linux_dsm_epyc7002/drivers/net/wireless/brcm80211/brcmsmac/pmu.c
Arend van Spriel 8d30b708b8 brcm80211: smac: use bcma core access functions in pmu.c
The code in pmu.c now uses the functions provided by BCMA to
access the core registers.

Reviewed-by: Pieter-Paul Giesberts <pieterpg@broadcom.com>
Reviewed-by: Alwin Beukers <alwin@broadcom.com>
Signed-off-by: Arend van Spriel <arend@broadcom.com>
Signed-off-by: Franky Lin <frankyl@broadcom.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-12-13 15:48:04 -05:00

447 lines
11 KiB
C

/*
* Copyright (c) 2011 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <brcm_hw_ids.h>
#include <chipcommon.h>
#include <brcmu_utils.h>
#include "pub.h"
#include "aiutils.h"
#include "pmu.h"
#include "soc.h"
/*
* external LPO crystal frequency
*/
#define EXT_ILP_HZ 32768
/*
* Duration for ILP clock frequency measurment in milliseconds
*
* remark: 1000 must be an integer multiple of this duration
*/
#define ILP_CALC_DUR 10
/* Fields in pmucontrol */
#define PCTL_ILP_DIV_MASK 0xffff0000
#define PCTL_ILP_DIV_SHIFT 16
#define PCTL_PLL_PLLCTL_UPD 0x00000400 /* rev 2 */
#define PCTL_NOILP_ON_WAIT 0x00000200 /* rev 1 */
#define PCTL_HT_REQ_EN 0x00000100
#define PCTL_ALP_REQ_EN 0x00000080
#define PCTL_XTALFREQ_MASK 0x0000007c
#define PCTL_XTALFREQ_SHIFT 2
#define PCTL_ILP_DIV_EN 0x00000002
#define PCTL_LPO_SEL 0x00000001
/* ILP clock */
#define ILP_CLOCK 32000
/* ALP clock on pre-PMU chips */
#define ALP_CLOCK 20000000
/* pmustatus */
#define PST_EXTLPOAVAIL 0x0100
#define PST_WDRESET 0x0080
#define PST_INTPEND 0x0040
#define PST_SBCLKST 0x0030
#define PST_SBCLKST_ILP 0x0010
#define PST_SBCLKST_ALP 0x0020
#define PST_SBCLKST_HT 0x0030
#define PST_ALPAVAIL 0x0008
#define PST_HTAVAIL 0x0004
#define PST_RESINIT 0x0003
/* PMU resource bit position */
#define PMURES_BIT(bit) (1 << (bit))
/* PMU corerev and chip specific PLL controls.
* PMU<rev>_PLL<num>_XX where <rev> is PMU corerev and <num> is an arbitrary
* number to differentiate different PLLs controlled by the same PMU rev.
*/
/* pllcontrol registers:
* ndiv_pwrdn, pwrdn_ch<x>, refcomp_pwrdn, dly_ch<x>,
* p1div, p2div, _bypass_sdmod
*/
#define PMU1_PLL0_PLLCTL0 0
#define PMU1_PLL0_PLLCTL1 1
#define PMU1_PLL0_PLLCTL2 2
#define PMU1_PLL0_PLLCTL3 3
#define PMU1_PLL0_PLLCTL4 4
#define PMU1_PLL0_PLLCTL5 5
/* pmu XtalFreqRatio */
#define PMU_XTALFREQ_REG_ILPCTR_MASK 0x00001FFF
#define PMU_XTALFREQ_REG_MEASURE_MASK 0x80000000
#define PMU_XTALFREQ_REG_MEASURE_SHIFT 31
/* 4313 resources */
#define RES4313_BB_PU_RSRC 0
#define RES4313_ILP_REQ_RSRC 1
#define RES4313_XTAL_PU_RSRC 2
#define RES4313_ALP_AVAIL_RSRC 3
#define RES4313_RADIO_PU_RSRC 4
#define RES4313_BG_PU_RSRC 5
#define RES4313_VREG1P4_PU_RSRC 6
#define RES4313_AFE_PWRSW_RSRC 7
#define RES4313_RX_PWRSW_RSRC 8
#define RES4313_TX_PWRSW_RSRC 9
#define RES4313_BB_PWRSW_RSRC 10
#define RES4313_SYNTH_PWRSW_RSRC 11
#define RES4313_MISC_PWRSW_RSRC 12
#define RES4313_BB_PLL_PWRSW_RSRC 13
#define RES4313_HT_AVAIL_RSRC 14
#define RES4313_MACPHY_CLK_AVAIL_RSRC 15
/* Determine min/max rsrc masks. Value 0 leaves hardware at default. */
static void si_pmu_res_masks(struct si_pub *sih, u32 * pmin, u32 * pmax)
{
u32 min_mask = 0, max_mask = 0;
uint rsrcs;
/* # resources */
rsrcs = (ai_get_pmucaps(sih) & PCAP_RC_MASK) >> PCAP_RC_SHIFT;
/* determine min/max rsrc masks */
switch (ai_get_chip_id(sih)) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
/* ??? */
break;
case BCM4313_CHIP_ID:
min_mask = PMURES_BIT(RES4313_BB_PU_RSRC) |
PMURES_BIT(RES4313_XTAL_PU_RSRC) |
PMURES_BIT(RES4313_ALP_AVAIL_RSRC) |
PMURES_BIT(RES4313_BB_PLL_PWRSW_RSRC);
max_mask = 0xffff;
break;
default:
break;
}
*pmin = min_mask;
*pmax = max_mask;
}
static void
si_pmu_spuravoid_pllupdate(struct si_pub *sih, struct bcma_device *core,
u8 spuravoid)
{
u32 tmp = 0;
switch (ai_get_chip_id(sih)) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
if (spuravoid == 1) {
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL0);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x11500010);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL1);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x000C0C06);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL2);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x0F600a08);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL3);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x00000000);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL4);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x2001E920);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL5);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x88888815);
} else {
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL0);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x11100010);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL1);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x000c0c06);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL2);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x03000a08);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL3);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x00000000);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL4);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x200005c0);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_addr),
PMU1_PLL0_PLLCTL5);
bcma_write32(core, CHIPCREGOFFS(pllcontrol_data),
0x88888815);
}
tmp = 1 << 10;
break;
default:
/* bail out */
return;
}
bcma_set32(core, CHIPCREGOFFS(pmucontrol), tmp);
}
u16 si_pmu_fast_pwrup_delay(struct si_pub *sih)
{
uint delay = PMU_MAX_TRANSITION_DLY;
switch (ai_get_chip_id(sih)) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM4313_CHIP_ID:
delay = 3700;
break;
default:
break;
}
return (u16) delay;
}
void si_pmu_sprom_enable(struct si_pub *sih, bool enable)
{
struct chipcregs __iomem *cc;
uint origidx;
/* Remember original core before switch to chipc */
origidx = ai_coreidx(sih);
cc = ai_setcoreidx(sih, SI_CC_IDX);
/* Return to original core */
ai_setcoreidx(sih, origidx);
}
/* Read/write a chipcontrol reg */
u32 si_pmu_chipcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val)
{
ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_addr), ~0, reg);
return ai_cc_reg(sih, offsetof(struct chipcregs, chipcontrol_data),
mask, val);
}
/* Read/write a regcontrol reg */
u32 si_pmu_regcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val)
{
ai_cc_reg(sih, offsetof(struct chipcregs, regcontrol_addr), ~0, reg);
return ai_cc_reg(sih, offsetof(struct chipcregs, regcontrol_data),
mask, val);
}
/* Read/write a pllcontrol reg */
u32 si_pmu_pllcontrol(struct si_pub *sih, uint reg, u32 mask, u32 val)
{
ai_cc_reg(sih, offsetof(struct chipcregs, pllcontrol_addr), ~0, reg);
return ai_cc_reg(sih, offsetof(struct chipcregs, pllcontrol_data),
mask, val);
}
/* PMU PLL update */
void si_pmu_pllupd(struct si_pub *sih)
{
ai_cc_reg(sih, offsetof(struct chipcregs, pmucontrol),
PCTL_PLL_PLLCTL_UPD, PCTL_PLL_PLLCTL_UPD);
}
/* query alp/xtal clock frequency */
u32 si_pmu_alp_clock(struct si_pub *sih)
{
u32 clock = ALP_CLOCK;
/* bail out with default */
if (!(ai_get_cccaps(sih) & CC_CAP_PMU))
return clock;
switch (ai_get_chip_id(sih)) {
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
case BCM4313_CHIP_ID:
/* always 20Mhz */
clock = 20000 * 1000;
break;
default:
break;
}
return clock;
}
void si_pmu_spuravoid(struct si_pub *sih, u8 spuravoid)
{
struct bcma_device *cc;
uint origidx, intr_val;
/* switch to chipc */
cc = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0);
ai_switch_core(sih, CC_CORE_ID, &origidx, &intr_val);
/* update the pll changes */
si_pmu_spuravoid_pllupdate(sih, cc, spuravoid);
/* Return to original core */
ai_restore_core(sih, origidx, intr_val);
}
/* initialize PMU */
void si_pmu_init(struct si_pub *sih)
{
struct bcma_device *core;
/* select chipc */
core = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0);
if (ai_get_pmurev(sih) == 1)
bcma_mask32(core, CHIPCREGOFFS(pmucontrol),
~PCTL_NOILP_ON_WAIT);
else if (ai_get_pmurev(sih) >= 2)
bcma_set32(core, CHIPCREGOFFS(pmucontrol), PCTL_NOILP_ON_WAIT);
}
/* initialize PMU chip controls and other chip level stuff */
void si_pmu_chip_init(struct si_pub *sih)
{
uint origidx;
/* Gate off SPROM clock and chip select signals */
si_pmu_sprom_enable(sih, false);
/* Remember original core */
origidx = ai_coreidx(sih);
/* Return to original core */
ai_setcoreidx(sih, origidx);
}
/* initialize PMU switch/regulators */
void si_pmu_swreg_init(struct si_pub *sih)
{
}
/* initialize PLL */
void si_pmu_pll_init(struct si_pub *sih, uint xtalfreq)
{
struct chipcregs __iomem *cc;
uint origidx;
/* Remember original core before switch to chipc */
origidx = ai_coreidx(sih);
cc = ai_setcoreidx(sih, SI_CC_IDX);
switch (ai_get_chip_id(sih)) {
case BCM4313_CHIP_ID:
case BCM43224_CHIP_ID:
case BCM43225_CHIP_ID:
/* ??? */
break;
default:
break;
}
/* Return to original core */
ai_setcoreidx(sih, origidx);
}
/* initialize PMU resources */
void si_pmu_res_init(struct si_pub *sih)
{
struct bcma_device *core;
u32 min_mask = 0, max_mask = 0;
/* select to chipc */
core = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0);
/* Determine min/max rsrc masks */
si_pmu_res_masks(sih, &min_mask, &max_mask);
/* It is required to program max_mask first and then min_mask */
/* Program max resource mask */
if (max_mask)
bcma_write32(core, CHIPCREGOFFS(max_res_mask), max_mask);
/* Program min resource mask */
if (min_mask)
bcma_write32(core, CHIPCREGOFFS(min_res_mask), min_mask);
/* Add some delay; allow resources to come up and settle. */
mdelay(2);
}
u32 si_pmu_measure_alpclk(struct si_pub *sih)
{
struct bcma_device *core;
u32 alp_khz;
if (ai_get_pmurev(sih) < 10)
return 0;
/* Remember original core before switch to chipc */
core = ai_findcore(sih, BCMA_CORE_CHIPCOMMON, 0);
if (bcma_read32(core, CHIPCREGOFFS(pmustatus)) & PST_EXTLPOAVAIL) {
u32 ilp_ctr, alp_hz;
/*
* Enable the reg to measure the freq,
* in case it was disabled before
*/
bcma_write32(core, CHIPCREGOFFS(pmu_xtalfreq),
1U << PMU_XTALFREQ_REG_MEASURE_SHIFT);
/* Delay for well over 4 ILP clocks */
udelay(1000);
/* Read the latched number of ALP ticks per 4 ILP ticks */
ilp_ctr = bcma_read32(core, CHIPCREGOFFS(pmu_xtalfreq)) &
PMU_XTALFREQ_REG_ILPCTR_MASK;
/*
* Turn off the PMU_XTALFREQ_REG_MEASURE_SHIFT
* bit to save power
*/
bcma_write32(core, CHIPCREGOFFS(pmu_xtalfreq), 0);
/* Calculate ALP frequency */
alp_hz = (ilp_ctr * EXT_ILP_HZ) / 4;
/*
* Round to nearest 100KHz, and at
* the same time convert to KHz
*/
alp_khz = (alp_hz + 50000) / 100000 * 100;
} else
alp_khz = 0;
return alp_khz;
}