ppi[] =
|
|
{ &mv_port_info[chip_soc], NULL };
|
|
struct ata_host *host;
|
|
struct mv_host_priv *hpriv;
|
|
struct resource *res;
|
|
int n_ports, rc;
|
|
|
|
if (!printed_version++)
|
|
dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
|
|
|
|
/*
|
|
* Simple resource validation ..
|
|
*/
|
|
if (unlikely(pdev->num_resources != 2)) {
|
|
dev_err(&pdev->dev, "invalid number of resources\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Get the register base first
|
|
*/
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (res == NULL)
|
|
return -EINVAL;
|
|
|
|
/* allocate host */
|
|
mv_platform_data = pdev->dev.platform_data;
|
|
n_ports = mv_platform_data->n_ports;
|
|
|
|
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
|
|
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
|
|
|
|
if (!host || !hpriv)
|
|
return -ENOMEM;
|
|
host->private_data = hpriv;
|
|
hpriv->n_ports = n_ports;
|
|
|
|
host->iomap = NULL;
|
|
hpriv->base = ioremap(res->start, res->end - res->start + 1);
|
|
hpriv->base -= MV_SATAHC0_REG_BASE;
|
|
|
|
/* initialize adapter */
|
|
rc = mv_init_host(host, chip_soc);
|
|
if (rc)
|
|
return rc;
|
|
|
|
dev_printk(KERN_INFO, &pdev->dev,
|
|
"slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
|
|
host->n_ports);
|
|
|
|
return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
|
|
IRQF_SHARED, &mv6_sht);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* mv_platform_remove - unplug a platform interface
|
|
* @pdev: platform device
|
|
*
|
|
* A platform bus SATA device has been unplugged. Perform the needed
|
|
* cleanup. Also called on module unload for any active devices.
|
|
*/
|
|
static int __devexit mv_platform_remove(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct ata_host *host = dev_get_drvdata(dev);
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
void __iomem *base = hpriv->base;
|
|
|
|
ata_host_detach(host);
|
|
iounmap(base);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver mv_platform_driver = {
|
|
.probe = mv_platform_probe,
|
|
.remove = __devexit_p(mv_platform_remove),
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_PCI
|
|
static int mv_pci_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent);
|
|
|
|
|
|
static struct pci_driver mv_pci_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = mv_pci_tbl,
|
|
.probe = mv_pci_init_one,
|
|
.remove = ata_pci_remove_one,
|
|
};
|
|
|
|
/*
|
|
* module options
|
|
*/
|
|
static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
|
|
|
|
|
|
/* move to PCI layer or libata core? */
|
|
static int pci_go_64(struct pci_dev *pdev)
|
|
{
|
|
int rc;
|
|
|
|
if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
|
|
rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
|
|
if (rc) {
|
|
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
|
|
if (rc) {
|
|
dev_printk(KERN_ERR, &pdev->dev,
|
|
"64-bit DMA enable failed\n");
|
|
return rc;
|
|
}
|
|
}
|
|
} else {
|
|
rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
|
|
if (rc) {
|
|
dev_printk(KERN_ERR, &pdev->dev,
|
|
"32-bit DMA enable failed\n");
|
|
return rc;
|
|
}
|
|
rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
|
|
if (rc) {
|
|
dev_printk(KERN_ERR, &pdev->dev,
|
|
"32-bit consistent DMA enable failed\n");
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* mv_print_info - Dump key info to kernel log for perusal.
|
|
* @host: ATA host to print info about
|
|
*
|
|
* FIXME: complete this.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void mv_print_info(struct ata_host *host)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(host->dev);
|
|
struct mv_host_priv *hpriv = host->private_data;
|
|
u8 scc;
|
|
const char *scc_s, *gen;
|
|
|
|
/* Use this to determine the HW stepping of the chip so we know
|
|
* what errata to workaround
|
|
*/
|
|
pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
|
|
if (scc == 0)
|
|
scc_s = "SCSI";
|
|
else if (scc == 0x01)
|
|
scc_s = "RAID";
|
|
else
|
|
scc_s = "?";
|
|
|
|
if (IS_GEN_I(hpriv))
|
|
gen = "I";
|
|
else if (IS_GEN_II(hpriv))
|
|
gen = "II";
|
|
else if (IS_GEN_IIE(hpriv))
|
|
gen = "IIE";
|
|
else
|
|
gen = "?";
|
|
|
|
dev_printk(KERN_INFO, &pdev->dev,
|
|
"Gen-%s %u slots %u ports %s mode IRQ via %s\n",
|
|
gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
|
|
scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
|
|
}
|
|
|
|
static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
|
|
{
|
|
hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
|
|
MV_CRQB_Q_SZ, 0);
|
|
if (!hpriv->crqb_pool)
|
|
return -ENOMEM;
|
|
|
|
hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
|
|
MV_CRPB_Q_SZ, 0);
|
|
if (!hpriv->crpb_pool)
|
|
return -ENOMEM;
|
|
|
|
hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
|
|
MV_SG_TBL_SZ, 0);
|
|
if (!hpriv->sg_tbl_pool)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mv_pci_init_one - handle a positive probe of a PCI Marvell host
|
|
* @pdev: PCI device found
|
|
* @ent: PCI device ID entry for the matched host
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static int mv_pci_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
static int printed_version;
|
|
unsigned int board_idx = (unsigned int)ent->driver_data;
|
|
const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
|
|
struct ata_host *host;
|
|
struct mv_host_priv *hpriv;
|
|
int n_ports, rc;
|
|
|
|
if (!printed_version++)
|
|
dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
|
|
|
|
/* allocate host */
|
|
n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
|
|
|
|
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
|
|
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
|
|
if (!host || !hpriv)
|
|
return -ENOMEM;
|
|
host->private_data = hpriv;
|
|
hpriv->n_ports = n_ports;
|
|
|
|
/* acquire resources */
|
|
rc = pcim_enable_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
|
|
if (rc == -EBUSY)
|
|
pcim_pin_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
host->iomap = pcim_iomap_table(pdev);
|
|
hpriv->base = host->iomap[MV_PRIMARY_BAR];
|
|
|
|
rc = pci_go_64(pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = mv_create_dma_pools(hpriv, &pdev->dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* initialize adapter */
|
|
rc = mv_init_host(host, board_idx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Enable interrupts */
|
|
if (msi && pci_enable_msi(pdev))
|
|
pci_intx(pdev, 1);
|
|
|
|
mv_dump_pci_cfg(pdev, 0x68);
|
|
mv_print_info(host);
|
|
|
|
pci_set_master(pdev);
|
|
pci_try_set_mwi(pdev);
|
|
return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
|
|
IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
|
|
}
|
|
#endif
|
|
|
|
static int mv_platform_probe(struct platform_device *pdev);
|
|
static int __devexit mv_platform_remove(struct platform_device *pdev);
|
|
|
|
static int __init mv_init(void)
|
|
{
|
|
int rc = -ENODEV;
|
|
#ifdef CONFIG_PCI
|
|
rc = pci_register_driver(&mv_pci_driver);
|
|
if (rc < 0)
|
|
return rc;
|
|
#endif
|
|
rc = platform_driver_register(&mv_platform_driver);
|
|
|
|
#ifdef CONFIG_PCI
|
|
if (rc < 0)
|
|
pci_unregister_driver(&mv_pci_driver);
|
|
#endif
|
|
return rc;
|
|
}
|
|
|
|
static void __exit mv_exit(void)
|
|
{
|
|
#ifdef CONFIG_PCI
|
|
pci_unregister_driver(&mv_pci_driver);
|
|
#endif
|
|
platform_driver_unregister(&mv_platform_driver);
|
|
}
|
|
|
|
MODULE_AUTHOR("Brett Russ");
|
|
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
#ifdef CONFIG_PCI
|
|
module_param(msi, int, 0444);
|
|
MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
|
|
#endif
|
|
|
|
module_init(mv_init);
|
|
module_exit(mv_exit);
|