mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 11:20:41 +07:00
113f9017e5
The driver core clears the driver data to NULL after device_release or on probe failure. Thus, it is not needed to manually clear the device driver data to NULL. Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1067 lines
28 KiB
C
1067 lines
28 KiB
C
/*
|
|
* CPU frequency scaling for Broadcom SoCs with AVS firmware that
|
|
* supports DVS or DVFS
|
|
*
|
|
* Copyright (c) 2016 Broadcom
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation version 2.
|
|
*
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
/*
|
|
* "AVS" is the name of a firmware developed at Broadcom. It derives
|
|
* its name from the technique called "Adaptive Voltage Scaling".
|
|
* Adaptive voltage scaling was the original purpose of this firmware.
|
|
* The AVS firmware still supports "AVS mode", where all it does is
|
|
* adaptive voltage scaling. However, on some newer Broadcom SoCs, the
|
|
* AVS Firmware, despite its unchanged name, also supports DFS mode and
|
|
* DVFS mode.
|
|
*
|
|
* In the context of this document and the related driver, "AVS" by
|
|
* itself always means the Broadcom firmware and never refers to the
|
|
* technique called "Adaptive Voltage Scaling".
|
|
*
|
|
* The Broadcom STB AVS CPUfreq driver provides voltage and frequency
|
|
* scaling on Broadcom SoCs using AVS firmware with support for DFS and
|
|
* DVFS. The AVS firmware is running on its own co-processor. The
|
|
* driver supports both uniprocessor (UP) and symmetric multiprocessor
|
|
* (SMP) systems which share clock and voltage across all CPUs.
|
|
*
|
|
* Actual voltage and frequency scaling is done solely by the AVS
|
|
* firmware. This driver does not change frequency or voltage itself.
|
|
* It provides a standard CPUfreq interface to the rest of the kernel
|
|
* and to userland. It interfaces with the AVS firmware to effect the
|
|
* requested changes and to report back the current system status in a
|
|
* way that is expected by existing tools.
|
|
*/
|
|
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/semaphore.h>
|
|
|
|
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
|
|
#include <linux/ctype.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#endif
|
|
|
|
/* Max number of arguments AVS calls take */
|
|
#define AVS_MAX_CMD_ARGS 4
|
|
/*
|
|
* This macro is used to generate AVS parameter register offsets. For
|
|
* x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
|
|
* access outside of the parameter range. (Offset 0 is the first parameter.)
|
|
*/
|
|
#define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
|
|
|
|
/* AVS Mailbox Register offsets */
|
|
#define AVS_MBOX_COMMAND 0x00
|
|
#define AVS_MBOX_STATUS 0x04
|
|
#define AVS_MBOX_VOLTAGE0 0x08
|
|
#define AVS_MBOX_TEMP0 0x0c
|
|
#define AVS_MBOX_PV0 0x10
|
|
#define AVS_MBOX_MV0 0x14
|
|
#define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
|
|
#define AVS_MBOX_REVISION 0x28
|
|
#define AVS_MBOX_PSTATE 0x2c
|
|
#define AVS_MBOX_HEARTBEAT 0x30
|
|
#define AVS_MBOX_MAGIC 0x34
|
|
#define AVS_MBOX_SIGMA_HVT 0x38
|
|
#define AVS_MBOX_SIGMA_SVT 0x3c
|
|
#define AVS_MBOX_VOLTAGE1 0x40
|
|
#define AVS_MBOX_TEMP1 0x44
|
|
#define AVS_MBOX_PV1 0x48
|
|
#define AVS_MBOX_MV1 0x4c
|
|
#define AVS_MBOX_FREQUENCY 0x50
|
|
|
|
/* AVS Commands */
|
|
#define AVS_CMD_AVAILABLE 0x00
|
|
#define AVS_CMD_DISABLE 0x10
|
|
#define AVS_CMD_ENABLE 0x11
|
|
#define AVS_CMD_S2_ENTER 0x12
|
|
#define AVS_CMD_S2_EXIT 0x13
|
|
#define AVS_CMD_BBM_ENTER 0x14
|
|
#define AVS_CMD_BBM_EXIT 0x15
|
|
#define AVS_CMD_S3_ENTER 0x16
|
|
#define AVS_CMD_S3_EXIT 0x17
|
|
#define AVS_CMD_BALANCE 0x18
|
|
/* PMAP and P-STATE commands */
|
|
#define AVS_CMD_GET_PMAP 0x30
|
|
#define AVS_CMD_SET_PMAP 0x31
|
|
#define AVS_CMD_GET_PSTATE 0x40
|
|
#define AVS_CMD_SET_PSTATE 0x41
|
|
|
|
/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
|
|
#define AVS_MODE_AVS 0x0
|
|
#define AVS_MODE_DFS 0x1
|
|
#define AVS_MODE_DVS 0x2
|
|
#define AVS_MODE_DVFS 0x3
|
|
|
|
/*
|
|
* PMAP parameter p1
|
|
* unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
|
|
*/
|
|
#define NDIV_INT_SHIFT 0
|
|
#define NDIV_INT_MASK 0x3ff
|
|
#define PDIV_SHIFT 10
|
|
#define PDIV_MASK 0xf
|
|
#define MDIV_P0_SHIFT 16
|
|
#define MDIV_P0_MASK 0xff
|
|
/*
|
|
* PMAP parameter p2
|
|
* mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
|
|
*/
|
|
#define MDIV_P1_SHIFT 0
|
|
#define MDIV_P1_MASK 0xff
|
|
#define MDIV_P2_SHIFT 8
|
|
#define MDIV_P2_MASK 0xff
|
|
#define MDIV_P3_SHIFT 16
|
|
#define MDIV_P3_MASK 0xff
|
|
#define MDIV_P4_SHIFT 24
|
|
#define MDIV_P4_MASK 0xff
|
|
|
|
/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
|
|
#define AVS_PSTATE_P0 0x0
|
|
#define AVS_PSTATE_P1 0x1
|
|
#define AVS_PSTATE_P2 0x2
|
|
#define AVS_PSTATE_P3 0x3
|
|
#define AVS_PSTATE_P4 0x4
|
|
#define AVS_PSTATE_MAX AVS_PSTATE_P4
|
|
|
|
/* CPU L2 Interrupt Controller Registers */
|
|
#define AVS_CPU_L2_SET0 0x04
|
|
#define AVS_CPU_L2_INT_MASK BIT(31)
|
|
|
|
/* AVS Command Status Values */
|
|
#define AVS_STATUS_CLEAR 0x00
|
|
/* Command/notification accepted */
|
|
#define AVS_STATUS_SUCCESS 0xf0
|
|
/* Command/notification rejected */
|
|
#define AVS_STATUS_FAILURE 0xff
|
|
/* Invalid command/notification (unknown) */
|
|
#define AVS_STATUS_INVALID 0xf1
|
|
/* Non-AVS modes are not supported */
|
|
#define AVS_STATUS_NO_SUPP 0xf2
|
|
/* Cannot set P-State until P-Map supplied */
|
|
#define AVS_STATUS_NO_MAP 0xf3
|
|
/* Cannot change P-Map after initial P-Map set */
|
|
#define AVS_STATUS_MAP_SET 0xf4
|
|
/* Max AVS status; higher numbers are used for debugging */
|
|
#define AVS_STATUS_MAX 0xff
|
|
|
|
/* Other AVS related constants */
|
|
#define AVS_LOOP_LIMIT 10000
|
|
#define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */
|
|
#define AVS_FIRMWARE_MAGIC 0xa11600d1
|
|
|
|
#define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
|
|
#define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
|
|
#define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem"
|
|
#define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr"
|
|
#define BRCM_AVS_HOST_INTR "sw_intr"
|
|
|
|
struct pmap {
|
|
unsigned int mode;
|
|
unsigned int p1;
|
|
unsigned int p2;
|
|
unsigned int state;
|
|
};
|
|
|
|
struct private_data {
|
|
void __iomem *base;
|
|
void __iomem *avs_intr_base;
|
|
struct device *dev;
|
|
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
|
|
struct dentry *debugfs;
|
|
#endif
|
|
struct completion done;
|
|
struct semaphore sem;
|
|
struct pmap pmap;
|
|
};
|
|
|
|
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
|
|
|
|
enum debugfs_format {
|
|
DEBUGFS_NORMAL,
|
|
DEBUGFS_FLOAT,
|
|
DEBUGFS_REV,
|
|
};
|
|
|
|
struct debugfs_data {
|
|
struct debugfs_entry *entry;
|
|
struct private_data *priv;
|
|
};
|
|
|
|
struct debugfs_entry {
|
|
char *name;
|
|
u32 offset;
|
|
fmode_t mode;
|
|
enum debugfs_format format;
|
|
};
|
|
|
|
#define DEBUGFS_ENTRY(name, mode, format) { \
|
|
#name, AVS_MBOX_##name, mode, format \
|
|
}
|
|
|
|
/*
|
|
* These are used for debugfs only. Otherwise we use AVS_MBOX_PARAM() directly.
|
|
*/
|
|
#define AVS_MBOX_PARAM1 AVS_MBOX_PARAM(0)
|
|
#define AVS_MBOX_PARAM2 AVS_MBOX_PARAM(1)
|
|
#define AVS_MBOX_PARAM3 AVS_MBOX_PARAM(2)
|
|
#define AVS_MBOX_PARAM4 AVS_MBOX_PARAM(3)
|
|
|
|
/*
|
|
* This table stores the name, access permissions and offset for each hardware
|
|
* register and is used to generate debugfs entries.
|
|
*/
|
|
static struct debugfs_entry debugfs_entries[] = {
|
|
DEBUGFS_ENTRY(COMMAND, S_IWUSR, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(STATUS, S_IWUSR, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(VOLTAGE0, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(TEMP0, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(PV0, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(MV0, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(PARAM1, S_IWUSR, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(PARAM2, S_IWUSR, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(PARAM3, S_IWUSR, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(PARAM4, S_IWUSR, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(REVISION, 0, DEBUGFS_REV),
|
|
DEBUGFS_ENTRY(PSTATE, 0, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(HEARTBEAT, 0, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(MAGIC, S_IWUSR, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(SIGMA_HVT, 0, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(SIGMA_SVT, 0, DEBUGFS_NORMAL),
|
|
DEBUGFS_ENTRY(VOLTAGE1, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(TEMP1, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(PV1, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(MV1, 0, DEBUGFS_FLOAT),
|
|
DEBUGFS_ENTRY(FREQUENCY, 0, DEBUGFS_NORMAL),
|
|
};
|
|
|
|
static int brcm_avs_target_index(struct cpufreq_policy *, unsigned int);
|
|
|
|
static char *__strtolower(char *s)
|
|
{
|
|
char *p;
|
|
|
|
for (p = s; *p; p++)
|
|
*p = tolower(*p);
|
|
|
|
return s;
|
|
}
|
|
|
|
#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
|
|
|
|
static void __iomem *__map_region(const char *name)
|
|
{
|
|
struct device_node *np;
|
|
void __iomem *ptr;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, name);
|
|
if (!np)
|
|
return NULL;
|
|
|
|
ptr = of_iomap(np, 0);
|
|
of_node_put(np);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
|
|
u32 args[])
|
|
{
|
|
unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
|
|
void __iomem *base = priv->base;
|
|
unsigned int i;
|
|
int ret;
|
|
u32 val;
|
|
|
|
ret = down_interruptible(&priv->sem);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Make sure no other command is currently running: cmd is 0 if AVS
|
|
* co-processor is idle. Due to the guard above, we should almost never
|
|
* have to wait here.
|
|
*/
|
|
for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
|
|
val = readl(base + AVS_MBOX_COMMAND);
|
|
|
|
/* Give the caller a chance to retry if AVS is busy. */
|
|
if (i == AVS_LOOP_LIMIT) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
/* Clear status before we begin. */
|
|
writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
|
|
|
|
/* We need to send arguments for this command. */
|
|
if (args && is_send) {
|
|
for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
|
|
writel(args[i], base + AVS_MBOX_PARAM(i));
|
|
}
|
|
|
|
/* Protect from spurious interrupts. */
|
|
reinit_completion(&priv->done);
|
|
|
|
/* Now issue the command & tell firmware to wake up to process it. */
|
|
writel(cmd, base + AVS_MBOX_COMMAND);
|
|
writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
|
|
|
|
/* Wait for AVS co-processor to finish processing the command. */
|
|
time_left = wait_for_completion_timeout(&priv->done, time_left);
|
|
|
|
/*
|
|
* If the AVS status is not in the expected range, it means AVS didn't
|
|
* complete our command in time, and we return an error. Also, if there
|
|
* is no "time left", we timed out waiting for the interrupt.
|
|
*/
|
|
val = readl(base + AVS_MBOX_STATUS);
|
|
if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
|
|
dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
|
|
cmd);
|
|
dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n",
|
|
jiffies_to_msecs(time_left), val);
|
|
ret = -ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
/* This command returned arguments, so we read them back. */
|
|
if (args && !is_send) {
|
|
for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
|
|
args[i] = readl(base + AVS_MBOX_PARAM(i));
|
|
}
|
|
|
|
/* Clear status to tell AVS co-processor we are done. */
|
|
writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
|
|
|
|
/* Convert firmware errors to errno's as much as possible. */
|
|
switch (val) {
|
|
case AVS_STATUS_INVALID:
|
|
ret = -EINVAL;
|
|
break;
|
|
case AVS_STATUS_NO_SUPP:
|
|
ret = -ENOTSUPP;
|
|
break;
|
|
case AVS_STATUS_NO_MAP:
|
|
ret = -ENOENT;
|
|
break;
|
|
case AVS_STATUS_MAP_SET:
|
|
ret = -EEXIST;
|
|
break;
|
|
case AVS_STATUS_FAILURE:
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
up(&priv->sem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t irq_handler(int irq, void *data)
|
|
{
|
|
struct private_data *priv = data;
|
|
|
|
/* AVS command completed execution. Wake up __issue_avs_command(). */
|
|
complete(&priv->done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static char *brcm_avs_mode_to_string(unsigned int mode)
|
|
{
|
|
switch (mode) {
|
|
case AVS_MODE_AVS:
|
|
return "AVS";
|
|
case AVS_MODE_DFS:
|
|
return "DFS";
|
|
case AVS_MODE_DVS:
|
|
return "DVS";
|
|
case AVS_MODE_DVFS:
|
|
return "DVFS";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
|
|
unsigned int *ndiv)
|
|
{
|
|
*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
|
|
*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
|
|
*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
|
|
}
|
|
|
|
static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
|
|
unsigned int *mdiv_p2, unsigned int *mdiv_p3,
|
|
unsigned int *mdiv_p4)
|
|
{
|
|
*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
|
|
*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
|
|
*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
|
|
*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
|
|
}
|
|
|
|
static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
|
|
{
|
|
u32 args[AVS_MAX_CMD_ARGS];
|
|
int ret;
|
|
|
|
ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
|
|
if (ret || !pmap)
|
|
return ret;
|
|
|
|
pmap->mode = args[0];
|
|
pmap->p1 = args[1];
|
|
pmap->p2 = args[2];
|
|
pmap->state = args[3];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
|
|
{
|
|
u32 args[AVS_MAX_CMD_ARGS];
|
|
|
|
args[0] = pmap->mode;
|
|
args[1] = pmap->p1;
|
|
args[2] = pmap->p2;
|
|
args[3] = pmap->state;
|
|
|
|
return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
|
|
}
|
|
|
|
static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
|
|
{
|
|
u32 args[AVS_MAX_CMD_ARGS];
|
|
int ret;
|
|
|
|
ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
|
|
if (ret)
|
|
return ret;
|
|
*pstate = args[0];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
|
|
{
|
|
u32 args[AVS_MAX_CMD_ARGS];
|
|
|
|
args[0] = pstate;
|
|
|
|
return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
|
|
}
|
|
|
|
static unsigned long brcm_avs_get_voltage(void __iomem *base)
|
|
{
|
|
return readl(base + AVS_MBOX_VOLTAGE1);
|
|
}
|
|
|
|
static unsigned long brcm_avs_get_frequency(void __iomem *base)
|
|
{
|
|
return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
|
|
}
|
|
|
|
/*
|
|
* We determine which frequencies are supported by cycling through all P-states
|
|
* and reading back what frequency we are running at for each P-state.
|
|
*/
|
|
static struct cpufreq_frequency_table *
|
|
brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
|
|
{
|
|
struct cpufreq_frequency_table *table;
|
|
unsigned int pstate;
|
|
int i, ret;
|
|
|
|
/* Remember P-state for later */
|
|
ret = brcm_avs_get_pstate(priv, &pstate);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
table = devm_kzalloc(dev, (AVS_PSTATE_MAX + 1) * sizeof(*table),
|
|
GFP_KERNEL);
|
|
if (!table)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
|
|
ret = brcm_avs_set_pstate(priv, i);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
table[i].frequency = brcm_avs_get_frequency(priv->base);
|
|
table[i].driver_data = i;
|
|
}
|
|
table[i].frequency = CPUFREQ_TABLE_END;
|
|
|
|
/* Restore P-state */
|
|
ret = brcm_avs_set_pstate(priv, pstate);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return table;
|
|
}
|
|
|
|
#ifdef CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG
|
|
|
|
#define MANT(x) (unsigned int)(abs((x)) / 1000)
|
|
#define FRAC(x) (unsigned int)(abs((x)) - abs((x)) / 1000 * 1000)
|
|
|
|
static int brcm_avs_debug_show(struct seq_file *s, void *data)
|
|
{
|
|
struct debugfs_data *dbgfs = s->private;
|
|
void __iomem *base;
|
|
u32 val, offset;
|
|
|
|
if (!dbgfs) {
|
|
seq_puts(s, "No device pointer\n");
|
|
return 0;
|
|
}
|
|
|
|
base = dbgfs->priv->base;
|
|
offset = dbgfs->entry->offset;
|
|
val = readl(base + offset);
|
|
switch (dbgfs->entry->format) {
|
|
case DEBUGFS_NORMAL:
|
|
seq_printf(s, "%u\n", val);
|
|
break;
|
|
case DEBUGFS_FLOAT:
|
|
seq_printf(s, "%d.%03d\n", MANT(val), FRAC(val));
|
|
break;
|
|
case DEBUGFS_REV:
|
|
seq_printf(s, "%c.%c.%c.%c\n", (val >> 24 & 0xff),
|
|
(val >> 16 & 0xff), (val >> 8 & 0xff),
|
|
val & 0xff);
|
|
break;
|
|
}
|
|
seq_printf(s, "0x%08x\n", val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#undef MANT
|
|
#undef FRAC
|
|
|
|
static ssize_t brcm_avs_seq_write(struct file *file, const char __user *buf,
|
|
size_t size, loff_t *ppos)
|
|
{
|
|
struct seq_file *s = file->private_data;
|
|
struct debugfs_data *dbgfs = s->private;
|
|
struct private_data *priv = dbgfs->priv;
|
|
void __iomem *base, *avs_intr_base;
|
|
bool use_issue_command = false;
|
|
unsigned long val, offset;
|
|
char str[128];
|
|
int ret;
|
|
char *str_ptr = str;
|
|
|
|
if (size >= sizeof(str))
|
|
return -E2BIG;
|
|
|
|
memset(str, 0, sizeof(str));
|
|
ret = copy_from_user(str, buf, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
base = priv->base;
|
|
avs_intr_base = priv->avs_intr_base;
|
|
offset = dbgfs->entry->offset;
|
|
/*
|
|
* Special case writing to "command" entry only: if the string starts
|
|
* with a 'c', we use the driver's __issue_avs_command() function.
|
|
* Otherwise, we perform a raw write. This should allow testing of raw
|
|
* access as well as using the higher level function. (Raw access
|
|
* doesn't clear the firmware return status after issuing the command.)
|
|
*/
|
|
if (str_ptr[0] == 'c' && offset == AVS_MBOX_COMMAND) {
|
|
use_issue_command = true;
|
|
str_ptr++;
|
|
}
|
|
if (kstrtoul(str_ptr, 0, &val) != 0)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Setting the P-state is a special case. We need to update the CPU
|
|
* frequency we report.
|
|
*/
|
|
if (val == AVS_CMD_SET_PSTATE) {
|
|
struct cpufreq_policy *policy;
|
|
unsigned int pstate;
|
|
|
|
policy = cpufreq_cpu_get(smp_processor_id());
|
|
/* Read back the P-state we are about to set */
|
|
pstate = readl(base + AVS_MBOX_PARAM(0));
|
|
if (use_issue_command) {
|
|
ret = brcm_avs_target_index(policy, pstate);
|
|
return ret ? ret : size;
|
|
}
|
|
policy->cur = policy->freq_table[pstate].frequency;
|
|
}
|
|
|
|
if (use_issue_command) {
|
|
ret = __issue_avs_command(priv, val, false, NULL);
|
|
} else {
|
|
/* Locking here is not perfect, but is only for debug. */
|
|
ret = down_interruptible(&priv->sem);
|
|
if (ret)
|
|
return ret;
|
|
|
|
writel(val, base + offset);
|
|
/* We have to wake up the firmware to process a command. */
|
|
if (offset == AVS_MBOX_COMMAND)
|
|
writel(AVS_CPU_L2_INT_MASK,
|
|
avs_intr_base + AVS_CPU_L2_SET0);
|
|
up(&priv->sem);
|
|
}
|
|
|
|
return ret ? ret : size;
|
|
}
|
|
|
|
static struct debugfs_entry *__find_debugfs_entry(const char *name)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++)
|
|
if (strcasecmp(debugfs_entries[i].name, name) == 0)
|
|
return &debugfs_entries[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int brcm_avs_debug_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct debugfs_data *data;
|
|
fmode_t fmode;
|
|
int ret;
|
|
|
|
/*
|
|
* seq_open(), which is called by single_open(), clears "write" access.
|
|
* We need write access to some files, so we preserve our access mode
|
|
* and restore it.
|
|
*/
|
|
fmode = file->f_mode;
|
|
/*
|
|
* Check access permissions even for root. We don't want to be writing
|
|
* to read-only registers. Access for regular users has already been
|
|
* checked by the VFS layer.
|
|
*/
|
|
if ((fmode & FMODE_WRITER) && !(inode->i_mode & S_IWUSR))
|
|
return -EACCES;
|
|
|
|
data = kmalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
/*
|
|
* We use the same file system operations for all our debug files. To
|
|
* produce specific output, we look up the file name upon opening a
|
|
* debugfs entry and map it to a memory offset. This offset is then used
|
|
* in the generic "show" function to read a specific register.
|
|
*/
|
|
data->entry = __find_debugfs_entry(file->f_path.dentry->d_iname);
|
|
data->priv = inode->i_private;
|
|
|
|
ret = single_open(file, brcm_avs_debug_show, data);
|
|
if (ret)
|
|
kfree(data);
|
|
file->f_mode = fmode;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int brcm_avs_debug_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq_priv = file->private_data;
|
|
struct debugfs_data *data = seq_priv->private;
|
|
|
|
kfree(data);
|
|
return single_release(inode, file);
|
|
}
|
|
|
|
static const struct file_operations brcm_avs_debug_ops = {
|
|
.open = brcm_avs_debug_open,
|
|
.read = seq_read,
|
|
.write = brcm_avs_seq_write,
|
|
.llseek = seq_lseek,
|
|
.release = brcm_avs_debug_release,
|
|
};
|
|
|
|
static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev)
|
|
{
|
|
struct private_data *priv = platform_get_drvdata(pdev);
|
|
struct dentry *dir;
|
|
int i;
|
|
|
|
if (!priv)
|
|
return;
|
|
|
|
dir = debugfs_create_dir(BRCM_AVS_CPUFREQ_NAME, NULL);
|
|
if (IS_ERR_OR_NULL(dir))
|
|
return;
|
|
priv->debugfs = dir;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(debugfs_entries); i++) {
|
|
/*
|
|
* The DEBUGFS_ENTRY macro generates uppercase strings. We
|
|
* convert them to lowercase before creating the debugfs
|
|
* entries.
|
|
*/
|
|
char *entry = __strtolower(debugfs_entries[i].name);
|
|
fmode_t mode = debugfs_entries[i].mode;
|
|
|
|
if (!debugfs_create_file(entry, S_IFREG | S_IRUGO | mode,
|
|
dir, priv, &brcm_avs_debug_ops)) {
|
|
priv->debugfs = NULL;
|
|
debugfs_remove_recursive(dir);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev)
|
|
{
|
|
struct private_data *priv = platform_get_drvdata(pdev);
|
|
|
|
if (priv && priv->debugfs) {
|
|
debugfs_remove_recursive(priv->debugfs);
|
|
priv->debugfs = NULL;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
static void brcm_avs_cpufreq_debug_init(struct platform_device *pdev) {}
|
|
static void brcm_avs_cpufreq_debug_exit(struct platform_device *pdev) {}
|
|
|
|
#endif /* CONFIG_ARM_BRCMSTB_AVS_CPUFREQ_DEBUG */
|
|
|
|
/*
|
|
* To ensure the right firmware is running we need to
|
|
* - check the MAGIC matches what we expect
|
|
* - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
|
|
* We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
|
|
*/
|
|
static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
|
|
{
|
|
u32 magic;
|
|
int rc;
|
|
|
|
rc = brcm_avs_get_pmap(priv, NULL);
|
|
magic = readl(priv->base + AVS_MBOX_MAGIC);
|
|
|
|
return (magic == AVS_FIRMWARE_MAGIC) && (rc != -ENOTSUPP) &&
|
|
(rc != -EINVAL);
|
|
}
|
|
|
|
static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
|
|
{
|
|
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
|
|
struct private_data *priv = policy->driver_data;
|
|
|
|
return brcm_avs_get_frequency(priv->base);
|
|
}
|
|
|
|
static int brcm_avs_target_index(struct cpufreq_policy *policy,
|
|
unsigned int index)
|
|
{
|
|
return brcm_avs_set_pstate(policy->driver_data,
|
|
policy->freq_table[index].driver_data);
|
|
}
|
|
|
|
static int brcm_avs_suspend(struct cpufreq_policy *policy)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
int ret;
|
|
|
|
ret = brcm_avs_get_pmap(priv, &priv->pmap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We can't use the P-state returned by brcm_avs_get_pmap(), since
|
|
* that's the initial P-state from when the P-map was downloaded to the
|
|
* AVS co-processor, not necessarily the P-state we are running at now.
|
|
* So, we get the current P-state explicitly.
|
|
*/
|
|
return brcm_avs_get_pstate(priv, &priv->pmap.state);
|
|
}
|
|
|
|
static int brcm_avs_resume(struct cpufreq_policy *policy)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
int ret;
|
|
|
|
ret = brcm_avs_set_pmap(priv, &priv->pmap);
|
|
if (ret == -EEXIST) {
|
|
struct platform_device *pdev = cpufreq_get_driver_data();
|
|
struct device *dev = &pdev->dev;
|
|
|
|
dev_warn(dev, "PMAP was already set\n");
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* All initialization code that we only want to execute once goes here. Setup
|
|
* code that can be re-tried on every core (if it failed before) can go into
|
|
* brcm_avs_cpufreq_init().
|
|
*/
|
|
static int brcm_avs_prepare_init(struct platform_device *pdev)
|
|
{
|
|
struct private_data *priv;
|
|
struct device *dev;
|
|
int host_irq, ret;
|
|
|
|
dev = &pdev->dev;
|
|
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
priv->dev = dev;
|
|
sema_init(&priv->sem, 1);
|
|
init_completion(&priv->done);
|
|
platform_set_drvdata(pdev, priv);
|
|
|
|
priv->base = __map_region(BRCM_AVS_CPU_DATA);
|
|
if (!priv->base) {
|
|
dev_err(dev, "Couldn't find property %s in device tree.\n",
|
|
BRCM_AVS_CPU_DATA);
|
|
return -ENOENT;
|
|
}
|
|
|
|
priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
|
|
if (!priv->avs_intr_base) {
|
|
dev_err(dev, "Couldn't find property %s in device tree.\n",
|
|
BRCM_AVS_CPU_INTR);
|
|
ret = -ENOENT;
|
|
goto unmap_base;
|
|
}
|
|
|
|
host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
|
|
if (host_irq < 0) {
|
|
dev_err(dev, "Couldn't find interrupt %s -- %d\n",
|
|
BRCM_AVS_HOST_INTR, host_irq);
|
|
ret = host_irq;
|
|
goto unmap_intr_base;
|
|
}
|
|
|
|
ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
|
|
BRCM_AVS_HOST_INTR, priv);
|
|
if (ret) {
|
|
dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
|
|
BRCM_AVS_HOST_INTR, host_irq, ret);
|
|
goto unmap_intr_base;
|
|
}
|
|
|
|
if (brcm_avs_is_firmware_loaded(priv))
|
|
return 0;
|
|
|
|
dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
|
|
ret = -ENODEV;
|
|
|
|
unmap_intr_base:
|
|
iounmap(priv->avs_intr_base);
|
|
unmap_base:
|
|
iounmap(priv->base);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
|
|
{
|
|
struct cpufreq_frequency_table *freq_table;
|
|
struct platform_device *pdev;
|
|
struct private_data *priv;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
pdev = cpufreq_get_driver_data();
|
|
priv = platform_get_drvdata(pdev);
|
|
policy->driver_data = priv;
|
|
dev = &pdev->dev;
|
|
|
|
freq_table = brcm_avs_get_freq_table(dev, priv);
|
|
if (IS_ERR(freq_table)) {
|
|
ret = PTR_ERR(freq_table);
|
|
dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = cpufreq_table_validate_and_show(policy, freq_table);
|
|
if (ret) {
|
|
dev_err(dev, "invalid frequency table: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* All cores share the same clock and thus the same policy. */
|
|
cpumask_setall(policy->cpus);
|
|
|
|
ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
|
|
if (!ret) {
|
|
unsigned int pstate;
|
|
|
|
ret = brcm_avs_get_pstate(priv, &pstate);
|
|
if (!ret) {
|
|
policy->cur = freq_table[pstate].frequency;
|
|
dev_info(dev, "registered\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
dev_err(dev, "couldn't initialize driver (%d)\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
unsigned int pstate;
|
|
|
|
if (brcm_avs_get_pstate(priv, &pstate))
|
|
return sprintf(buf, "<unknown>\n");
|
|
|
|
return sprintf(buf, "%u\n", pstate);
|
|
}
|
|
|
|
static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
struct pmap pmap;
|
|
|
|
if (brcm_avs_get_pmap(priv, &pmap))
|
|
return sprintf(buf, "<unknown>\n");
|
|
|
|
return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
|
|
pmap.mode);
|
|
}
|
|
|
|
static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
|
|
struct private_data *priv = policy->driver_data;
|
|
unsigned int ndiv, pdiv;
|
|
struct pmap pmap;
|
|
|
|
if (brcm_avs_get_pmap(priv, &pmap))
|
|
return sprintf(buf, "<unknown>\n");
|
|
|
|
brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
|
|
brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
|
|
|
|
return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
|
|
pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
|
|
mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
|
|
}
|
|
|
|
static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
|
|
return sprintf(buf, "0x%08lx\n", brcm_avs_get_voltage(priv->base));
|
|
}
|
|
|
|
static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
struct private_data *priv = policy->driver_data;
|
|
|
|
return sprintf(buf, "0x%08lx\n", brcm_avs_get_frequency(priv->base));
|
|
}
|
|
|
|
cpufreq_freq_attr_ro(brcm_avs_pstate);
|
|
cpufreq_freq_attr_ro(brcm_avs_mode);
|
|
cpufreq_freq_attr_ro(brcm_avs_pmap);
|
|
cpufreq_freq_attr_ro(brcm_avs_voltage);
|
|
cpufreq_freq_attr_ro(brcm_avs_frequency);
|
|
|
|
static struct freq_attr *brcm_avs_cpufreq_attr[] = {
|
|
&cpufreq_freq_attr_scaling_available_freqs,
|
|
&brcm_avs_pstate,
|
|
&brcm_avs_mode,
|
|
&brcm_avs_pmap,
|
|
&brcm_avs_voltage,
|
|
&brcm_avs_frequency,
|
|
NULL
|
|
};
|
|
|
|
static struct cpufreq_driver brcm_avs_driver = {
|
|
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
|
.verify = cpufreq_generic_frequency_table_verify,
|
|
.target_index = brcm_avs_target_index,
|
|
.get = brcm_avs_cpufreq_get,
|
|
.suspend = brcm_avs_suspend,
|
|
.resume = brcm_avs_resume,
|
|
.init = brcm_avs_cpufreq_init,
|
|
.attr = brcm_avs_cpufreq_attr,
|
|
.name = BRCM_AVS_CPUFREQ_PREFIX,
|
|
};
|
|
|
|
static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = brcm_avs_prepare_init(pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
brcm_avs_driver.driver_data = pdev;
|
|
ret = cpufreq_register_driver(&brcm_avs_driver);
|
|
if (!ret)
|
|
brcm_avs_cpufreq_debug_init(pdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
|
|
{
|
|
struct private_data *priv;
|
|
int ret;
|
|
|
|
ret = cpufreq_unregister_driver(&brcm_avs_driver);
|
|
if (ret)
|
|
return ret;
|
|
|
|
brcm_avs_cpufreq_debug_exit(pdev);
|
|
|
|
priv = platform_get_drvdata(pdev);
|
|
iounmap(priv->base);
|
|
iounmap(priv->avs_intr_base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id brcm_avs_cpufreq_match[] = {
|
|
{ .compatible = BRCM_AVS_CPU_DATA },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
|
|
|
|
static struct platform_driver brcm_avs_cpufreq_platdrv = {
|
|
.driver = {
|
|
.name = BRCM_AVS_CPUFREQ_NAME,
|
|
.of_match_table = brcm_avs_cpufreq_match,
|
|
},
|
|
.probe = brcm_avs_cpufreq_probe,
|
|
.remove = brcm_avs_cpufreq_remove,
|
|
};
|
|
module_platform_driver(brcm_avs_cpufreq_platdrv);
|
|
|
|
MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
|
|
MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
|
|
MODULE_LICENSE("GPL");
|