mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 04:19:23 +07:00
1d481f1cd8
This is a transliteration of the Intel algorithm implemented using SSE and PCLMULQDQ instructions that resides in the file arch/x86/crypto/crct10dif-pcl-asm_64.S, but simplified to only operate on buffers that are 16 byte aligned (but of any size) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
428 lines
12 KiB
ArmAsm
428 lines
12 KiB
ArmAsm
//
|
|
// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
|
|
//
|
|
// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License version 2 as
|
|
// published by the Free Software Foundation.
|
|
//
|
|
|
|
//
|
|
// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
|
|
//
|
|
// Copyright (c) 2013, Intel Corporation
|
|
//
|
|
// Authors:
|
|
// Erdinc Ozturk <erdinc.ozturk@intel.com>
|
|
// Vinodh Gopal <vinodh.gopal@intel.com>
|
|
// James Guilford <james.guilford@intel.com>
|
|
// Tim Chen <tim.c.chen@linux.intel.com>
|
|
//
|
|
// This software is available to you under a choice of one of two
|
|
// licenses. You may choose to be licensed under the terms of the GNU
|
|
// General Public License (GPL) Version 2, available from the file
|
|
// COPYING in the main directory of this source tree, or the
|
|
// OpenIB.org BSD license below:
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the
|
|
// distribution.
|
|
//
|
|
// * Neither the name of the Intel Corporation nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Function API:
|
|
// UINT16 crc_t10dif_pcl(
|
|
// UINT16 init_crc, //initial CRC value, 16 bits
|
|
// const unsigned char *buf, //buffer pointer to calculate CRC on
|
|
// UINT64 len //buffer length in bytes (64-bit data)
|
|
// );
|
|
//
|
|
// Reference paper titled "Fast CRC Computation for Generic
|
|
// Polynomials Using PCLMULQDQ Instruction"
|
|
// URL: http://www.intel.com/content/dam/www/public/us/en/documents
|
|
// /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
|
|
//
|
|
//
|
|
|
|
#include <linux/linkage.h>
|
|
#include <asm/assembler.h>
|
|
|
|
#ifdef CONFIG_CPU_ENDIAN_BE8
|
|
#define CPU_LE(code...)
|
|
#else
|
|
#define CPU_LE(code...) code
|
|
#endif
|
|
|
|
.text
|
|
.fpu crypto-neon-fp-armv8
|
|
|
|
arg1_low32 .req r0
|
|
arg2 .req r1
|
|
arg3 .req r2
|
|
|
|
qzr .req q13
|
|
|
|
q0l .req d0
|
|
q0h .req d1
|
|
q1l .req d2
|
|
q1h .req d3
|
|
q2l .req d4
|
|
q2h .req d5
|
|
q3l .req d6
|
|
q3h .req d7
|
|
q4l .req d8
|
|
q4h .req d9
|
|
q5l .req d10
|
|
q5h .req d11
|
|
q6l .req d12
|
|
q6h .req d13
|
|
q7l .req d14
|
|
q7h .req d15
|
|
|
|
ENTRY(crc_t10dif_pmull)
|
|
vmov.i8 qzr, #0 // init zero register
|
|
|
|
// adjust the 16-bit initial_crc value, scale it to 32 bits
|
|
lsl arg1_low32, arg1_low32, #16
|
|
|
|
// check if smaller than 256
|
|
cmp arg3, #256
|
|
|
|
// for sizes less than 128, we can't fold 64B at a time...
|
|
blt _less_than_128
|
|
|
|
// load the initial crc value
|
|
// crc value does not need to be byte-reflected, but it needs
|
|
// to be moved to the high part of the register.
|
|
// because data will be byte-reflected and will align with
|
|
// initial crc at correct place.
|
|
vmov s0, arg1_low32 // initial crc
|
|
vext.8 q10, qzr, q0, #4
|
|
|
|
// receive the initial 64B data, xor the initial crc value
|
|
vld1.64 {q0-q1}, [arg2, :128]!
|
|
vld1.64 {q2-q3}, [arg2, :128]!
|
|
vld1.64 {q4-q5}, [arg2, :128]!
|
|
vld1.64 {q6-q7}, [arg2, :128]!
|
|
CPU_LE( vrev64.8 q0, q0 )
|
|
CPU_LE( vrev64.8 q1, q1 )
|
|
CPU_LE( vrev64.8 q2, q2 )
|
|
CPU_LE( vrev64.8 q3, q3 )
|
|
CPU_LE( vrev64.8 q4, q4 )
|
|
CPU_LE( vrev64.8 q5, q5 )
|
|
CPU_LE( vrev64.8 q6, q6 )
|
|
CPU_LE( vrev64.8 q7, q7 )
|
|
|
|
vswp d0, d1
|
|
vswp d2, d3
|
|
vswp d4, d5
|
|
vswp d6, d7
|
|
vswp d8, d9
|
|
vswp d10, d11
|
|
vswp d12, d13
|
|
vswp d14, d15
|
|
|
|
// XOR the initial_crc value
|
|
veor.8 q0, q0, q10
|
|
|
|
adr ip, rk3
|
|
vld1.64 {q10}, [ip, :128] // xmm10 has rk3 and rk4
|
|
|
|
//
|
|
// we subtract 256 instead of 128 to save one instruction from the loop
|
|
//
|
|
sub arg3, arg3, #256
|
|
|
|
// at this section of the code, there is 64*x+y (0<=y<64) bytes of
|
|
// buffer. The _fold_64_B_loop will fold 64B at a time
|
|
// until we have 64+y Bytes of buffer
|
|
|
|
|
|
// fold 64B at a time. This section of the code folds 4 vector
|
|
// registers in parallel
|
|
_fold_64_B_loop:
|
|
|
|
.macro fold64, reg1, reg2
|
|
vld1.64 {q11-q12}, [arg2, :128]!
|
|
|
|
vmull.p64 q8, \reg1\()h, d21
|
|
vmull.p64 \reg1, \reg1\()l, d20
|
|
vmull.p64 q9, \reg2\()h, d21
|
|
vmull.p64 \reg2, \reg2\()l, d20
|
|
|
|
CPU_LE( vrev64.8 q11, q11 )
|
|
CPU_LE( vrev64.8 q12, q12 )
|
|
vswp d22, d23
|
|
vswp d24, d25
|
|
|
|
veor.8 \reg1, \reg1, q8
|
|
veor.8 \reg2, \reg2, q9
|
|
veor.8 \reg1, \reg1, q11
|
|
veor.8 \reg2, \reg2, q12
|
|
.endm
|
|
|
|
fold64 q0, q1
|
|
fold64 q2, q3
|
|
fold64 q4, q5
|
|
fold64 q6, q7
|
|
|
|
subs arg3, arg3, #128
|
|
|
|
// check if there is another 64B in the buffer to be able to fold
|
|
bge _fold_64_B_loop
|
|
|
|
// at this point, the buffer pointer is pointing at the last y Bytes
|
|
// of the buffer the 64B of folded data is in 4 of the vector
|
|
// registers: v0, v1, v2, v3
|
|
|
|
// fold the 8 vector registers to 1 vector register with different
|
|
// constants
|
|
|
|
adr ip, rk9
|
|
vld1.64 {q10}, [ip, :128]!
|
|
|
|
.macro fold16, reg, rk
|
|
vmull.p64 q8, \reg\()l, d20
|
|
vmull.p64 \reg, \reg\()h, d21
|
|
.ifnb \rk
|
|
vld1.64 {q10}, [ip, :128]!
|
|
.endif
|
|
veor.8 q7, q7, q8
|
|
veor.8 q7, q7, \reg
|
|
.endm
|
|
|
|
fold16 q0, rk11
|
|
fold16 q1, rk13
|
|
fold16 q2, rk15
|
|
fold16 q3, rk17
|
|
fold16 q4, rk19
|
|
fold16 q5, rk1
|
|
fold16 q6
|
|
|
|
// instead of 64, we add 48 to the loop counter to save 1 instruction
|
|
// from the loop instead of a cmp instruction, we use the negative
|
|
// flag with the jl instruction
|
|
adds arg3, arg3, #(128-16)
|
|
blt _final_reduction_for_128
|
|
|
|
// now we have 16+y bytes left to reduce. 16 Bytes is in register v7
|
|
// and the rest is in memory. We can fold 16 bytes at a time if y>=16
|
|
// continue folding 16B at a time
|
|
|
|
_16B_reduction_loop:
|
|
vmull.p64 q8, d14, d20
|
|
vmull.p64 q7, d15, d21
|
|
veor.8 q7, q7, q8
|
|
|
|
vld1.64 {q0}, [arg2, :128]!
|
|
CPU_LE( vrev64.8 q0, q0 )
|
|
vswp d0, d1
|
|
veor.8 q7, q7, q0
|
|
subs arg3, arg3, #16
|
|
|
|
// instead of a cmp instruction, we utilize the flags with the
|
|
// jge instruction equivalent of: cmp arg3, 16-16
|
|
// check if there is any more 16B in the buffer to be able to fold
|
|
bge _16B_reduction_loop
|
|
|
|
// now we have 16+z bytes left to reduce, where 0<= z < 16.
|
|
// first, we reduce the data in the xmm7 register
|
|
|
|
_final_reduction_for_128:
|
|
// check if any more data to fold. If not, compute the CRC of
|
|
// the final 128 bits
|
|
adds arg3, arg3, #16
|
|
beq _128_done
|
|
|
|
// here we are getting data that is less than 16 bytes.
|
|
// since we know that there was data before the pointer, we can
|
|
// offset the input pointer before the actual point, to receive
|
|
// exactly 16 bytes. after that the registers need to be adjusted.
|
|
_get_last_two_regs:
|
|
add arg2, arg2, arg3
|
|
sub arg2, arg2, #16
|
|
vld1.64 {q1}, [arg2]
|
|
CPU_LE( vrev64.8 q1, q1 )
|
|
vswp d2, d3
|
|
|
|
// get rid of the extra data that was loaded before
|
|
// load the shift constant
|
|
adr ip, tbl_shf_table + 16
|
|
sub ip, ip, arg3
|
|
vld1.8 {q0}, [ip]
|
|
|
|
// shift v2 to the left by arg3 bytes
|
|
vtbl.8 d4, {d14-d15}, d0
|
|
vtbl.8 d5, {d14-d15}, d1
|
|
|
|
// shift v7 to the right by 16-arg3 bytes
|
|
vmov.i8 q9, #0x80
|
|
veor.8 q0, q0, q9
|
|
vtbl.8 d18, {d14-d15}, d0
|
|
vtbl.8 d19, {d14-d15}, d1
|
|
|
|
// blend
|
|
vshr.s8 q0, q0, #7 // convert to 8-bit mask
|
|
vbsl.8 q0, q2, q1
|
|
|
|
// fold 16 Bytes
|
|
vmull.p64 q8, d18, d20
|
|
vmull.p64 q7, d19, d21
|
|
veor.8 q7, q7, q8
|
|
veor.8 q7, q7, q0
|
|
|
|
_128_done:
|
|
// compute crc of a 128-bit value
|
|
vldr d20, rk5
|
|
vldr d21, rk6 // rk5 and rk6 in xmm10
|
|
|
|
// 64b fold
|
|
vext.8 q0, qzr, q7, #8
|
|
vmull.p64 q7, d15, d20
|
|
veor.8 q7, q7, q0
|
|
|
|
// 32b fold
|
|
vext.8 q0, q7, qzr, #12
|
|
vmov s31, s3
|
|
vmull.p64 q0, d0, d21
|
|
veor.8 q7, q0, q7
|
|
|
|
// barrett reduction
|
|
_barrett:
|
|
vldr d20, rk7
|
|
vldr d21, rk8
|
|
|
|
vmull.p64 q0, d15, d20
|
|
vext.8 q0, qzr, q0, #12
|
|
vmull.p64 q0, d1, d21
|
|
vext.8 q0, qzr, q0, #12
|
|
veor.8 q7, q7, q0
|
|
vmov r0, s29
|
|
|
|
_cleanup:
|
|
// scale the result back to 16 bits
|
|
lsr r0, r0, #16
|
|
bx lr
|
|
|
|
_less_than_128:
|
|
teq arg3, #0
|
|
beq _cleanup
|
|
|
|
vmov.i8 q0, #0
|
|
vmov s3, arg1_low32 // get the initial crc value
|
|
|
|
vld1.64 {q7}, [arg2, :128]!
|
|
CPU_LE( vrev64.8 q7, q7 )
|
|
vswp d14, d15
|
|
veor.8 q7, q7, q0
|
|
|
|
cmp arg3, #16
|
|
beq _128_done // exactly 16 left
|
|
blt _less_than_16_left
|
|
|
|
// now if there is, load the constants
|
|
vldr d20, rk1
|
|
vldr d21, rk2 // rk1 and rk2 in xmm10
|
|
|
|
// check if there is enough buffer to be able to fold 16B at a time
|
|
subs arg3, arg3, #32
|
|
addlt arg3, arg3, #16
|
|
blt _get_last_two_regs
|
|
b _16B_reduction_loop
|
|
|
|
_less_than_16_left:
|
|
// shl r9, 4
|
|
adr ip, tbl_shf_table + 16
|
|
sub ip, ip, arg3
|
|
vld1.8 {q0}, [ip]
|
|
vmov.i8 q9, #0x80
|
|
veor.8 q0, q0, q9
|
|
vtbl.8 d18, {d14-d15}, d0
|
|
vtbl.8 d15, {d14-d15}, d1
|
|
vmov d14, d18
|
|
b _128_done
|
|
ENDPROC(crc_t10dif_pmull)
|
|
|
|
// precomputed constants
|
|
// these constants are precomputed from the poly:
|
|
// 0x8bb70000 (0x8bb7 scaled to 32 bits)
|
|
.align 4
|
|
// Q = 0x18BB70000
|
|
// rk1 = 2^(32*3) mod Q << 32
|
|
// rk2 = 2^(32*5) mod Q << 32
|
|
// rk3 = 2^(32*15) mod Q << 32
|
|
// rk4 = 2^(32*17) mod Q << 32
|
|
// rk5 = 2^(32*3) mod Q << 32
|
|
// rk6 = 2^(32*2) mod Q << 32
|
|
// rk7 = floor(2^64/Q)
|
|
// rk8 = Q
|
|
|
|
rk3: .quad 0x9d9d000000000000
|
|
rk4: .quad 0x7cf5000000000000
|
|
rk5: .quad 0x2d56000000000000
|
|
rk6: .quad 0x1368000000000000
|
|
rk7: .quad 0x00000001f65a57f8
|
|
rk8: .quad 0x000000018bb70000
|
|
rk9: .quad 0xceae000000000000
|
|
rk10: .quad 0xbfd6000000000000
|
|
rk11: .quad 0x1e16000000000000
|
|
rk12: .quad 0x713c000000000000
|
|
rk13: .quad 0xf7f9000000000000
|
|
rk14: .quad 0x80a6000000000000
|
|
rk15: .quad 0x044c000000000000
|
|
rk16: .quad 0xe658000000000000
|
|
rk17: .quad 0xad18000000000000
|
|
rk18: .quad 0xa497000000000000
|
|
rk19: .quad 0x6ee3000000000000
|
|
rk20: .quad 0xe7b5000000000000
|
|
rk1: .quad 0x2d56000000000000
|
|
rk2: .quad 0x06df000000000000
|
|
|
|
tbl_shf_table:
|
|
// use these values for shift constants for the tbl/tbx instruction
|
|
// different alignments result in values as shown:
|
|
// DDQ 0x008f8e8d8c8b8a898887868584838281 # shl 15 (16-1) / shr1
|
|
// DDQ 0x01008f8e8d8c8b8a8988878685848382 # shl 14 (16-3) / shr2
|
|
// DDQ 0x0201008f8e8d8c8b8a89888786858483 # shl 13 (16-4) / shr3
|
|
// DDQ 0x030201008f8e8d8c8b8a898887868584 # shl 12 (16-4) / shr4
|
|
// DDQ 0x04030201008f8e8d8c8b8a8988878685 # shl 11 (16-5) / shr5
|
|
// DDQ 0x0504030201008f8e8d8c8b8a89888786 # shl 10 (16-6) / shr6
|
|
// DDQ 0x060504030201008f8e8d8c8b8a898887 # shl 9 (16-7) / shr7
|
|
// DDQ 0x07060504030201008f8e8d8c8b8a8988 # shl 8 (16-8) / shr8
|
|
// DDQ 0x0807060504030201008f8e8d8c8b8a89 # shl 7 (16-9) / shr9
|
|
// DDQ 0x090807060504030201008f8e8d8c8b8a # shl 6 (16-10) / shr10
|
|
// DDQ 0x0a090807060504030201008f8e8d8c8b # shl 5 (16-11) / shr11
|
|
// DDQ 0x0b0a090807060504030201008f8e8d8c # shl 4 (16-12) / shr12
|
|
// DDQ 0x0c0b0a090807060504030201008f8e8d # shl 3 (16-13) / shr13
|
|
// DDQ 0x0d0c0b0a090807060504030201008f8e # shl 2 (16-14) / shr14
|
|
// DDQ 0x0e0d0c0b0a090807060504030201008f # shl 1 (16-15) / shr15
|
|
|
|
.byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
|
|
.byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
|
|
.byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
|
|
.byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0
|