linux_dsm_epyc7002/arch/arm/mach-exynos4/platsmp.c
Kukjin Kim 4bd0fe1c78 ARM: EXYNOS4: Fix routing timer interrupt to offline CPU
The commit 5dfc54e087
("ARM: GIC: avoid routing interrupts to offline CPUs")
prevents routing interrupts to offline CPUs. But in
case of timer on EXYNOS4, the irq_set_affinity() method
is called in percpu_timer_setup() before CPU1 becomes
online. So this patch fixes routing timer interrupt to
offline CPU.

Reported-by: Changhwan Youn <chaos.youn@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
2011-09-15 13:59:58 +09:00

223 lines
5.3 KiB
C

/* linux/arch/arm/mach-exynos4/platsmp.c
*
* Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* Cloned from linux/arch/arm/mach-vexpress/platsmp.c
*
* Copyright (C) 2002 ARM Ltd.
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/smp.h>
#include <linux/io.h>
#include <asm/cacheflush.h>
#include <asm/hardware/gic.h>
#include <asm/smp_scu.h>
#include <asm/unified.h>
#include <mach/hardware.h>
#include <mach/regs-clock.h>
#include <mach/regs-pmu.h>
extern void exynos4_secondary_startup(void);
#define CPU1_BOOT_REG S5P_VA_SYSRAM
/*
* control for which core is the next to come out of the secondary
* boot "holding pen"
*/
volatile int __cpuinitdata pen_release = -1;
/*
* Write pen_release in a way that is guaranteed to be visible to all
* observers, irrespective of whether they're taking part in coherency
* or not. This is necessary for the hotplug code to work reliably.
*/
static void write_pen_release(int val)
{
pen_release = val;
smp_wmb();
__cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
}
static void __iomem *scu_base_addr(void)
{
return (void __iomem *)(S5P_VA_SCU);
}
static DEFINE_SPINLOCK(boot_lock);
static void __cpuinit exynos4_gic_secondary_init(void)
{
void __iomem *dist_base = S5P_VA_GIC_DIST +
(EXYNOS4_GIC_BANK_OFFSET * smp_processor_id());
void __iomem *cpu_base = S5P_VA_GIC_CPU +
(EXYNOS4_GIC_BANK_OFFSET * smp_processor_id());
int i;
/*
* Deal with the banked PPI and SGI interrupts - disable all
* PPI interrupts, ensure all SGI interrupts are enabled.
*/
__raw_writel(0xffff0000, dist_base + GIC_DIST_ENABLE_CLEAR);
__raw_writel(0x0000ffff, dist_base + GIC_DIST_ENABLE_SET);
/*
* Set priority on PPI and SGI interrupts
*/
for (i = 0; i < 32; i += 4)
__raw_writel(0xa0a0a0a0, dist_base + GIC_DIST_PRI + i * 4 / 4);
__raw_writel(0xf0, cpu_base + GIC_CPU_PRIMASK);
__raw_writel(1, cpu_base + GIC_CPU_CTRL);
}
void __cpuinit platform_secondary_init(unsigned int cpu)
{
/*
* if any interrupts are already enabled for the primary
* core (e.g. timer irq), then they will not have been enabled
* for us: do so
*/
exynos4_gic_secondary_init();
/*
* let the primary processor know we're out of the
* pen, then head off into the C entry point
*/
write_pen_release(-1);
/*
* Synchronise with the boot thread.
*/
spin_lock(&boot_lock);
spin_unlock(&boot_lock);
set_cpu_online(cpu, true);
}
int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
{
unsigned long timeout;
/*
* Set synchronisation state between this boot processor
* and the secondary one
*/
spin_lock(&boot_lock);
/*
* The secondary processor is waiting to be released from
* the holding pen - release it, then wait for it to flag
* that it has been released by resetting pen_release.
*
* Note that "pen_release" is the hardware CPU ID, whereas
* "cpu" is Linux's internal ID.
*/
write_pen_release(cpu);
if (!(__raw_readl(S5P_ARM_CORE1_STATUS) & S5P_CORE_LOCAL_PWR_EN)) {
__raw_writel(S5P_CORE_LOCAL_PWR_EN,
S5P_ARM_CORE1_CONFIGURATION);
timeout = 10;
/* wait max 10 ms until cpu1 is on */
while ((__raw_readl(S5P_ARM_CORE1_STATUS)
& S5P_CORE_LOCAL_PWR_EN) != S5P_CORE_LOCAL_PWR_EN) {
if (timeout-- == 0)
break;
mdelay(1);
}
if (timeout == 0) {
printk(KERN_ERR "cpu1 power enable failed");
spin_unlock(&boot_lock);
return -ETIMEDOUT;
}
}
/*
* Send the secondary CPU a soft interrupt, thereby causing
* the boot monitor to read the system wide flags register,
* and branch to the address found there.
*/
timeout = jiffies + (1 * HZ);
while (time_before(jiffies, timeout)) {
smp_rmb();
__raw_writel(BSYM(virt_to_phys(exynos4_secondary_startup)),
CPU1_BOOT_REG);
gic_raise_softirq(cpumask_of(cpu), 1);
if (pen_release == -1)
break;
udelay(10);
}
/*
* now the secondary core is starting up let it run its
* calibrations, then wait for it to finish
*/
spin_unlock(&boot_lock);
return pen_release != -1 ? -ENOSYS : 0;
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
void __init smp_init_cpus(void)
{
void __iomem *scu_base = scu_base_addr();
unsigned int i, ncores;
ncores = scu_base ? scu_get_core_count(scu_base) : 1;
/* sanity check */
if (ncores > NR_CPUS) {
printk(KERN_WARNING
"EXYNOS4: no. of cores (%d) greater than configured "
"maximum of %d - clipping\n",
ncores, NR_CPUS);
ncores = NR_CPUS;
}
for (i = 0; i < ncores; i++)
set_cpu_possible(i, true);
set_smp_cross_call(gic_raise_softirq);
}
void __init platform_smp_prepare_cpus(unsigned int max_cpus)
{
scu_enable(scu_base_addr());
/*
* Write the address of secondary startup into the
* system-wide flags register. The boot monitor waits
* until it receives a soft interrupt, and then the
* secondary CPU branches to this address.
*/
__raw_writel(BSYM(virt_to_phys(exynos4_secondary_startup)), S5P_VA_SYSRAM);
}