mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 00:09:29 +07:00
daa2695fcf
dpm_sysfs_remove() and device_pm_remove() are already called by device_del() on device removal so there is no need to call device_init_wakeup(dev, false) from the driver and it allows to remove the .remove callback. Link: https://lore.kernel.org/r/20191021155806.3625-1-alexandre.belloni@bootlin.com Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
956 lines
28 KiB
C
956 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
|
|
* I2C RTC / Alarm chip
|
|
*
|
|
* Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
|
|
*
|
|
* Detailed datasheet of the chip is available here:
|
|
*
|
|
* http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
|
|
*
|
|
* This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/of.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#define DRV_NAME "rtc-ab-b5ze-s3"
|
|
|
|
/* Control section */
|
|
#define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
|
|
#define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
|
|
#define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
|
|
#define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
|
|
#define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
|
|
#define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
|
|
#define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
|
|
#define ABB5ZES3_REG_CTRL1_CAP BIT(7)
|
|
|
|
#define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
|
|
#define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
|
|
#define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
|
|
#define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
|
|
#define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
|
|
#define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
|
|
#define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
|
|
#define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
|
|
#define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
|
|
|
|
#define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
|
|
#define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
|
|
#define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
|
|
#define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
|
|
#define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
|
|
#define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
|
|
#define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
|
|
#define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
|
|
|
|
#define ABB5ZES3_CTRL_SEC_LEN 3
|
|
|
|
/* RTC section */
|
|
#define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
|
|
#define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
|
|
#define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
|
|
#define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
|
|
#define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
|
|
#define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
|
|
#define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
|
|
#define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
|
|
#define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
|
|
|
|
#define ABB5ZES3_RTC_SEC_LEN 7
|
|
|
|
/* Alarm section (enable bits are all active low) */
|
|
#define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
|
|
#define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
|
|
#define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
|
|
#define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
|
|
#define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
|
|
#define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
|
|
#define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
|
|
#define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
|
|
|
|
#define ABB5ZES3_ALRM_SEC_LEN 4
|
|
|
|
/* Frequency offset section */
|
|
#define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
|
|
#define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
|
|
|
|
/* CLOCKOUT section */
|
|
#define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
|
|
#define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
|
|
#define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
|
|
#define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
|
|
#define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
|
|
#define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
|
|
#define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
|
|
#define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
|
|
#define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
|
|
|
|
/* Timer A Section */
|
|
#define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
|
|
#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
|
|
#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
|
|
#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
|
|
#define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
|
|
|
|
#define ABB5ZES3_TIMA_SEC_LEN 2
|
|
|
|
/* Timer B Section */
|
|
#define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
|
|
#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
|
|
#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
|
|
#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
|
|
#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
|
|
#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
|
|
#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
|
|
#define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
|
|
#define ABB5ZES3_TIMB_SEC_LEN 2
|
|
|
|
#define ABB5ZES3_MEM_MAP_LEN 0x14
|
|
|
|
struct abb5zes3_rtc_data {
|
|
struct rtc_device *rtc;
|
|
struct regmap *regmap;
|
|
|
|
int irq;
|
|
|
|
bool battery_low;
|
|
bool timer_alarm; /* current alarm is via timer A */
|
|
};
|
|
|
|
/*
|
|
* Try and match register bits w/ fixed null values to see whether we
|
|
* are dealing with an ABB5ZES3.
|
|
*/
|
|
static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
|
|
{
|
|
u8 regs[ABB5ZES3_MEM_MAP_LEN];
|
|
static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
|
|
0x80, 0xc0, 0xc0, 0xf8,
|
|
0xe0, 0x00, 0x00, 0x40,
|
|
0x40, 0x78, 0x00, 0x00,
|
|
0xf8, 0x00, 0x88, 0x00 };
|
|
int ret, i;
|
|
|
|
ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
|
|
if (regs[i] & mask[i]) /* check if bits are cleared */
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Clear alarm status bit. */
|
|
static int _abb5zes3_rtc_clear_alarm(struct device *dev)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
|
|
ABB5ZES3_REG_CTRL2_AF, 0);
|
|
if (ret)
|
|
dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Enable or disable alarm (i.e. alarm interrupt generation) */
|
|
static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
|
|
ABB5ZES3_REG_CTRL1_AIE,
|
|
enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
|
|
if (ret)
|
|
dev_err(dev, "%s: writing alarm INT failed (%d)\n",
|
|
__func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Enable or disable timer (watchdog timer A interrupt generation) */
|
|
static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
|
|
ABB5ZES3_REG_CTRL2_WTAIE,
|
|
enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
|
|
if (ret)
|
|
dev_err(dev, "%s: writing timer INT failed (%d)\n",
|
|
__func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Note: we only read, so regmap inner lock protection is sufficient, i.e.
|
|
* we do not need driver's main lock protection.
|
|
*/
|
|
static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
|
|
int ret = 0;
|
|
|
|
/*
|
|
* As we need to read CTRL1 register anyway to access 24/12h
|
|
* mode bit, we do a single bulk read of both control and RTC
|
|
* sections (they are consecutive). This also ease indexing
|
|
* of register values after bulk read.
|
|
*/
|
|
ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
|
|
sizeof(regs));
|
|
if (ret) {
|
|
dev_err(dev, "%s: reading RTC time failed (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* If clock integrity is not guaranteed, do not return a time value */
|
|
if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
|
|
return -ENODATA;
|
|
|
|
tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
|
|
tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
|
|
|
|
if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
|
|
tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
|
|
if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
|
|
tm->tm_hour += 12;
|
|
} else { /* 24hr mode */
|
|
tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
|
|
}
|
|
|
|
tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
|
|
tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
|
|
tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
|
|
tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
|
|
int ret;
|
|
|
|
regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
|
|
regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
|
|
regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
|
|
regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
|
|
regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
|
|
regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
|
|
regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
|
|
|
|
ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
|
|
regs + ABB5ZES3_REG_RTC_SC,
|
|
ABB5ZES3_RTC_SEC_LEN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
|
|
* given number of seconds.
|
|
*/
|
|
static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
|
|
{
|
|
*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
|
|
*timer_a = secs;
|
|
}
|
|
|
|
/*
|
|
* Return current number of seconds in Timer A. As we only use
|
|
* timer A with a 1Hz freq, this is what we expect to have.
|
|
*/
|
|
static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
|
|
{
|
|
if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
|
|
return -EINVAL;
|
|
|
|
*secs = timer_a;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read alarm currently configured via a watchdog timer using timer A. This
|
|
* is done by reading current RTC time and adding remaining timer time.
|
|
*/
|
|
static int _abb5zes3_rtc_read_timer(struct device *dev,
|
|
struct rtc_wkalrm *alarm)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
|
|
u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
|
|
unsigned long rtc_secs;
|
|
unsigned int reg;
|
|
u8 timer_secs;
|
|
int ret;
|
|
|
|
/*
|
|
* Instead of doing two separate calls, because they are consecutive,
|
|
* we grab both clockout register and Timer A section. The latter is
|
|
* used to decide if timer A is enabled (as a watchdog timer).
|
|
*/
|
|
ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
|
|
ABB5ZES3_TIMA_SEC_LEN + 1);
|
|
if (ret) {
|
|
dev_err(dev, "%s: reading Timer A section failed (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* get current time ... */
|
|
ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* ... convert to seconds ... */
|
|
rtc_secs = rtc_tm_to_time64(&rtc_tm);
|
|
|
|
/* ... add remaining timer A time ... */
|
|
ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* ... and convert back. */
|
|
rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
|
|
|
|
ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®);
|
|
if (ret) {
|
|
dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read alarm currently configured via a RTC alarm registers. */
|
|
static int _abb5zes3_rtc_read_alarm(struct device *dev,
|
|
struct rtc_wkalrm *alarm)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
|
|
unsigned long rtc_secs, alarm_secs;
|
|
u8 regs[ABB5ZES3_ALRM_SEC_LEN];
|
|
unsigned int reg;
|
|
int ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
|
|
ABB5ZES3_ALRM_SEC_LEN);
|
|
if (ret) {
|
|
dev_err(dev, "%s: reading alarm section failed (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
alarm_tm->tm_sec = 0;
|
|
alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f);
|
|
alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
|
|
alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
|
|
alarm_tm->tm_wday = -1;
|
|
|
|
/*
|
|
* The alarm section does not store year/month. We use the ones in rtc
|
|
* section as a basis and increment month and then year if needed to get
|
|
* alarm after current time.
|
|
*/
|
|
ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
alarm_tm->tm_year = rtc_tm.tm_year;
|
|
alarm_tm->tm_mon = rtc_tm.tm_mon;
|
|
|
|
rtc_secs = rtc_tm_to_time64(&rtc_tm);
|
|
alarm_secs = rtc_tm_to_time64(alarm_tm);
|
|
|
|
if (alarm_secs < rtc_secs) {
|
|
if (alarm_tm->tm_mon == 11) {
|
|
alarm_tm->tm_mon = 0;
|
|
alarm_tm->tm_year += 1;
|
|
} else {
|
|
alarm_tm->tm_mon += 1;
|
|
}
|
|
}
|
|
|
|
ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®);
|
|
if (ret) {
|
|
dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* As the Alarm mechanism supported by the chip is only accurate to the
|
|
* minute, we use the watchdog timer mechanism provided by timer A
|
|
* (up to 256 seconds w/ a second accuracy) for low alarm values (below
|
|
* 4 minutes). Otherwise, we use the common alarm mechanism provided
|
|
* by the chip. In order for that to work, we keep track of currently
|
|
* configured timer type via 'timer_alarm' flag in our private data
|
|
* structure.
|
|
*/
|
|
static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
if (data->timer_alarm)
|
|
ret = _abb5zes3_rtc_read_timer(dev, alarm);
|
|
else
|
|
ret = _abb5zes3_rtc_read_alarm(dev, alarm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set alarm using chip alarm mechanism. It is only accurate to the
|
|
* minute (not the second). The function expects alarm interrupt to
|
|
* be disabled.
|
|
*/
|
|
static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
struct rtc_time *alarm_tm = &alarm->time;
|
|
u8 regs[ABB5ZES3_ALRM_SEC_LEN];
|
|
struct rtc_time rtc_tm;
|
|
int ret, enable = 1;
|
|
|
|
if (!alarm->enabled) {
|
|
enable = 0;
|
|
} else {
|
|
unsigned long rtc_secs, alarm_secs;
|
|
|
|
/*
|
|
* Chip only support alarms up to one month in the future. Let's
|
|
* return an error if we get something after that limit.
|
|
* Comparison is done by incrementing rtc_tm month field by one
|
|
* and checking alarm value is still below.
|
|
*/
|
|
ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
|
|
rtc_tm.tm_mon = 0;
|
|
rtc_tm.tm_year += 1;
|
|
} else {
|
|
rtc_tm.tm_mon += 1;
|
|
}
|
|
|
|
rtc_secs = rtc_tm_to_time64(&rtc_tm);
|
|
alarm_secs = rtc_tm_to_time64(alarm_tm);
|
|
|
|
if (alarm_secs > rtc_secs) {
|
|
dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
|
|
__func__, ret);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Program all alarm registers but DW one. For each register, setting
|
|
* MSB to 0 enables associated alarm.
|
|
*/
|
|
regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
|
|
regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
|
|
regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
|
|
regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
|
|
|
|
ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
|
|
ABB5ZES3_ALRM_SEC_LEN);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: writing ALARM section failed (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Record currently configured alarm is not a timer */
|
|
data->timer_alarm = 0;
|
|
|
|
/* Enable or disable alarm interrupt generation */
|
|
return _abb5zes3_rtc_update_alarm(dev, enable);
|
|
}
|
|
|
|
/*
|
|
* Set alarm using timer watchdog (via timer A) mechanism. The function expects
|
|
* timer A interrupt to be disabled.
|
|
*/
|
|
static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
|
|
u8 secs)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
u8 regs[ABB5ZES3_TIMA_SEC_LEN];
|
|
u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
|
|
int ret = 0;
|
|
|
|
/* Program given number of seconds to Timer A registers */
|
|
sec_to_timer_a(secs, ®s[0], ®s[1]);
|
|
ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
|
|
ABB5ZES3_TIMA_SEC_LEN);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: writing timer section failed\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
/* Configure Timer A as a watchdog timer */
|
|
ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
|
|
mask, ABB5ZES3_REG_TIM_CLK_TAC1);
|
|
if (ret)
|
|
dev_err(dev, "%s: failed to update timer\n", __func__);
|
|
|
|
/* Record currently configured alarm is a timer */
|
|
data->timer_alarm = 1;
|
|
|
|
/* Enable or disable timer interrupt generation */
|
|
return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
|
|
}
|
|
|
|
/*
|
|
* The chip has an alarm which is only accurate to the minute. In order to
|
|
* handle alarms below that limit, we use the watchdog timer function of
|
|
* timer A. More precisely, the timer method is used for alarms below 240
|
|
* seconds.
|
|
*/
|
|
static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
struct rtc_time *alarm_tm = &alarm->time;
|
|
unsigned long rtc_secs, alarm_secs;
|
|
struct rtc_time rtc_tm;
|
|
int ret;
|
|
|
|
ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
rtc_secs = rtc_tm_to_time64(&rtc_tm);
|
|
alarm_secs = rtc_tm_to_time64(alarm_tm);
|
|
|
|
/* Let's first disable both the alarm and the timer interrupts */
|
|
ret = _abb5zes3_rtc_update_alarm(dev, false);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
|
|
ret);
|
|
return ret;
|
|
}
|
|
ret = _abb5zes3_rtc_update_timer(dev, false);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
data->timer_alarm = 0;
|
|
|
|
/*
|
|
* Let's now configure the alarm; if we are expected to ring in
|
|
* more than 240s, then we setup an alarm. Otherwise, a timer.
|
|
*/
|
|
if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
|
|
ret = _abb5zes3_rtc_set_timer(dev, alarm,
|
|
alarm_secs - rtc_secs);
|
|
else
|
|
ret = _abb5zes3_rtc_set_alarm(dev, alarm);
|
|
|
|
if (ret)
|
|
dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
|
|
ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Enable or disable battery low irq generation */
|
|
static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
|
|
bool enable)
|
|
{
|
|
return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
|
|
ABB5ZES3_REG_CTRL3_BLIE,
|
|
enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
|
|
}
|
|
|
|
/*
|
|
* Check current RTC status and enable/disable what needs to be. Return 0 if
|
|
* everything went ok and a negative value upon error.
|
|
*/
|
|
static int abb5zes3_rtc_check_setup(struct device *dev)
|
|
{
|
|
struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
|
|
struct regmap *regmap = data->regmap;
|
|
unsigned int reg;
|
|
int ret;
|
|
u8 mask;
|
|
|
|
/*
|
|
* By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
|
|
* is disabled here to prevent polluting the interrupt line and
|
|
* uselessly triggering the IRQ handler we install for alarm and battery
|
|
* low events. Note: this is done before clearing int. status below
|
|
* in this function.
|
|
* We also disable all timers and set timer interrupt to permanent (not
|
|
* pulsed).
|
|
*/
|
|
mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
|
|
ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
|
|
ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
|
|
ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
|
|
ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
|
|
ABB5ZES3_REG_TIM_CLK_COF0 |
|
|
ABB5ZES3_REG_TIM_CLK_COF1 |
|
|
ABB5ZES3_REG_TIM_CLK_COF2);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
|
|
* individually by clearing/setting MSB of each associated register. So,
|
|
* we set all alarm enable bits to disable current alarm setting.
|
|
*/
|
|
mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
|
|
ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
|
|
ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
|
|
mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
|
|
ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
|
|
ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
|
|
ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set Control 2 register (timer int. disabled, alarm status cleared).
|
|
* WTAF is read-only and cleared automatically by reading the register.
|
|
*/
|
|
mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
|
|
ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
|
|
ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
|
|
ABB5ZES3_REG_CTRL2_CTAF);
|
|
ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Enable battery low detection function and battery switchover function
|
|
* (standard mode). Disable associated interrupts. Clear battery
|
|
* switchover flag but not battery low flag. The latter is checked
|
|
* later below.
|
|
*/
|
|
mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
|
|
ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
|
|
ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
|
|
ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Check oscillator integrity flag */
|
|
ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
|
|
dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
|
|
dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
|
|
}
|
|
|
|
/*
|
|
* Check battery low flag at startup: this allows reporting battery
|
|
* is low at startup when IRQ line is not connected. Note: we record
|
|
* current status to avoid reenabling this interrupt later in probe
|
|
* function if battery is low.
|
|
*/
|
|
ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to read battery low flag (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
|
|
if (data->battery_low) {
|
|
dev_err(dev, "RTC battery is low; please, consider changing it!\n");
|
|
|
|
ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
|
|
if (ret)
|
|
dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
|
|
__func__, ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
|
|
unsigned int enable)
|
|
{
|
|
struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
|
|
int ret = 0;
|
|
|
|
if (rtc_data->irq) {
|
|
if (rtc_data->timer_alarm)
|
|
ret = _abb5zes3_rtc_update_timer(dev, enable);
|
|
else
|
|
ret = _abb5zes3_rtc_update_alarm(dev, enable);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
|
|
{
|
|
struct i2c_client *client = data;
|
|
struct device *dev = &client->dev;
|
|
struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
|
|
struct rtc_device *rtc = rtc_data->rtc;
|
|
u8 regs[ABB5ZES3_CTRL_SEC_LEN];
|
|
int ret, handled = IRQ_NONE;
|
|
|
|
ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
|
|
ABB5ZES3_CTRL_SEC_LEN);
|
|
if (ret) {
|
|
dev_err(dev, "%s: unable to read control section (%d)!\n",
|
|
__func__, ret);
|
|
return handled;
|
|
}
|
|
|
|
/*
|
|
* Check battery low detection flag and disable battery low interrupt
|
|
* generation if flag is set (interrupt can only be cleared when
|
|
* battery is replaced).
|
|
*/
|
|
if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
|
|
dev_err(dev, "RTC battery is low; please change it!\n");
|
|
|
|
_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
|
|
|
|
handled = IRQ_HANDLED;
|
|
}
|
|
|
|
/* Check alarm flag */
|
|
if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
|
|
dev_dbg(dev, "RTC alarm!\n");
|
|
|
|
rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
|
|
|
|
/* Acknowledge and disable the alarm */
|
|
_abb5zes3_rtc_clear_alarm(dev);
|
|
_abb5zes3_rtc_update_alarm(dev, 0);
|
|
|
|
handled = IRQ_HANDLED;
|
|
}
|
|
|
|
/* Check watchdog Timer A flag */
|
|
if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
|
|
dev_dbg(dev, "RTC timer!\n");
|
|
|
|
rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
|
|
|
|
/*
|
|
* Acknowledge and disable the alarm. Note: WTAF
|
|
* flag had been cleared when reading CTRL2
|
|
*/
|
|
_abb5zes3_rtc_update_timer(dev, 0);
|
|
|
|
rtc_data->timer_alarm = 0;
|
|
|
|
handled = IRQ_HANDLED;
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
static const struct rtc_class_ops rtc_ops = {
|
|
.read_time = _abb5zes3_rtc_read_time,
|
|
.set_time = abb5zes3_rtc_set_time,
|
|
.read_alarm = abb5zes3_rtc_read_alarm,
|
|
.set_alarm = abb5zes3_rtc_set_alarm,
|
|
.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
|
|
};
|
|
|
|
static const struct regmap_config abb5zes3_rtc_regmap_config = {
|
|
.reg_bits = 8,
|
|
.val_bits = 8,
|
|
};
|
|
|
|
static int abb5zes3_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct abb5zes3_rtc_data *data = NULL;
|
|
struct device *dev = &client->dev;
|
|
struct regmap *regmap;
|
|
int ret;
|
|
|
|
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
|
|
I2C_FUNC_SMBUS_BYTE_DATA |
|
|
I2C_FUNC_SMBUS_I2C_BLOCK))
|
|
return -ENODEV;
|
|
|
|
regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
|
|
if (IS_ERR(regmap)) {
|
|
ret = PTR_ERR(regmap);
|
|
dev_err(dev, "%s: regmap allocation failed: %d\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = abb5zes3_i2c_validate_chip(regmap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->regmap = regmap;
|
|
dev_set_drvdata(dev, data);
|
|
|
|
ret = abb5zes3_rtc_check_setup(dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
data->rtc = devm_rtc_allocate_device(dev);
|
|
ret = PTR_ERR_OR_ZERO(data->rtc);
|
|
if (ret) {
|
|
dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (client->irq > 0) {
|
|
ret = devm_request_threaded_irq(dev, client->irq, NULL,
|
|
_abb5zes3_rtc_interrupt,
|
|
IRQF_SHARED | IRQF_ONESHOT,
|
|
DRV_NAME, client);
|
|
if (!ret) {
|
|
device_init_wakeup(dev, true);
|
|
data->irq = client->irq;
|
|
dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
|
|
client->irq);
|
|
} else {
|
|
dev_err(dev, "%s: irq %d unavailable (%d)\n",
|
|
__func__, client->irq, ret);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
data->rtc->ops = &rtc_ops;
|
|
data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
|
|
data->rtc->range_max = RTC_TIMESTAMP_END_2099;
|
|
|
|
/* Enable battery low detection interrupt if battery not already low */
|
|
if (!data->battery_low && data->irq) {
|
|
ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
|
|
if (ret) {
|
|
dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
|
|
__func__, ret);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
ret = rtc_register_device(data->rtc);
|
|
|
|
err:
|
|
if (ret && data->irq)
|
|
device_init_wakeup(dev, false);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int abb5zes3_rtc_suspend(struct device *dev)
|
|
{
|
|
struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
|
|
|
|
if (device_may_wakeup(dev))
|
|
return enable_irq_wake(rtc_data->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int abb5zes3_rtc_resume(struct device *dev)
|
|
{
|
|
struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
|
|
|
|
if (device_may_wakeup(dev))
|
|
return disable_irq_wake(rtc_data->irq);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
|
|
abb5zes3_rtc_resume);
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id abb5zes3_dt_match[] = {
|
|
{ .compatible = "abracon,abb5zes3" },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
|
|
#endif
|
|
|
|
static const struct i2c_device_id abb5zes3_id[] = {
|
|
{ "abb5zes3", 0 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
|
|
|
|
static struct i2c_driver abb5zes3_driver = {
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.pm = &abb5zes3_rtc_pm_ops,
|
|
.of_match_table = of_match_ptr(abb5zes3_dt_match),
|
|
},
|
|
.probe = abb5zes3_probe,
|
|
.id_table = abb5zes3_id,
|
|
};
|
|
module_i2c_driver(abb5zes3_driver);
|
|
|
|
MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
|
|
MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
|
|
MODULE_LICENSE("GPL");
|