mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 23:02:27 +07:00
8088d3dd4d
scatterwalk_done() is only meant to be called after a nonzero number of
bytes have been processed, since scatterwalk_pagedone() will flush the
dcache of the *previous* page. But in the error case of
skcipher_walk_done(), e.g. if the input wasn't an integer number of
blocks, scatterwalk_done() was actually called after advancing 0 bytes.
This caused a crash ("BUG: unable to handle kernel paging request")
during '!PageSlab(page)' on architectures like arm and arm64 that define
ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE, provided that the input was
page-aligned as in that case walk->offset == 0.
Fix it by reorganizing skcipher_walk_done() to skip the
scatterwalk_advance() and scatterwalk_done() if an error has occurred.
This bug was found by syzkaller fuzzing.
Reproducer, assuming ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE:
#include <linux/if_alg.h>
#include <sys/socket.h>
#include <unistd.h>
int main()
{
struct sockaddr_alg addr = {
.salg_type = "skcipher",
.salg_name = "cbc(aes-generic)",
};
char buffer[4096] __attribute__((aligned(4096))) = { 0 };
int fd;
fd = socket(AF_ALG, SOCK_SEQPACKET, 0);
bind(fd, (void *)&addr, sizeof(addr));
setsockopt(fd, SOL_ALG, ALG_SET_KEY, buffer, 16);
fd = accept(fd, NULL, NULL);
write(fd, buffer, 15);
read(fd, buffer, 15);
}
Reported-by: Liu Chao <liuchao741@huawei.com>
Fixes: b286d8b1a6
("crypto: skcipher - Add skcipher walk interface")
Cc: <stable@vger.kernel.org> # v4.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1042 lines
26 KiB
C
1042 lines
26 KiB
C
/*
|
|
* Symmetric key cipher operations.
|
|
*
|
|
* Generic encrypt/decrypt wrapper for ciphers, handles operations across
|
|
* multiple page boundaries by using temporary blocks. In user context,
|
|
* the kernel is given a chance to schedule us once per page.
|
|
*
|
|
* Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
*/
|
|
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/cryptouser.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/seq_file.h>
|
|
#include <net/netlink.h>
|
|
|
|
#include "internal.h"
|
|
|
|
enum {
|
|
SKCIPHER_WALK_PHYS = 1 << 0,
|
|
SKCIPHER_WALK_SLOW = 1 << 1,
|
|
SKCIPHER_WALK_COPY = 1 << 2,
|
|
SKCIPHER_WALK_DIFF = 1 << 3,
|
|
SKCIPHER_WALK_SLEEP = 1 << 4,
|
|
};
|
|
|
|
struct skcipher_walk_buffer {
|
|
struct list_head entry;
|
|
struct scatter_walk dst;
|
|
unsigned int len;
|
|
u8 *data;
|
|
u8 buffer[];
|
|
};
|
|
|
|
static int skcipher_walk_next(struct skcipher_walk *walk);
|
|
|
|
static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
|
|
{
|
|
if (PageHighMem(scatterwalk_page(walk)))
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
static inline void *skcipher_map(struct scatter_walk *walk)
|
|
{
|
|
struct page *page = scatterwalk_page(walk);
|
|
|
|
return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
|
|
offset_in_page(walk->offset);
|
|
}
|
|
|
|
static inline void skcipher_map_src(struct skcipher_walk *walk)
|
|
{
|
|
walk->src.virt.addr = skcipher_map(&walk->in);
|
|
}
|
|
|
|
static inline void skcipher_map_dst(struct skcipher_walk *walk)
|
|
{
|
|
walk->dst.virt.addr = skcipher_map(&walk->out);
|
|
}
|
|
|
|
static inline void skcipher_unmap_src(struct skcipher_walk *walk)
|
|
{
|
|
skcipher_unmap(&walk->in, walk->src.virt.addr);
|
|
}
|
|
|
|
static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
|
|
{
|
|
skcipher_unmap(&walk->out, walk->dst.virt.addr);
|
|
}
|
|
|
|
static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
|
|
{
|
|
return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
|
|
}
|
|
|
|
/* Get a spot of the specified length that does not straddle a page.
|
|
* The caller needs to ensure that there is enough space for this operation.
|
|
*/
|
|
static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
|
|
{
|
|
u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
|
|
|
|
return max(start, end_page);
|
|
}
|
|
|
|
static void skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
|
|
{
|
|
u8 *addr;
|
|
|
|
addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
|
|
addr = skcipher_get_spot(addr, bsize);
|
|
scatterwalk_copychunks(addr, &walk->out, bsize,
|
|
(walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
|
|
}
|
|
|
|
int skcipher_walk_done(struct skcipher_walk *walk, int err)
|
|
{
|
|
unsigned int n; /* bytes processed */
|
|
bool more;
|
|
|
|
if (unlikely(err < 0))
|
|
goto finish;
|
|
|
|
n = walk->nbytes - err;
|
|
walk->total -= n;
|
|
more = (walk->total != 0);
|
|
|
|
if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
|
|
SKCIPHER_WALK_SLOW |
|
|
SKCIPHER_WALK_COPY |
|
|
SKCIPHER_WALK_DIFF)))) {
|
|
unmap_src:
|
|
skcipher_unmap_src(walk);
|
|
} else if (walk->flags & SKCIPHER_WALK_DIFF) {
|
|
skcipher_unmap_dst(walk);
|
|
goto unmap_src;
|
|
} else if (walk->flags & SKCIPHER_WALK_COPY) {
|
|
skcipher_map_dst(walk);
|
|
memcpy(walk->dst.virt.addr, walk->page, n);
|
|
skcipher_unmap_dst(walk);
|
|
} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
|
|
if (WARN_ON(err)) {
|
|
/* unexpected case; didn't process all bytes */
|
|
err = -EINVAL;
|
|
goto finish;
|
|
}
|
|
skcipher_done_slow(walk, n);
|
|
goto already_advanced;
|
|
}
|
|
|
|
scatterwalk_advance(&walk->in, n);
|
|
scatterwalk_advance(&walk->out, n);
|
|
already_advanced:
|
|
scatterwalk_done(&walk->in, 0, more);
|
|
scatterwalk_done(&walk->out, 1, more);
|
|
|
|
if (more) {
|
|
crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
|
|
CRYPTO_TFM_REQ_MAY_SLEEP : 0);
|
|
return skcipher_walk_next(walk);
|
|
}
|
|
err = 0;
|
|
finish:
|
|
walk->nbytes = 0;
|
|
|
|
/* Short-circuit for the common/fast path. */
|
|
if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
|
|
goto out;
|
|
|
|
if (walk->flags & SKCIPHER_WALK_PHYS)
|
|
goto out;
|
|
|
|
if (walk->iv != walk->oiv)
|
|
memcpy(walk->oiv, walk->iv, walk->ivsize);
|
|
if (walk->buffer != walk->page)
|
|
kfree(walk->buffer);
|
|
if (walk->page)
|
|
free_page((unsigned long)walk->page);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_done);
|
|
|
|
void skcipher_walk_complete(struct skcipher_walk *walk, int err)
|
|
{
|
|
struct skcipher_walk_buffer *p, *tmp;
|
|
|
|
list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
|
|
u8 *data;
|
|
|
|
if (err)
|
|
goto done;
|
|
|
|
data = p->data;
|
|
if (!data) {
|
|
data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
|
|
data = skcipher_get_spot(data, walk->stride);
|
|
}
|
|
|
|
scatterwalk_copychunks(data, &p->dst, p->len, 1);
|
|
|
|
if (offset_in_page(p->data) + p->len + walk->stride >
|
|
PAGE_SIZE)
|
|
free_page((unsigned long)p->data);
|
|
|
|
done:
|
|
list_del(&p->entry);
|
|
kfree(p);
|
|
}
|
|
|
|
if (!err && walk->iv != walk->oiv)
|
|
memcpy(walk->oiv, walk->iv, walk->ivsize);
|
|
if (walk->buffer != walk->page)
|
|
kfree(walk->buffer);
|
|
if (walk->page)
|
|
free_page((unsigned long)walk->page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_complete);
|
|
|
|
static void skcipher_queue_write(struct skcipher_walk *walk,
|
|
struct skcipher_walk_buffer *p)
|
|
{
|
|
p->dst = walk->out;
|
|
list_add_tail(&p->entry, &walk->buffers);
|
|
}
|
|
|
|
static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
|
|
{
|
|
bool phys = walk->flags & SKCIPHER_WALK_PHYS;
|
|
unsigned alignmask = walk->alignmask;
|
|
struct skcipher_walk_buffer *p;
|
|
unsigned a;
|
|
unsigned n;
|
|
u8 *buffer;
|
|
void *v;
|
|
|
|
if (!phys) {
|
|
if (!walk->buffer)
|
|
walk->buffer = walk->page;
|
|
buffer = walk->buffer;
|
|
if (buffer)
|
|
goto ok;
|
|
}
|
|
|
|
/* Start with the minimum alignment of kmalloc. */
|
|
a = crypto_tfm_ctx_alignment() - 1;
|
|
n = bsize;
|
|
|
|
if (phys) {
|
|
/* Calculate the minimum alignment of p->buffer. */
|
|
a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
|
|
n += sizeof(*p);
|
|
}
|
|
|
|
/* Minimum size to align p->buffer by alignmask. */
|
|
n += alignmask & ~a;
|
|
|
|
/* Minimum size to ensure p->buffer does not straddle a page. */
|
|
n += (bsize - 1) & ~(alignmask | a);
|
|
|
|
v = kzalloc(n, skcipher_walk_gfp(walk));
|
|
if (!v)
|
|
return skcipher_walk_done(walk, -ENOMEM);
|
|
|
|
if (phys) {
|
|
p = v;
|
|
p->len = bsize;
|
|
skcipher_queue_write(walk, p);
|
|
buffer = p->buffer;
|
|
} else {
|
|
walk->buffer = v;
|
|
buffer = v;
|
|
}
|
|
|
|
ok:
|
|
walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
|
|
walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
|
|
walk->src.virt.addr = walk->dst.virt.addr;
|
|
|
|
scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
|
|
|
|
walk->nbytes = bsize;
|
|
walk->flags |= SKCIPHER_WALK_SLOW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_next_copy(struct skcipher_walk *walk)
|
|
{
|
|
struct skcipher_walk_buffer *p;
|
|
u8 *tmp = walk->page;
|
|
|
|
skcipher_map_src(walk);
|
|
memcpy(tmp, walk->src.virt.addr, walk->nbytes);
|
|
skcipher_unmap_src(walk);
|
|
|
|
walk->src.virt.addr = tmp;
|
|
walk->dst.virt.addr = tmp;
|
|
|
|
if (!(walk->flags & SKCIPHER_WALK_PHYS))
|
|
return 0;
|
|
|
|
p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
p->data = walk->page;
|
|
p->len = walk->nbytes;
|
|
skcipher_queue_write(walk, p);
|
|
|
|
if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
|
|
PAGE_SIZE)
|
|
walk->page = NULL;
|
|
else
|
|
walk->page += walk->nbytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_next_fast(struct skcipher_walk *walk)
|
|
{
|
|
unsigned long diff;
|
|
|
|
walk->src.phys.page = scatterwalk_page(&walk->in);
|
|
walk->src.phys.offset = offset_in_page(walk->in.offset);
|
|
walk->dst.phys.page = scatterwalk_page(&walk->out);
|
|
walk->dst.phys.offset = offset_in_page(walk->out.offset);
|
|
|
|
if (walk->flags & SKCIPHER_WALK_PHYS)
|
|
return 0;
|
|
|
|
diff = walk->src.phys.offset - walk->dst.phys.offset;
|
|
diff |= walk->src.virt.page - walk->dst.virt.page;
|
|
|
|
skcipher_map_src(walk);
|
|
walk->dst.virt.addr = walk->src.virt.addr;
|
|
|
|
if (diff) {
|
|
walk->flags |= SKCIPHER_WALK_DIFF;
|
|
skcipher_map_dst(walk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_walk_next(struct skcipher_walk *walk)
|
|
{
|
|
unsigned int bsize;
|
|
unsigned int n;
|
|
int err;
|
|
|
|
walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
|
|
SKCIPHER_WALK_DIFF);
|
|
|
|
n = walk->total;
|
|
bsize = min(walk->stride, max(n, walk->blocksize));
|
|
n = scatterwalk_clamp(&walk->in, n);
|
|
n = scatterwalk_clamp(&walk->out, n);
|
|
|
|
if (unlikely(n < bsize)) {
|
|
if (unlikely(walk->total < walk->blocksize))
|
|
return skcipher_walk_done(walk, -EINVAL);
|
|
|
|
slow_path:
|
|
err = skcipher_next_slow(walk, bsize);
|
|
goto set_phys_lowmem;
|
|
}
|
|
|
|
if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
|
|
if (!walk->page) {
|
|
gfp_t gfp = skcipher_walk_gfp(walk);
|
|
|
|
walk->page = (void *)__get_free_page(gfp);
|
|
if (!walk->page)
|
|
goto slow_path;
|
|
}
|
|
|
|
walk->nbytes = min_t(unsigned, n,
|
|
PAGE_SIZE - offset_in_page(walk->page));
|
|
walk->flags |= SKCIPHER_WALK_COPY;
|
|
err = skcipher_next_copy(walk);
|
|
goto set_phys_lowmem;
|
|
}
|
|
|
|
walk->nbytes = n;
|
|
|
|
return skcipher_next_fast(walk);
|
|
|
|
set_phys_lowmem:
|
|
if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
|
|
walk->src.phys.page = virt_to_page(walk->src.virt.addr);
|
|
walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
|
|
walk->src.phys.offset &= PAGE_SIZE - 1;
|
|
walk->dst.phys.offset &= PAGE_SIZE - 1;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int skcipher_copy_iv(struct skcipher_walk *walk)
|
|
{
|
|
unsigned a = crypto_tfm_ctx_alignment() - 1;
|
|
unsigned alignmask = walk->alignmask;
|
|
unsigned ivsize = walk->ivsize;
|
|
unsigned bs = walk->stride;
|
|
unsigned aligned_bs;
|
|
unsigned size;
|
|
u8 *iv;
|
|
|
|
aligned_bs = ALIGN(bs, alignmask + 1);
|
|
|
|
/* Minimum size to align buffer by alignmask. */
|
|
size = alignmask & ~a;
|
|
|
|
if (walk->flags & SKCIPHER_WALK_PHYS)
|
|
size += ivsize;
|
|
else {
|
|
size += aligned_bs + ivsize;
|
|
|
|
/* Minimum size to ensure buffer does not straddle a page. */
|
|
size += (bs - 1) & ~(alignmask | a);
|
|
}
|
|
|
|
walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
|
|
if (!walk->buffer)
|
|
return -ENOMEM;
|
|
|
|
iv = PTR_ALIGN(walk->buffer, alignmask + 1);
|
|
iv = skcipher_get_spot(iv, bs) + aligned_bs;
|
|
|
|
walk->iv = memcpy(iv, walk->iv, walk->ivsize);
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_walk_first(struct skcipher_walk *walk)
|
|
{
|
|
if (WARN_ON_ONCE(in_irq()))
|
|
return -EDEADLK;
|
|
|
|
walk->buffer = NULL;
|
|
if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
|
|
int err = skcipher_copy_iv(walk);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
walk->page = NULL;
|
|
|
|
return skcipher_walk_next(walk);
|
|
}
|
|
|
|
static int skcipher_walk_skcipher(struct skcipher_walk *walk,
|
|
struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
|
|
walk->total = req->cryptlen;
|
|
walk->nbytes = 0;
|
|
walk->iv = req->iv;
|
|
walk->oiv = req->iv;
|
|
|
|
if (unlikely(!walk->total))
|
|
return 0;
|
|
|
|
scatterwalk_start(&walk->in, req->src);
|
|
scatterwalk_start(&walk->out, req->dst);
|
|
|
|
walk->flags &= ~SKCIPHER_WALK_SLEEP;
|
|
walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
|
|
SKCIPHER_WALK_SLEEP : 0;
|
|
|
|
walk->blocksize = crypto_skcipher_blocksize(tfm);
|
|
walk->stride = crypto_skcipher_walksize(tfm);
|
|
walk->ivsize = crypto_skcipher_ivsize(tfm);
|
|
walk->alignmask = crypto_skcipher_alignmask(tfm);
|
|
|
|
return skcipher_walk_first(walk);
|
|
}
|
|
|
|
int skcipher_walk_virt(struct skcipher_walk *walk,
|
|
struct skcipher_request *req, bool atomic)
|
|
{
|
|
int err;
|
|
|
|
walk->flags &= ~SKCIPHER_WALK_PHYS;
|
|
|
|
err = skcipher_walk_skcipher(walk, req);
|
|
|
|
walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_virt);
|
|
|
|
void skcipher_walk_atomise(struct skcipher_walk *walk)
|
|
{
|
|
walk->flags &= ~SKCIPHER_WALK_SLEEP;
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_atomise);
|
|
|
|
int skcipher_walk_async(struct skcipher_walk *walk,
|
|
struct skcipher_request *req)
|
|
{
|
|
walk->flags |= SKCIPHER_WALK_PHYS;
|
|
|
|
INIT_LIST_HEAD(&walk->buffers);
|
|
|
|
return skcipher_walk_skcipher(walk, req);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_async);
|
|
|
|
static int skcipher_walk_aead_common(struct skcipher_walk *walk,
|
|
struct aead_request *req, bool atomic)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
int err;
|
|
|
|
walk->nbytes = 0;
|
|
walk->iv = req->iv;
|
|
walk->oiv = req->iv;
|
|
|
|
if (unlikely(!walk->total))
|
|
return 0;
|
|
|
|
walk->flags &= ~SKCIPHER_WALK_PHYS;
|
|
|
|
scatterwalk_start(&walk->in, req->src);
|
|
scatterwalk_start(&walk->out, req->dst);
|
|
|
|
scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
|
|
scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
|
|
|
|
scatterwalk_done(&walk->in, 0, walk->total);
|
|
scatterwalk_done(&walk->out, 0, walk->total);
|
|
|
|
if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
|
|
walk->flags |= SKCIPHER_WALK_SLEEP;
|
|
else
|
|
walk->flags &= ~SKCIPHER_WALK_SLEEP;
|
|
|
|
walk->blocksize = crypto_aead_blocksize(tfm);
|
|
walk->stride = crypto_aead_chunksize(tfm);
|
|
walk->ivsize = crypto_aead_ivsize(tfm);
|
|
walk->alignmask = crypto_aead_alignmask(tfm);
|
|
|
|
err = skcipher_walk_first(walk);
|
|
|
|
if (atomic)
|
|
walk->flags &= ~SKCIPHER_WALK_SLEEP;
|
|
|
|
return err;
|
|
}
|
|
|
|
int skcipher_walk_aead(struct skcipher_walk *walk, struct aead_request *req,
|
|
bool atomic)
|
|
{
|
|
walk->total = req->cryptlen;
|
|
|
|
return skcipher_walk_aead_common(walk, req, atomic);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_aead);
|
|
|
|
int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
|
|
struct aead_request *req, bool atomic)
|
|
{
|
|
walk->total = req->cryptlen;
|
|
|
|
return skcipher_walk_aead_common(walk, req, atomic);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
|
|
|
|
int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
|
|
struct aead_request *req, bool atomic)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
|
|
walk->total = req->cryptlen - crypto_aead_authsize(tfm);
|
|
|
|
return skcipher_walk_aead_common(walk, req, atomic);
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
|
|
|
|
static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
|
|
{
|
|
if (alg->cra_type == &crypto_blkcipher_type)
|
|
return sizeof(struct crypto_blkcipher *);
|
|
|
|
if (alg->cra_type == &crypto_ablkcipher_type ||
|
|
alg->cra_type == &crypto_givcipher_type)
|
|
return sizeof(struct crypto_ablkcipher *);
|
|
|
|
return crypto_alg_extsize(alg);
|
|
}
|
|
|
|
static int skcipher_setkey_blkcipher(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
|
|
struct crypto_blkcipher *blkcipher = *ctx;
|
|
int err;
|
|
|
|
crypto_blkcipher_clear_flags(blkcipher, ~0);
|
|
crypto_blkcipher_set_flags(blkcipher, crypto_skcipher_get_flags(tfm) &
|
|
CRYPTO_TFM_REQ_MASK);
|
|
err = crypto_blkcipher_setkey(blkcipher, key, keylen);
|
|
crypto_skcipher_set_flags(tfm, crypto_blkcipher_get_flags(blkcipher) &
|
|
CRYPTO_TFM_RES_MASK);
|
|
if (err)
|
|
return err;
|
|
|
|
crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_crypt_blkcipher(struct skcipher_request *req,
|
|
int (*crypt)(struct blkcipher_desc *,
|
|
struct scatterlist *,
|
|
struct scatterlist *,
|
|
unsigned int))
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_blkcipher **ctx = crypto_skcipher_ctx(tfm);
|
|
struct blkcipher_desc desc = {
|
|
.tfm = *ctx,
|
|
.info = req->iv,
|
|
.flags = req->base.flags,
|
|
};
|
|
|
|
|
|
return crypt(&desc, req->dst, req->src, req->cryptlen);
|
|
}
|
|
|
|
static int skcipher_encrypt_blkcipher(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
|
|
struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
|
|
|
|
return skcipher_crypt_blkcipher(req, alg->encrypt);
|
|
}
|
|
|
|
static int skcipher_decrypt_blkcipher(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
|
|
struct blkcipher_alg *alg = &tfm->__crt_alg->cra_blkcipher;
|
|
|
|
return skcipher_crypt_blkcipher(req, alg->decrypt);
|
|
}
|
|
|
|
static void crypto_exit_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
|
|
|
|
crypto_free_blkcipher(*ctx);
|
|
}
|
|
|
|
static int crypto_init_skcipher_ops_blkcipher(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *calg = tfm->__crt_alg;
|
|
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
|
|
struct crypto_blkcipher **ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_blkcipher *blkcipher;
|
|
struct crypto_tfm *btfm;
|
|
|
|
if (!crypto_mod_get(calg))
|
|
return -EAGAIN;
|
|
|
|
btfm = __crypto_alloc_tfm(calg, CRYPTO_ALG_TYPE_BLKCIPHER,
|
|
CRYPTO_ALG_TYPE_MASK);
|
|
if (IS_ERR(btfm)) {
|
|
crypto_mod_put(calg);
|
|
return PTR_ERR(btfm);
|
|
}
|
|
|
|
blkcipher = __crypto_blkcipher_cast(btfm);
|
|
*ctx = blkcipher;
|
|
tfm->exit = crypto_exit_skcipher_ops_blkcipher;
|
|
|
|
skcipher->setkey = skcipher_setkey_blkcipher;
|
|
skcipher->encrypt = skcipher_encrypt_blkcipher;
|
|
skcipher->decrypt = skcipher_decrypt_blkcipher;
|
|
|
|
skcipher->ivsize = crypto_blkcipher_ivsize(blkcipher);
|
|
skcipher->keysize = calg->cra_blkcipher.max_keysize;
|
|
|
|
if (skcipher->keysize)
|
|
crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_NEED_KEY);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_setkey_ablkcipher(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
|
|
struct crypto_ablkcipher *ablkcipher = *ctx;
|
|
int err;
|
|
|
|
crypto_ablkcipher_clear_flags(ablkcipher, ~0);
|
|
crypto_ablkcipher_set_flags(ablkcipher,
|
|
crypto_skcipher_get_flags(tfm) &
|
|
CRYPTO_TFM_REQ_MASK);
|
|
err = crypto_ablkcipher_setkey(ablkcipher, key, keylen);
|
|
crypto_skcipher_set_flags(tfm,
|
|
crypto_ablkcipher_get_flags(ablkcipher) &
|
|
CRYPTO_TFM_RES_MASK);
|
|
if (err)
|
|
return err;
|
|
|
|
crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_crypt_ablkcipher(struct skcipher_request *req,
|
|
int (*crypt)(struct ablkcipher_request *))
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_ablkcipher **ctx = crypto_skcipher_ctx(tfm);
|
|
struct ablkcipher_request *subreq = skcipher_request_ctx(req);
|
|
|
|
ablkcipher_request_set_tfm(subreq, *ctx);
|
|
ablkcipher_request_set_callback(subreq, skcipher_request_flags(req),
|
|
req->base.complete, req->base.data);
|
|
ablkcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
|
|
req->iv);
|
|
|
|
return crypt(subreq);
|
|
}
|
|
|
|
static int skcipher_encrypt_ablkcipher(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
|
|
struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
|
|
|
|
return skcipher_crypt_ablkcipher(req, alg->encrypt);
|
|
}
|
|
|
|
static int skcipher_decrypt_ablkcipher(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
|
|
struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
|
|
struct ablkcipher_alg *alg = &tfm->__crt_alg->cra_ablkcipher;
|
|
|
|
return skcipher_crypt_ablkcipher(req, alg->decrypt);
|
|
}
|
|
|
|
static void crypto_exit_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
|
|
|
|
crypto_free_ablkcipher(*ctx);
|
|
}
|
|
|
|
static int crypto_init_skcipher_ops_ablkcipher(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_alg *calg = tfm->__crt_alg;
|
|
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
|
|
struct crypto_ablkcipher **ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_ablkcipher *ablkcipher;
|
|
struct crypto_tfm *abtfm;
|
|
|
|
if (!crypto_mod_get(calg))
|
|
return -EAGAIN;
|
|
|
|
abtfm = __crypto_alloc_tfm(calg, 0, 0);
|
|
if (IS_ERR(abtfm)) {
|
|
crypto_mod_put(calg);
|
|
return PTR_ERR(abtfm);
|
|
}
|
|
|
|
ablkcipher = __crypto_ablkcipher_cast(abtfm);
|
|
*ctx = ablkcipher;
|
|
tfm->exit = crypto_exit_skcipher_ops_ablkcipher;
|
|
|
|
skcipher->setkey = skcipher_setkey_ablkcipher;
|
|
skcipher->encrypt = skcipher_encrypt_ablkcipher;
|
|
skcipher->decrypt = skcipher_decrypt_ablkcipher;
|
|
|
|
skcipher->ivsize = crypto_ablkcipher_ivsize(ablkcipher);
|
|
skcipher->reqsize = crypto_ablkcipher_reqsize(ablkcipher) +
|
|
sizeof(struct ablkcipher_request);
|
|
skcipher->keysize = calg->cra_ablkcipher.max_keysize;
|
|
|
|
if (skcipher->keysize)
|
|
crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_NEED_KEY);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
unsigned long alignmask = crypto_skcipher_alignmask(tfm);
|
|
struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
|
|
u8 *buffer, *alignbuffer;
|
|
unsigned long absize;
|
|
int ret;
|
|
|
|
absize = keylen + alignmask;
|
|
buffer = kmalloc(absize, GFP_ATOMIC);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
|
|
memcpy(alignbuffer, key, keylen);
|
|
ret = cipher->setkey(tfm, alignbuffer, keylen);
|
|
kzfree(buffer);
|
|
return ret;
|
|
}
|
|
|
|
static int skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
|
|
unsigned long alignmask = crypto_skcipher_alignmask(tfm);
|
|
int err;
|
|
|
|
if (keylen < cipher->min_keysize || keylen > cipher->max_keysize) {
|
|
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((unsigned long)key & alignmask)
|
|
err = skcipher_setkey_unaligned(tfm, key, keylen);
|
|
else
|
|
err = cipher->setkey(tfm, key, keylen);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
|
|
return 0;
|
|
}
|
|
|
|
static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
|
|
|
|
alg->exit(skcipher);
|
|
}
|
|
|
|
static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
|
|
|
|
if (tfm->__crt_alg->cra_type == &crypto_blkcipher_type)
|
|
return crypto_init_skcipher_ops_blkcipher(tfm);
|
|
|
|
if (tfm->__crt_alg->cra_type == &crypto_ablkcipher_type ||
|
|
tfm->__crt_alg->cra_type == &crypto_givcipher_type)
|
|
return crypto_init_skcipher_ops_ablkcipher(tfm);
|
|
|
|
skcipher->setkey = skcipher_setkey;
|
|
skcipher->encrypt = alg->encrypt;
|
|
skcipher->decrypt = alg->decrypt;
|
|
skcipher->ivsize = alg->ivsize;
|
|
skcipher->keysize = alg->max_keysize;
|
|
|
|
if (skcipher->keysize)
|
|
crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_NEED_KEY);
|
|
|
|
if (alg->exit)
|
|
skcipher->base.exit = crypto_skcipher_exit_tfm;
|
|
|
|
if (alg->init)
|
|
return alg->init(skcipher);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void crypto_skcipher_free_instance(struct crypto_instance *inst)
|
|
{
|
|
struct skcipher_instance *skcipher =
|
|
container_of(inst, struct skcipher_instance, s.base);
|
|
|
|
skcipher->free(skcipher);
|
|
}
|
|
|
|
static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
|
|
__maybe_unused;
|
|
static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
|
|
{
|
|
struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
|
|
base);
|
|
|
|
seq_printf(m, "type : skcipher\n");
|
|
seq_printf(m, "async : %s\n",
|
|
alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
|
|
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
|
|
seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
|
|
seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
|
|
seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
|
|
seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
|
|
seq_printf(m, "walksize : %u\n", skcipher->walksize);
|
|
}
|
|
|
|
#ifdef CONFIG_NET
|
|
static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
|
|
{
|
|
struct crypto_report_blkcipher rblkcipher;
|
|
struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
|
|
base);
|
|
|
|
strncpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
|
|
strncpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
|
|
|
|
rblkcipher.blocksize = alg->cra_blocksize;
|
|
rblkcipher.min_keysize = skcipher->min_keysize;
|
|
rblkcipher.max_keysize = skcipher->max_keysize;
|
|
rblkcipher.ivsize = skcipher->ivsize;
|
|
|
|
if (nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
|
|
sizeof(struct crypto_report_blkcipher), &rblkcipher))
|
|
goto nla_put_failure;
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -EMSGSIZE;
|
|
}
|
|
#else
|
|
static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
static const struct crypto_type crypto_skcipher_type2 = {
|
|
.extsize = crypto_skcipher_extsize,
|
|
.init_tfm = crypto_skcipher_init_tfm,
|
|
.free = crypto_skcipher_free_instance,
|
|
#ifdef CONFIG_PROC_FS
|
|
.show = crypto_skcipher_show,
|
|
#endif
|
|
.report = crypto_skcipher_report,
|
|
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
|
|
.maskset = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
|
|
.type = CRYPTO_ALG_TYPE_SKCIPHER,
|
|
.tfmsize = offsetof(struct crypto_skcipher, base),
|
|
};
|
|
|
|
int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
|
|
const char *name, u32 type, u32 mask)
|
|
{
|
|
spawn->base.frontend = &crypto_skcipher_type2;
|
|
return crypto_grab_spawn(&spawn->base, name, type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
|
|
|
|
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
|
|
u32 type, u32 mask)
|
|
{
|
|
return crypto_alloc_tfm(alg_name, &crypto_skcipher_type2, type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
|
|
|
|
int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask)
|
|
{
|
|
return crypto_type_has_alg(alg_name, &crypto_skcipher_type2,
|
|
type, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_has_skcipher2);
|
|
|
|
static int skcipher_prepare_alg(struct skcipher_alg *alg)
|
|
{
|
|
struct crypto_alg *base = &alg->base;
|
|
|
|
if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
|
|
alg->walksize > PAGE_SIZE / 8)
|
|
return -EINVAL;
|
|
|
|
if (!alg->chunksize)
|
|
alg->chunksize = base->cra_blocksize;
|
|
if (!alg->walksize)
|
|
alg->walksize = alg->chunksize;
|
|
|
|
base->cra_type = &crypto_skcipher_type2;
|
|
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
|
|
base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int crypto_register_skcipher(struct skcipher_alg *alg)
|
|
{
|
|
struct crypto_alg *base = &alg->base;
|
|
int err;
|
|
|
|
err = skcipher_prepare_alg(alg);
|
|
if (err)
|
|
return err;
|
|
|
|
return crypto_register_alg(base);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_register_skcipher);
|
|
|
|
void crypto_unregister_skcipher(struct skcipher_alg *alg)
|
|
{
|
|
crypto_unregister_alg(&alg->base);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
|
|
|
|
int crypto_register_skciphers(struct skcipher_alg *algs, int count)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
ret = crypto_register_skcipher(&algs[i]);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
for (--i; i >= 0; --i)
|
|
crypto_unregister_skcipher(&algs[i]);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_register_skciphers);
|
|
|
|
void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = count - 1; i >= 0; --i)
|
|
crypto_unregister_skcipher(&algs[i]);
|
|
}
|
|
EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
|
|
|
|
int skcipher_register_instance(struct crypto_template *tmpl,
|
|
struct skcipher_instance *inst)
|
|
{
|
|
int err;
|
|
|
|
err = skcipher_prepare_alg(&inst->alg);
|
|
if (err)
|
|
return err;
|
|
|
|
return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
|
|
}
|
|
EXPORT_SYMBOL_GPL(skcipher_register_instance);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Symmetric key cipher type");
|