linux_dsm_epyc7002/include/linux/qed/qed_chain.h
Mintz, Yuval e8f1cb507d qed*: Update to dual-license
Since the submission of the qedr driver, there's inconsistency
in the licensing of the various qed/qede files - some are GPLv2
and some are dual-license.
Since qedr requires dual-license and it's dependent on both,
we're updating the licensing of all qed/qede source files.

Signed-off-by: Yuval Mintz <Yuval.Mintz@cavium.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-01 21:02:14 -05:00

686 lines
18 KiB
C

/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _QED_CHAIN_H
#define _QED_CHAIN_H
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/qed/common_hsi.h>
enum qed_chain_mode {
/* Each Page contains a next pointer at its end */
QED_CHAIN_MODE_NEXT_PTR,
/* Chain is a single page (next ptr) is unrequired */
QED_CHAIN_MODE_SINGLE,
/* Page pointers are located in a side list */
QED_CHAIN_MODE_PBL,
};
enum qed_chain_use_mode {
QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */
QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
};
enum qed_chain_cnt_type {
/* The chain's size/prod/cons are kept in 16-bit variables */
QED_CHAIN_CNT_TYPE_U16,
/* The chain's size/prod/cons are kept in 32-bit variables */
QED_CHAIN_CNT_TYPE_U32,
};
struct qed_chain_next {
struct regpair next_phys;
void *next_virt;
};
struct qed_chain_pbl_u16 {
u16 prod_page_idx;
u16 cons_page_idx;
};
struct qed_chain_pbl_u32 {
u32 prod_page_idx;
u32 cons_page_idx;
};
struct qed_chain_u16 {
/* Cyclic index of next element to produce/consme */
u16 prod_idx;
u16 cons_idx;
};
struct qed_chain_u32 {
/* Cyclic index of next element to produce/consme */
u32 prod_idx;
u32 cons_idx;
};
struct qed_chain {
/* fastpath portion of the chain - required for commands such
* as produce / consume.
*/
/* Point to next element to produce/consume */
void *p_prod_elem;
void *p_cons_elem;
/* Fastpath portions of the PBL [if exists] */
struct {
/* Table for keeping the virtual addresses of the chain pages,
* respectively to the physical addresses in the pbl table.
*/
void **pp_virt_addr_tbl;
union {
struct qed_chain_pbl_u16 u16;
struct qed_chain_pbl_u32 u32;
} c;
} pbl;
union {
struct qed_chain_u16 chain16;
struct qed_chain_u32 chain32;
} u;
/* Capacity counts only usable elements */
u32 capacity;
u32 page_cnt;
enum qed_chain_mode mode;
/* Elements information for fast calculations */
u16 elem_per_page;
u16 elem_per_page_mask;
u16 elem_size;
u16 next_page_mask;
u16 usable_per_page;
u8 elem_unusable;
u8 cnt_type;
/* Slowpath of the chain - required for initialization and destruction,
* but isn't involved in regular functionality.
*/
/* Base address of a pre-allocated buffer for pbl */
struct {
dma_addr_t p_phys_table;
void *p_virt_table;
} pbl_sp;
/* Address of first page of the chain - the address is required
* for fastpath operation [consume/produce] but only for the the SINGLE
* flavour which isn't considered fastpath [== SPQ].
*/
void *p_virt_addr;
dma_addr_t p_phys_addr;
/* Total number of elements [for entire chain] */
u32 size;
u8 intended_use;
};
#define QED_CHAIN_PBL_ENTRY_SIZE (8)
#define QED_CHAIN_PAGE_SIZE (0x1000)
#define ELEMS_PER_PAGE(elem_size) (QED_CHAIN_PAGE_SIZE / (elem_size))
#define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
(((mode) == QED_CHAIN_MODE_NEXT_PTR) ? \
(u8)(1 + ((sizeof(struct qed_chain_next) - 1) / \
(elem_size))) : 0)
#define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
((u32)(ELEMS_PER_PAGE(elem_size) - \
UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
#define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
#define is_chain_u16(p) ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U16)
#define is_chain_u32(p) ((p)->cnt_type == QED_CHAIN_CNT_TYPE_U32)
/* Accessors */
static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain)
{
return p_chain->u.chain16.prod_idx;
}
static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain)
{
return p_chain->u.chain16.cons_idx;
}
static inline u32 qed_chain_get_cons_idx_u32(struct qed_chain *p_chain)
{
return p_chain->u.chain32.cons_idx;
}
static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain)
{
u16 used;
used = (u16) (((u32)0x10000 +
(u32)p_chain->u.chain16.prod_idx) -
(u32)p_chain->u.chain16.cons_idx);
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
used -= p_chain->u.chain16.prod_idx / p_chain->elem_per_page -
p_chain->u.chain16.cons_idx / p_chain->elem_per_page;
return (u16)(p_chain->capacity - used);
}
static inline u32 qed_chain_get_elem_left_u32(struct qed_chain *p_chain)
{
u32 used;
used = (u32) (((u64)0x100000000ULL +
(u64)p_chain->u.chain32.prod_idx) -
(u64)p_chain->u.chain32.cons_idx);
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
used -= p_chain->u.chain32.prod_idx / p_chain->elem_per_page -
p_chain->u.chain32.cons_idx / p_chain->elem_per_page;
return p_chain->capacity - used;
}
static inline u16 qed_chain_get_usable_per_page(struct qed_chain *p_chain)
{
return p_chain->usable_per_page;
}
static inline u8 qed_chain_get_unusable_per_page(struct qed_chain *p_chain)
{
return p_chain->elem_unusable;
}
static inline u32 qed_chain_get_page_cnt(struct qed_chain *p_chain)
{
return p_chain->page_cnt;
}
static inline dma_addr_t qed_chain_get_pbl_phys(struct qed_chain *p_chain)
{
return p_chain->pbl_sp.p_phys_table;
}
/**
* @brief qed_chain_advance_page -
*
* Advance the next element accros pages for a linked chain
*
* @param p_chain
* @param p_next_elem
* @param idx_to_inc
* @param page_to_inc
*/
static inline void
qed_chain_advance_page(struct qed_chain *p_chain,
void **p_next_elem, void *idx_to_inc, void *page_to_inc)
{
struct qed_chain_next *p_next = NULL;
u32 page_index = 0;
switch (p_chain->mode) {
case QED_CHAIN_MODE_NEXT_PTR:
p_next = *p_next_elem;
*p_next_elem = p_next->next_virt;
if (is_chain_u16(p_chain))
*(u16 *)idx_to_inc += p_chain->elem_unusable;
else
*(u32 *)idx_to_inc += p_chain->elem_unusable;
break;
case QED_CHAIN_MODE_SINGLE:
*p_next_elem = p_chain->p_virt_addr;
break;
case QED_CHAIN_MODE_PBL:
if (is_chain_u16(p_chain)) {
if (++(*(u16 *)page_to_inc) == p_chain->page_cnt)
*(u16 *)page_to_inc = 0;
page_index = *(u16 *)page_to_inc;
} else {
if (++(*(u32 *)page_to_inc) == p_chain->page_cnt)
*(u32 *)page_to_inc = 0;
page_index = *(u32 *)page_to_inc;
}
*p_next_elem = p_chain->pbl.pp_virt_addr_tbl[page_index];
}
}
#define is_unusable_idx(p, idx) \
(((p)->u.chain16.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
#define is_unusable_idx_u32(p, idx) \
(((p)->u.chain32.idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
#define is_unusable_next_idx(p, idx) \
((((p)->u.chain16.idx + 1) & (p)->elem_per_page_mask) == \
(p)->usable_per_page)
#define is_unusable_next_idx_u32(p, idx) \
((((p)->u.chain32.idx + 1) & (p)->elem_per_page_mask) == \
(p)->usable_per_page)
#define test_and_skip(p, idx) \
do { \
if (is_chain_u16(p)) { \
if (is_unusable_idx(p, idx)) \
(p)->u.chain16.idx += (p)->elem_unusable; \
} else { \
if (is_unusable_idx_u32(p, idx)) \
(p)->u.chain32.idx += (p)->elem_unusable; \
} \
} while (0)
/**
* @brief qed_chain_return_produced -
*
* A chain in which the driver "Produces" elements should use this API
* to indicate previous produced elements are now consumed.
*
* @param p_chain
*/
static inline void qed_chain_return_produced(struct qed_chain *p_chain)
{
if (is_chain_u16(p_chain))
p_chain->u.chain16.cons_idx++;
else
p_chain->u.chain32.cons_idx++;
test_and_skip(p_chain, cons_idx);
}
/**
* @brief qed_chain_produce -
*
* A chain in which the driver "Produces" elements should use this to get
* a pointer to the next element which can be "Produced". It's driver
* responsibility to validate that the chain has room for new element.
*
* @param p_chain
*
* @return void*, a pointer to next element
*/
static inline void *qed_chain_produce(struct qed_chain *p_chain)
{
void *p_ret = NULL, *p_prod_idx, *p_prod_page_idx;
if (is_chain_u16(p_chain)) {
if ((p_chain->u.chain16.prod_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_prod_idx = &p_chain->u.chain16.prod_idx;
p_prod_page_idx = &p_chain->pbl.c.u16.prod_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
p_prod_idx, p_prod_page_idx);
}
p_chain->u.chain16.prod_idx++;
} else {
if ((p_chain->u.chain32.prod_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_prod_idx = &p_chain->u.chain32.prod_idx;
p_prod_page_idx = &p_chain->pbl.c.u32.prod_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
p_prod_idx, p_prod_page_idx);
}
p_chain->u.chain32.prod_idx++;
}
p_ret = p_chain->p_prod_elem;
p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
p_chain->elem_size);
return p_ret;
}
/**
* @brief qed_chain_get_capacity -
*
* Get the maximum number of BDs in chain
*
* @param p_chain
* @param num
*
* @return number of unusable BDs
*/
static inline u32 qed_chain_get_capacity(struct qed_chain *p_chain)
{
return p_chain->capacity;
}
/**
* @brief qed_chain_recycle_consumed -
*
* Returns an element which was previously consumed;
* Increments producers so they could be written to FW.
*
* @param p_chain
*/
static inline void qed_chain_recycle_consumed(struct qed_chain *p_chain)
{
test_and_skip(p_chain, prod_idx);
if (is_chain_u16(p_chain))
p_chain->u.chain16.prod_idx++;
else
p_chain->u.chain32.prod_idx++;
}
/**
* @brief qed_chain_consume -
*
* A Chain in which the driver utilizes data written by a different source
* (i.e., FW) should use this to access passed buffers.
*
* @param p_chain
*
* @return void*, a pointer to the next buffer written
*/
static inline void *qed_chain_consume(struct qed_chain *p_chain)
{
void *p_ret = NULL, *p_cons_idx, *p_cons_page_idx;
if (is_chain_u16(p_chain)) {
if ((p_chain->u.chain16.cons_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_cons_idx = &p_chain->u.chain16.cons_idx;
p_cons_page_idx = &p_chain->pbl.c.u16.cons_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
p_cons_idx, p_cons_page_idx);
}
p_chain->u.chain16.cons_idx++;
} else {
if ((p_chain->u.chain32.cons_idx &
p_chain->elem_per_page_mask) == p_chain->next_page_mask) {
p_cons_idx = &p_chain->u.chain32.cons_idx;
p_cons_page_idx = &p_chain->pbl.c.u32.cons_page_idx;
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
p_cons_idx, p_cons_page_idx);
}
p_chain->u.chain32.cons_idx++;
}
p_ret = p_chain->p_cons_elem;
p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
p_chain->elem_size);
return p_ret;
}
/**
* @brief qed_chain_reset - Resets the chain to its start state
*
* @param p_chain pointer to a previously allocted chain
*/
static inline void qed_chain_reset(struct qed_chain *p_chain)
{
u32 i;
if (is_chain_u16(p_chain)) {
p_chain->u.chain16.prod_idx = 0;
p_chain->u.chain16.cons_idx = 0;
} else {
p_chain->u.chain32.prod_idx = 0;
p_chain->u.chain32.cons_idx = 0;
}
p_chain->p_cons_elem = p_chain->p_virt_addr;
p_chain->p_prod_elem = p_chain->p_virt_addr;
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
/* Use (page_cnt - 1) as a reset value for the prod/cons page's
* indices, to avoid unnecessary page advancing on the first
* call to qed_chain_produce/consume. Instead, the indices
* will be advanced to page_cnt and then will be wrapped to 0.
*/
u32 reset_val = p_chain->page_cnt - 1;
if (is_chain_u16(p_chain)) {
p_chain->pbl.c.u16.prod_page_idx = (u16)reset_val;
p_chain->pbl.c.u16.cons_page_idx = (u16)reset_val;
} else {
p_chain->pbl.c.u32.prod_page_idx = reset_val;
p_chain->pbl.c.u32.cons_page_idx = reset_val;
}
}
switch (p_chain->intended_use) {
case QED_CHAIN_USE_TO_CONSUME:
/* produce empty elements */
for (i = 0; i < p_chain->capacity; i++)
qed_chain_recycle_consumed(p_chain);
break;
case QED_CHAIN_USE_TO_CONSUME_PRODUCE:
case QED_CHAIN_USE_TO_PRODUCE:
default:
/* Do nothing */
break;
}
}
/**
* @brief qed_chain_init - Initalizes a basic chain struct
*
* @param p_chain
* @param p_virt_addr
* @param p_phys_addr physical address of allocated buffer's beginning
* @param page_cnt number of pages in the allocated buffer
* @param elem_size size of each element in the chain
* @param intended_use
* @param mode
*/
static inline void qed_chain_init_params(struct qed_chain *p_chain,
u32 page_cnt,
u8 elem_size,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
enum qed_chain_cnt_type cnt_type)
{
/* chain fixed parameters */
p_chain->p_virt_addr = NULL;
p_chain->p_phys_addr = 0;
p_chain->elem_size = elem_size;
p_chain->intended_use = (u8)intended_use;
p_chain->mode = mode;
p_chain->cnt_type = (u8)cnt_type;
p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
p_chain->usable_per_page = USABLE_ELEMS_PER_PAGE(elem_size, mode);
p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
p_chain->next_page_mask = (p_chain->usable_per_page &
p_chain->elem_per_page_mask);
p_chain->page_cnt = page_cnt;
p_chain->capacity = p_chain->usable_per_page * page_cnt;
p_chain->size = p_chain->elem_per_page * page_cnt;
p_chain->pbl_sp.p_phys_table = 0;
p_chain->pbl_sp.p_virt_table = NULL;
p_chain->pbl.pp_virt_addr_tbl = NULL;
}
/**
* @brief qed_chain_init_mem -
*
* Initalizes a basic chain struct with its chain buffers
*
* @param p_chain
* @param p_virt_addr virtual address of allocated buffer's beginning
* @param p_phys_addr physical address of allocated buffer's beginning
*
*/
static inline void qed_chain_init_mem(struct qed_chain *p_chain,
void *p_virt_addr, dma_addr_t p_phys_addr)
{
p_chain->p_virt_addr = p_virt_addr;
p_chain->p_phys_addr = p_phys_addr;
}
/**
* @brief qed_chain_init_pbl_mem -
*
* Initalizes a basic chain struct with its pbl buffers
*
* @param p_chain
* @param p_virt_pbl pointer to a pre allocated side table which will hold
* virtual page addresses.
* @param p_phys_pbl pointer to a pre-allocated side table which will hold
* physical page addresses.
* @param pp_virt_addr_tbl
* pointer to a pre-allocated side table which will hold
* the virtual addresses of the chain pages.
*
*/
static inline void qed_chain_init_pbl_mem(struct qed_chain *p_chain,
void *p_virt_pbl,
dma_addr_t p_phys_pbl,
void **pp_virt_addr_tbl)
{
p_chain->pbl_sp.p_phys_table = p_phys_pbl;
p_chain->pbl_sp.p_virt_table = p_virt_pbl;
p_chain->pbl.pp_virt_addr_tbl = pp_virt_addr_tbl;
}
/**
* @brief qed_chain_init_next_ptr_elem -
*
* Initalizes a next pointer element
*
* @param p_chain
* @param p_virt_curr virtual address of a chain page of which the next
* pointer element is initialized
* @param p_virt_next virtual address of the next chain page
* @param p_phys_next physical address of the next chain page
*
*/
static inline void
qed_chain_init_next_ptr_elem(struct qed_chain *p_chain,
void *p_virt_curr,
void *p_virt_next, dma_addr_t p_phys_next)
{
struct qed_chain_next *p_next;
u32 size;
size = p_chain->elem_size * p_chain->usable_per_page;
p_next = (struct qed_chain_next *)((u8 *)p_virt_curr + size);
DMA_REGPAIR_LE(p_next->next_phys, p_phys_next);
p_next->next_virt = p_virt_next;
}
/**
* @brief qed_chain_get_last_elem -
*
* Returns a pointer to the last element of the chain
*
* @param p_chain
*
* @return void*
*/
static inline void *qed_chain_get_last_elem(struct qed_chain *p_chain)
{
struct qed_chain_next *p_next = NULL;
void *p_virt_addr = NULL;
u32 size, last_page_idx;
if (!p_chain->p_virt_addr)
goto out;
switch (p_chain->mode) {
case QED_CHAIN_MODE_NEXT_PTR:
size = p_chain->elem_size * p_chain->usable_per_page;
p_virt_addr = p_chain->p_virt_addr;
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + size);
while (p_next->next_virt != p_chain->p_virt_addr) {
p_virt_addr = p_next->next_virt;
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
size);
}
break;
case QED_CHAIN_MODE_SINGLE:
p_virt_addr = p_chain->p_virt_addr;
break;
case QED_CHAIN_MODE_PBL:
last_page_idx = p_chain->page_cnt - 1;
p_virt_addr = p_chain->pbl.pp_virt_addr_tbl[last_page_idx];
break;
}
/* p_virt_addr points at this stage to the last page of the chain */
size = p_chain->elem_size * (p_chain->usable_per_page - 1);
p_virt_addr = (u8 *)p_virt_addr + size;
out:
return p_virt_addr;
}
/**
* @brief qed_chain_set_prod - sets the prod to the given value
*
* @param prod_idx
* @param p_prod_elem
*/
static inline void qed_chain_set_prod(struct qed_chain *p_chain,
u32 prod_idx, void *p_prod_elem)
{
if (is_chain_u16(p_chain))
p_chain->u.chain16.prod_idx = (u16) prod_idx;
else
p_chain->u.chain32.prod_idx = prod_idx;
p_chain->p_prod_elem = p_prod_elem;
}
/**
* @brief qed_chain_pbl_zero_mem - set chain memory to 0
*
* @param p_chain
*/
static inline void qed_chain_pbl_zero_mem(struct qed_chain *p_chain)
{
u32 i, page_cnt;
if (p_chain->mode != QED_CHAIN_MODE_PBL)
return;
page_cnt = qed_chain_get_page_cnt(p_chain);
for (i = 0; i < page_cnt; i++)
memset(p_chain->pbl.pp_virt_addr_tbl[i], 0,
QED_CHAIN_PAGE_SIZE);
}
#endif