linux_dsm_epyc7002/kernel/power/wakelock.c
Rafael J. Wysocki 11388c87d2 PM / Sleep: Require CAP_BLOCK_SUSPEND to use wake_lock/wake_unlock
Require processes wanting to use the wake_lock/wake_unlock sysfs
files to have the CAP_BLOCK_SUSPEND capability, which also is
required for the eventpoll EPOLLWAKEUP flag to be effective, so that
all interfaces related to blocking autosleep depend on the same
capability.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org
Acked-by: Michael Kerrisk <mtk.man-pages@gmail.com>
2012-07-19 00:00:58 +02:00

267 lines
5.4 KiB
C

/*
* kernel/power/wakelock.c
*
* User space wakeup sources support.
*
* Copyright (C) 2012 Rafael J. Wysocki <rjw@sisk.pl>
*
* This code is based on the analogous interface allowing user space to
* manipulate wakelocks on Android.
*/
#include <linux/capability.h>
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
static DEFINE_MUTEX(wakelocks_lock);
struct wakelock {
char *name;
struct rb_node node;
struct wakeup_source ws;
#ifdef CONFIG_PM_WAKELOCKS_GC
struct list_head lru;
#endif
};
static struct rb_root wakelocks_tree = RB_ROOT;
ssize_t pm_show_wakelocks(char *buf, bool show_active)
{
struct rb_node *node;
struct wakelock *wl;
char *str = buf;
char *end = buf + PAGE_SIZE;
mutex_lock(&wakelocks_lock);
for (node = rb_first(&wakelocks_tree); node; node = rb_next(node)) {
wl = rb_entry(node, struct wakelock, node);
if (wl->ws.active == show_active)
str += scnprintf(str, end - str, "%s ", wl->name);
}
if (str > buf)
str--;
str += scnprintf(str, end - str, "\n");
mutex_unlock(&wakelocks_lock);
return (str - buf);
}
#if CONFIG_PM_WAKELOCKS_LIMIT > 0
static unsigned int number_of_wakelocks;
static inline bool wakelocks_limit_exceeded(void)
{
return number_of_wakelocks > CONFIG_PM_WAKELOCKS_LIMIT;
}
static inline void increment_wakelocks_number(void)
{
number_of_wakelocks++;
}
static inline void decrement_wakelocks_number(void)
{
number_of_wakelocks--;
}
#else /* CONFIG_PM_WAKELOCKS_LIMIT = 0 */
static inline bool wakelocks_limit_exceeded(void) { return false; }
static inline void increment_wakelocks_number(void) {}
static inline void decrement_wakelocks_number(void) {}
#endif /* CONFIG_PM_WAKELOCKS_LIMIT */
#ifdef CONFIG_PM_WAKELOCKS_GC
#define WL_GC_COUNT_MAX 100
#define WL_GC_TIME_SEC 300
static LIST_HEAD(wakelocks_lru_list);
static unsigned int wakelocks_gc_count;
static inline void wakelocks_lru_add(struct wakelock *wl)
{
list_add(&wl->lru, &wakelocks_lru_list);
}
static inline void wakelocks_lru_most_recent(struct wakelock *wl)
{
list_move(&wl->lru, &wakelocks_lru_list);
}
static void wakelocks_gc(void)
{
struct wakelock *wl, *aux;
ktime_t now;
if (++wakelocks_gc_count <= WL_GC_COUNT_MAX)
return;
now = ktime_get();
list_for_each_entry_safe_reverse(wl, aux, &wakelocks_lru_list, lru) {
u64 idle_time_ns;
bool active;
spin_lock_irq(&wl->ws.lock);
idle_time_ns = ktime_to_ns(ktime_sub(now, wl->ws.last_time));
active = wl->ws.active;
spin_unlock_irq(&wl->ws.lock);
if (idle_time_ns < ((u64)WL_GC_TIME_SEC * NSEC_PER_SEC))
break;
if (!active) {
wakeup_source_remove(&wl->ws);
rb_erase(&wl->node, &wakelocks_tree);
list_del(&wl->lru);
kfree(wl->name);
kfree(wl);
decrement_wakelocks_number();
}
}
wakelocks_gc_count = 0;
}
#else /* !CONFIG_PM_WAKELOCKS_GC */
static inline void wakelocks_lru_add(struct wakelock *wl) {}
static inline void wakelocks_lru_most_recent(struct wakelock *wl) {}
static inline void wakelocks_gc(void) {}
#endif /* !CONFIG_PM_WAKELOCKS_GC */
static struct wakelock *wakelock_lookup_add(const char *name, size_t len,
bool add_if_not_found)
{
struct rb_node **node = &wakelocks_tree.rb_node;
struct rb_node *parent = *node;
struct wakelock *wl;
while (*node) {
int diff;
parent = *node;
wl = rb_entry(*node, struct wakelock, node);
diff = strncmp(name, wl->name, len);
if (diff == 0) {
if (wl->name[len])
diff = -1;
else
return wl;
}
if (diff < 0)
node = &(*node)->rb_left;
else
node = &(*node)->rb_right;
}
if (!add_if_not_found)
return ERR_PTR(-EINVAL);
if (wakelocks_limit_exceeded())
return ERR_PTR(-ENOSPC);
/* Not found, we have to add a new one. */
wl = kzalloc(sizeof(*wl), GFP_KERNEL);
if (!wl)
return ERR_PTR(-ENOMEM);
wl->name = kstrndup(name, len, GFP_KERNEL);
if (!wl->name) {
kfree(wl);
return ERR_PTR(-ENOMEM);
}
wl->ws.name = wl->name;
wakeup_source_add(&wl->ws);
rb_link_node(&wl->node, parent, node);
rb_insert_color(&wl->node, &wakelocks_tree);
wakelocks_lru_add(wl);
increment_wakelocks_number();
return wl;
}
int pm_wake_lock(const char *buf)
{
const char *str = buf;
struct wakelock *wl;
u64 timeout_ns = 0;
size_t len;
int ret = 0;
if (!capable(CAP_BLOCK_SUSPEND))
return -EPERM;
while (*str && !isspace(*str))
str++;
len = str - buf;
if (!len)
return -EINVAL;
if (*str && *str != '\n') {
/* Find out if there's a valid timeout string appended. */
ret = kstrtou64(skip_spaces(str), 10, &timeout_ns);
if (ret)
return -EINVAL;
}
mutex_lock(&wakelocks_lock);
wl = wakelock_lookup_add(buf, len, true);
if (IS_ERR(wl)) {
ret = PTR_ERR(wl);
goto out;
}
if (timeout_ns) {
u64 timeout_ms = timeout_ns + NSEC_PER_MSEC - 1;
do_div(timeout_ms, NSEC_PER_MSEC);
__pm_wakeup_event(&wl->ws, timeout_ms);
} else {
__pm_stay_awake(&wl->ws);
}
wakelocks_lru_most_recent(wl);
out:
mutex_unlock(&wakelocks_lock);
return ret;
}
int pm_wake_unlock(const char *buf)
{
struct wakelock *wl;
size_t len;
int ret = 0;
if (!capable(CAP_BLOCK_SUSPEND))
return -EPERM;
len = strlen(buf);
if (!len)
return -EINVAL;
if (buf[len-1] == '\n')
len--;
if (!len)
return -EINVAL;
mutex_lock(&wakelocks_lock);
wl = wakelock_lookup_add(buf, len, false);
if (IS_ERR(wl)) {
ret = PTR_ERR(wl);
goto out;
}
__pm_relax(&wl->ws);
wakelocks_lru_most_recent(wl);
wakelocks_gc();
out:
mutex_unlock(&wakelocks_lock);
return ret;
}