mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 07:56:37 +07:00
9eec50b8bb
HV_X64_MSR_VP_RUNTIME msr used by guest to get "the time the virtual processor consumes running guest code, and the time the associated logical processor spends running hypervisor code on behalf of that guest." Calculation of this time is performed by task_cputime_adjusted() for vcpu task. Necessary to support loading of winhv.sys in guest, which in turn is required to support Windows VMBus. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Reviewed-by: Roman Kagan <rkagan@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: Paolo Bonzini <pbonzini@redhat.com> CC: Gleb Natapov <gleb@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
874 lines
22 KiB
C
874 lines
22 KiB
C
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tsacct_kern.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/static_key.h>
|
|
#include <linux/context_tracking.h>
|
|
#include "sched.h"
|
|
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
|
|
/*
|
|
* There are no locks covering percpu hardirq/softirq time.
|
|
* They are only modified in vtime_account, on corresponding CPU
|
|
* with interrupts disabled. So, writes are safe.
|
|
* They are read and saved off onto struct rq in update_rq_clock().
|
|
* This may result in other CPU reading this CPU's irq time and can
|
|
* race with irq/vtime_account on this CPU. We would either get old
|
|
* or new value with a side effect of accounting a slice of irq time to wrong
|
|
* task when irq is in progress while we read rq->clock. That is a worthy
|
|
* compromise in place of having locks on each irq in account_system_time.
|
|
*/
|
|
DEFINE_PER_CPU(u64, cpu_hardirq_time);
|
|
DEFINE_PER_CPU(u64, cpu_softirq_time);
|
|
|
|
static DEFINE_PER_CPU(u64, irq_start_time);
|
|
static int sched_clock_irqtime;
|
|
|
|
void enable_sched_clock_irqtime(void)
|
|
{
|
|
sched_clock_irqtime = 1;
|
|
}
|
|
|
|
void disable_sched_clock_irqtime(void)
|
|
{
|
|
sched_clock_irqtime = 0;
|
|
}
|
|
|
|
#ifndef CONFIG_64BIT
|
|
DEFINE_PER_CPU(seqcount_t, irq_time_seq);
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
/*
|
|
* Called before incrementing preempt_count on {soft,}irq_enter
|
|
* and before decrementing preempt_count on {soft,}irq_exit.
|
|
*/
|
|
void irqtime_account_irq(struct task_struct *curr)
|
|
{
|
|
unsigned long flags;
|
|
s64 delta;
|
|
int cpu;
|
|
|
|
if (!sched_clock_irqtime)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
|
|
__this_cpu_add(irq_start_time, delta);
|
|
|
|
irq_time_write_begin();
|
|
/*
|
|
* We do not account for softirq time from ksoftirqd here.
|
|
* We want to continue accounting softirq time to ksoftirqd thread
|
|
* in that case, so as not to confuse scheduler with a special task
|
|
* that do not consume any time, but still wants to run.
|
|
*/
|
|
if (hardirq_count())
|
|
__this_cpu_add(cpu_hardirq_time, delta);
|
|
else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
|
|
__this_cpu_add(cpu_softirq_time, delta);
|
|
|
|
irq_time_write_end();
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(irqtime_account_irq);
|
|
|
|
static int irqtime_account_hi_update(void)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
unsigned long flags;
|
|
u64 latest_ns;
|
|
int ret = 0;
|
|
|
|
local_irq_save(flags);
|
|
latest_ns = this_cpu_read(cpu_hardirq_time);
|
|
if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
|
|
ret = 1;
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
static int irqtime_account_si_update(void)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
unsigned long flags;
|
|
u64 latest_ns;
|
|
int ret = 0;
|
|
|
|
local_irq_save(flags);
|
|
latest_ns = this_cpu_read(cpu_softirq_time);
|
|
if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
|
|
ret = 1;
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
#define sched_clock_irqtime (0)
|
|
|
|
#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
static inline void task_group_account_field(struct task_struct *p, int index,
|
|
u64 tmp)
|
|
{
|
|
/*
|
|
* Since all updates are sure to touch the root cgroup, we
|
|
* get ourselves ahead and touch it first. If the root cgroup
|
|
* is the only cgroup, then nothing else should be necessary.
|
|
*
|
|
*/
|
|
__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
|
|
|
|
cpuacct_account_field(p, index, tmp);
|
|
}
|
|
|
|
/*
|
|
* Account user cpu time to a process.
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @cputime: the cpu time spent in user space since the last update
|
|
* @cputime_scaled: cputime scaled by cpu frequency
|
|
*/
|
|
void account_user_time(struct task_struct *p, cputime_t cputime,
|
|
cputime_t cputime_scaled)
|
|
{
|
|
int index;
|
|
|
|
/* Add user time to process. */
|
|
p->utime += cputime;
|
|
p->utimescaled += cputime_scaled;
|
|
account_group_user_time(p, cputime);
|
|
|
|
index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
|
|
|
|
/* Add user time to cpustat. */
|
|
task_group_account_field(p, index, (__force u64) cputime);
|
|
|
|
/* Account for user time used */
|
|
acct_account_cputime(p);
|
|
}
|
|
|
|
/*
|
|
* Account guest cpu time to a process.
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @cputime: the cpu time spent in virtual machine since the last update
|
|
* @cputime_scaled: cputime scaled by cpu frequency
|
|
*/
|
|
static void account_guest_time(struct task_struct *p, cputime_t cputime,
|
|
cputime_t cputime_scaled)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
/* Add guest time to process. */
|
|
p->utime += cputime;
|
|
p->utimescaled += cputime_scaled;
|
|
account_group_user_time(p, cputime);
|
|
p->gtime += cputime;
|
|
|
|
/* Add guest time to cpustat. */
|
|
if (task_nice(p) > 0) {
|
|
cpustat[CPUTIME_NICE] += (__force u64) cputime;
|
|
cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
|
|
} else {
|
|
cpustat[CPUTIME_USER] += (__force u64) cputime;
|
|
cpustat[CPUTIME_GUEST] += (__force u64) cputime;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Account system cpu time to a process and desired cpustat field
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @cputime: the cpu time spent in kernel space since the last update
|
|
* @cputime_scaled: cputime scaled by cpu frequency
|
|
* @target_cputime64: pointer to cpustat field that has to be updated
|
|
*/
|
|
static inline
|
|
void __account_system_time(struct task_struct *p, cputime_t cputime,
|
|
cputime_t cputime_scaled, int index)
|
|
{
|
|
/* Add system time to process. */
|
|
p->stime += cputime;
|
|
p->stimescaled += cputime_scaled;
|
|
account_group_system_time(p, cputime);
|
|
|
|
/* Add system time to cpustat. */
|
|
task_group_account_field(p, index, (__force u64) cputime);
|
|
|
|
/* Account for system time used */
|
|
acct_account_cputime(p);
|
|
}
|
|
|
|
/*
|
|
* Account system cpu time to a process.
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @hardirq_offset: the offset to subtract from hardirq_count()
|
|
* @cputime: the cpu time spent in kernel space since the last update
|
|
* @cputime_scaled: cputime scaled by cpu frequency
|
|
*/
|
|
void account_system_time(struct task_struct *p, int hardirq_offset,
|
|
cputime_t cputime, cputime_t cputime_scaled)
|
|
{
|
|
int index;
|
|
|
|
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
|
|
account_guest_time(p, cputime, cputime_scaled);
|
|
return;
|
|
}
|
|
|
|
if (hardirq_count() - hardirq_offset)
|
|
index = CPUTIME_IRQ;
|
|
else if (in_serving_softirq())
|
|
index = CPUTIME_SOFTIRQ;
|
|
else
|
|
index = CPUTIME_SYSTEM;
|
|
|
|
__account_system_time(p, cputime, cputime_scaled, index);
|
|
}
|
|
|
|
/*
|
|
* Account for involuntary wait time.
|
|
* @cputime: the cpu time spent in involuntary wait
|
|
*/
|
|
void account_steal_time(cputime_t cputime)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
cpustat[CPUTIME_STEAL] += (__force u64) cputime;
|
|
}
|
|
|
|
/*
|
|
* Account for idle time.
|
|
* @cputime: the cpu time spent in idle wait
|
|
*/
|
|
void account_idle_time(cputime_t cputime)
|
|
{
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
struct rq *rq = this_rq();
|
|
|
|
if (atomic_read(&rq->nr_iowait) > 0)
|
|
cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
|
|
else
|
|
cpustat[CPUTIME_IDLE] += (__force u64) cputime;
|
|
}
|
|
|
|
static __always_inline bool steal_account_process_tick(void)
|
|
{
|
|
#ifdef CONFIG_PARAVIRT
|
|
if (static_key_false(¶virt_steal_enabled)) {
|
|
u64 steal;
|
|
cputime_t steal_ct;
|
|
|
|
steal = paravirt_steal_clock(smp_processor_id());
|
|
steal -= this_rq()->prev_steal_time;
|
|
|
|
/*
|
|
* cputime_t may be less precise than nsecs (eg: if it's
|
|
* based on jiffies). Lets cast the result to cputime
|
|
* granularity and account the rest on the next rounds.
|
|
*/
|
|
steal_ct = nsecs_to_cputime(steal);
|
|
this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
|
|
|
|
account_steal_time(steal_ct);
|
|
return steal_ct;
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Accumulate raw cputime values of dead tasks (sig->[us]time) and live
|
|
* tasks (sum on group iteration) belonging to @tsk's group.
|
|
*/
|
|
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
|
|
{
|
|
struct signal_struct *sig = tsk->signal;
|
|
cputime_t utime, stime;
|
|
struct task_struct *t;
|
|
unsigned int seq, nextseq;
|
|
unsigned long flags;
|
|
|
|
rcu_read_lock();
|
|
/* Attempt a lockless read on the first round. */
|
|
nextseq = 0;
|
|
do {
|
|
seq = nextseq;
|
|
flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
|
|
times->utime = sig->utime;
|
|
times->stime = sig->stime;
|
|
times->sum_exec_runtime = sig->sum_sched_runtime;
|
|
|
|
for_each_thread(tsk, t) {
|
|
task_cputime(t, &utime, &stime);
|
|
times->utime += utime;
|
|
times->stime += stime;
|
|
times->sum_exec_runtime += task_sched_runtime(t);
|
|
}
|
|
/* If lockless access failed, take the lock. */
|
|
nextseq = 1;
|
|
} while (need_seqretry(&sig->stats_lock, seq));
|
|
done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
/*
|
|
* Account a tick to a process and cpustat
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @user_tick: is the tick from userspace
|
|
* @rq: the pointer to rq
|
|
*
|
|
* Tick demultiplexing follows the order
|
|
* - pending hardirq update
|
|
* - pending softirq update
|
|
* - user_time
|
|
* - idle_time
|
|
* - system time
|
|
* - check for guest_time
|
|
* - else account as system_time
|
|
*
|
|
* Check for hardirq is done both for system and user time as there is
|
|
* no timer going off while we are on hardirq and hence we may never get an
|
|
* opportunity to update it solely in system time.
|
|
* p->stime and friends are only updated on system time and not on irq
|
|
* softirq as those do not count in task exec_runtime any more.
|
|
*/
|
|
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
|
|
struct rq *rq, int ticks)
|
|
{
|
|
cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
|
|
u64 cputime = (__force u64) cputime_one_jiffy;
|
|
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
|
|
|
if (steal_account_process_tick())
|
|
return;
|
|
|
|
cputime *= ticks;
|
|
scaled *= ticks;
|
|
|
|
if (irqtime_account_hi_update()) {
|
|
cpustat[CPUTIME_IRQ] += cputime;
|
|
} else if (irqtime_account_si_update()) {
|
|
cpustat[CPUTIME_SOFTIRQ] += cputime;
|
|
} else if (this_cpu_ksoftirqd() == p) {
|
|
/*
|
|
* ksoftirqd time do not get accounted in cpu_softirq_time.
|
|
* So, we have to handle it separately here.
|
|
* Also, p->stime needs to be updated for ksoftirqd.
|
|
*/
|
|
__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
|
|
} else if (user_tick) {
|
|
account_user_time(p, cputime, scaled);
|
|
} else if (p == rq->idle) {
|
|
account_idle_time(cputime);
|
|
} else if (p->flags & PF_VCPU) { /* System time or guest time */
|
|
account_guest_time(p, cputime, scaled);
|
|
} else {
|
|
__account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
|
|
}
|
|
}
|
|
|
|
static void irqtime_account_idle_ticks(int ticks)
|
|
{
|
|
struct rq *rq = this_rq();
|
|
|
|
irqtime_account_process_tick(current, 0, rq, ticks);
|
|
}
|
|
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
static inline void irqtime_account_idle_ticks(int ticks) {}
|
|
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
|
|
struct rq *rq, int nr_ticks) {}
|
|
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
/*
|
|
* Use precise platform statistics if available:
|
|
*/
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
|
|
|
|
#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
|
|
void vtime_common_task_switch(struct task_struct *prev)
|
|
{
|
|
if (is_idle_task(prev))
|
|
vtime_account_idle(prev);
|
|
else
|
|
vtime_account_system(prev);
|
|
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
|
|
vtime_account_user(prev);
|
|
#endif
|
|
arch_vtime_task_switch(prev);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Archs that account the whole time spent in the idle task
|
|
* (outside irq) as idle time can rely on this and just implement
|
|
* vtime_account_system() and vtime_account_idle(). Archs that
|
|
* have other meaning of the idle time (s390 only includes the
|
|
* time spent by the CPU when it's in low power mode) must override
|
|
* vtime_account().
|
|
*/
|
|
#ifndef __ARCH_HAS_VTIME_ACCOUNT
|
|
void vtime_common_account_irq_enter(struct task_struct *tsk)
|
|
{
|
|
if (!in_interrupt()) {
|
|
/*
|
|
* If we interrupted user, context_tracking_in_user()
|
|
* is 1 because the context tracking don't hook
|
|
* on irq entry/exit. This way we know if
|
|
* we need to flush user time on kernel entry.
|
|
*/
|
|
if (context_tracking_in_user()) {
|
|
vtime_account_user(tsk);
|
|
return;
|
|
}
|
|
|
|
if (is_idle_task(tsk)) {
|
|
vtime_account_idle(tsk);
|
|
return;
|
|
}
|
|
}
|
|
vtime_account_system(tsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
|
|
#endif /* __ARCH_HAS_VTIME_ACCOUNT */
|
|
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
|
|
|
|
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
|
|
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
|
|
{
|
|
*ut = p->utime;
|
|
*st = p->stime;
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
|
|
|
|
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
|
|
{
|
|
struct task_cputime cputime;
|
|
|
|
thread_group_cputime(p, &cputime);
|
|
|
|
*ut = cputime.utime;
|
|
*st = cputime.stime;
|
|
}
|
|
#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
|
|
/*
|
|
* Account a single tick of cpu time.
|
|
* @p: the process that the cpu time gets accounted to
|
|
* @user_tick: indicates if the tick is a user or a system tick
|
|
*/
|
|
void account_process_tick(struct task_struct *p, int user_tick)
|
|
{
|
|
cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
|
|
struct rq *rq = this_rq();
|
|
|
|
if (vtime_accounting_enabled())
|
|
return;
|
|
|
|
if (sched_clock_irqtime) {
|
|
irqtime_account_process_tick(p, user_tick, rq, 1);
|
|
return;
|
|
}
|
|
|
|
if (steal_account_process_tick())
|
|
return;
|
|
|
|
if (user_tick)
|
|
account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
|
|
else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
|
|
account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
|
|
one_jiffy_scaled);
|
|
else
|
|
account_idle_time(cputime_one_jiffy);
|
|
}
|
|
|
|
/*
|
|
* Account multiple ticks of steal time.
|
|
* @p: the process from which the cpu time has been stolen
|
|
* @ticks: number of stolen ticks
|
|
*/
|
|
void account_steal_ticks(unsigned long ticks)
|
|
{
|
|
account_steal_time(jiffies_to_cputime(ticks));
|
|
}
|
|
|
|
/*
|
|
* Account multiple ticks of idle time.
|
|
* @ticks: number of stolen ticks
|
|
*/
|
|
void account_idle_ticks(unsigned long ticks)
|
|
{
|
|
|
|
if (sched_clock_irqtime) {
|
|
irqtime_account_idle_ticks(ticks);
|
|
return;
|
|
}
|
|
|
|
account_idle_time(jiffies_to_cputime(ticks));
|
|
}
|
|
|
|
/*
|
|
* Perform (stime * rtime) / total, but avoid multiplication overflow by
|
|
* loosing precision when the numbers are big.
|
|
*/
|
|
static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
|
|
{
|
|
u64 scaled;
|
|
|
|
for (;;) {
|
|
/* Make sure "rtime" is the bigger of stime/rtime */
|
|
if (stime > rtime)
|
|
swap(rtime, stime);
|
|
|
|
/* Make sure 'total' fits in 32 bits */
|
|
if (total >> 32)
|
|
goto drop_precision;
|
|
|
|
/* Does rtime (and thus stime) fit in 32 bits? */
|
|
if (!(rtime >> 32))
|
|
break;
|
|
|
|
/* Can we just balance rtime/stime rather than dropping bits? */
|
|
if (stime >> 31)
|
|
goto drop_precision;
|
|
|
|
/* We can grow stime and shrink rtime and try to make them both fit */
|
|
stime <<= 1;
|
|
rtime >>= 1;
|
|
continue;
|
|
|
|
drop_precision:
|
|
/* We drop from rtime, it has more bits than stime */
|
|
rtime >>= 1;
|
|
total >>= 1;
|
|
}
|
|
|
|
/*
|
|
* Make sure gcc understands that this is a 32x32->64 multiply,
|
|
* followed by a 64/32->64 divide.
|
|
*/
|
|
scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
|
|
return (__force cputime_t) scaled;
|
|
}
|
|
|
|
/*
|
|
* Adjust tick based cputime random precision against scheduler runtime
|
|
* accounting.
|
|
*
|
|
* Tick based cputime accounting depend on random scheduling timeslices of a
|
|
* task to be interrupted or not by the timer. Depending on these
|
|
* circumstances, the number of these interrupts may be over or
|
|
* under-optimistic, matching the real user and system cputime with a variable
|
|
* precision.
|
|
*
|
|
* Fix this by scaling these tick based values against the total runtime
|
|
* accounted by the CFS scheduler.
|
|
*
|
|
* This code provides the following guarantees:
|
|
*
|
|
* stime + utime == rtime
|
|
* stime_i+1 >= stime_i, utime_i+1 >= utime_i
|
|
*
|
|
* Assuming that rtime_i+1 >= rtime_i.
|
|
*/
|
|
static void cputime_adjust(struct task_cputime *curr,
|
|
struct prev_cputime *prev,
|
|
cputime_t *ut, cputime_t *st)
|
|
{
|
|
cputime_t rtime, stime, utime;
|
|
unsigned long flags;
|
|
|
|
/* Serialize concurrent callers such that we can honour our guarantees */
|
|
raw_spin_lock_irqsave(&prev->lock, flags);
|
|
rtime = nsecs_to_cputime(curr->sum_exec_runtime);
|
|
|
|
/*
|
|
* This is possible under two circumstances:
|
|
* - rtime isn't monotonic after all (a bug);
|
|
* - we got reordered by the lock.
|
|
*
|
|
* In both cases this acts as a filter such that the rest of the code
|
|
* can assume it is monotonic regardless of anything else.
|
|
*/
|
|
if (prev->stime + prev->utime >= rtime)
|
|
goto out;
|
|
|
|
stime = curr->stime;
|
|
utime = curr->utime;
|
|
|
|
if (utime == 0) {
|
|
stime = rtime;
|
|
goto update;
|
|
}
|
|
|
|
if (stime == 0) {
|
|
utime = rtime;
|
|
goto update;
|
|
}
|
|
|
|
stime = scale_stime((__force u64)stime, (__force u64)rtime,
|
|
(__force u64)(stime + utime));
|
|
|
|
/*
|
|
* Make sure stime doesn't go backwards; this preserves monotonicity
|
|
* for utime because rtime is monotonic.
|
|
*
|
|
* utime_i+1 = rtime_i+1 - stime_i
|
|
* = rtime_i+1 - (rtime_i - utime_i)
|
|
* = (rtime_i+1 - rtime_i) + utime_i
|
|
* >= utime_i
|
|
*/
|
|
if (stime < prev->stime)
|
|
stime = prev->stime;
|
|
utime = rtime - stime;
|
|
|
|
/*
|
|
* Make sure utime doesn't go backwards; this still preserves
|
|
* monotonicity for stime, analogous argument to above.
|
|
*/
|
|
if (utime < prev->utime) {
|
|
utime = prev->utime;
|
|
stime = rtime - utime;
|
|
}
|
|
|
|
update:
|
|
prev->stime = stime;
|
|
prev->utime = utime;
|
|
out:
|
|
*ut = prev->utime;
|
|
*st = prev->stime;
|
|
raw_spin_unlock_irqrestore(&prev->lock, flags);
|
|
}
|
|
|
|
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
|
|
{
|
|
struct task_cputime cputime = {
|
|
.sum_exec_runtime = p->se.sum_exec_runtime,
|
|
};
|
|
|
|
task_cputime(p, &cputime.utime, &cputime.stime);
|
|
cputime_adjust(&cputime, &p->prev_cputime, ut, st);
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_cputime_adjusted);
|
|
|
|
void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
|
|
{
|
|
struct task_cputime cputime;
|
|
|
|
thread_group_cputime(p, &cputime);
|
|
cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
|
|
}
|
|
#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
|
|
|
|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
|
|
static unsigned long long vtime_delta(struct task_struct *tsk)
|
|
{
|
|
unsigned long long clock;
|
|
|
|
clock = local_clock();
|
|
if (clock < tsk->vtime_snap)
|
|
return 0;
|
|
|
|
return clock - tsk->vtime_snap;
|
|
}
|
|
|
|
static cputime_t get_vtime_delta(struct task_struct *tsk)
|
|
{
|
|
unsigned long long delta = vtime_delta(tsk);
|
|
|
|
WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
|
|
tsk->vtime_snap += delta;
|
|
|
|
/* CHECKME: always safe to convert nsecs to cputime? */
|
|
return nsecs_to_cputime(delta);
|
|
}
|
|
|
|
static void __vtime_account_system(struct task_struct *tsk)
|
|
{
|
|
cputime_t delta_cpu = get_vtime_delta(tsk);
|
|
|
|
account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
|
|
}
|
|
|
|
void vtime_account_system(struct task_struct *tsk)
|
|
{
|
|
write_seqlock(&tsk->vtime_seqlock);
|
|
__vtime_account_system(tsk);
|
|
write_sequnlock(&tsk->vtime_seqlock);
|
|
}
|
|
|
|
void vtime_gen_account_irq_exit(struct task_struct *tsk)
|
|
{
|
|
write_seqlock(&tsk->vtime_seqlock);
|
|
__vtime_account_system(tsk);
|
|
if (context_tracking_in_user())
|
|
tsk->vtime_snap_whence = VTIME_USER;
|
|
write_sequnlock(&tsk->vtime_seqlock);
|
|
}
|
|
|
|
void vtime_account_user(struct task_struct *tsk)
|
|
{
|
|
cputime_t delta_cpu;
|
|
|
|
write_seqlock(&tsk->vtime_seqlock);
|
|
delta_cpu = get_vtime_delta(tsk);
|
|
tsk->vtime_snap_whence = VTIME_SYS;
|
|
account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
|
|
write_sequnlock(&tsk->vtime_seqlock);
|
|
}
|
|
|
|
void vtime_user_enter(struct task_struct *tsk)
|
|
{
|
|
write_seqlock(&tsk->vtime_seqlock);
|
|
__vtime_account_system(tsk);
|
|
tsk->vtime_snap_whence = VTIME_USER;
|
|
write_sequnlock(&tsk->vtime_seqlock);
|
|
}
|
|
|
|
void vtime_guest_enter(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* The flags must be updated under the lock with
|
|
* the vtime_snap flush and update.
|
|
* That enforces a right ordering and update sequence
|
|
* synchronization against the reader (task_gtime())
|
|
* that can thus safely catch up with a tickless delta.
|
|
*/
|
|
write_seqlock(&tsk->vtime_seqlock);
|
|
__vtime_account_system(tsk);
|
|
current->flags |= PF_VCPU;
|
|
write_sequnlock(&tsk->vtime_seqlock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vtime_guest_enter);
|
|
|
|
void vtime_guest_exit(struct task_struct *tsk)
|
|
{
|
|
write_seqlock(&tsk->vtime_seqlock);
|
|
__vtime_account_system(tsk);
|
|
current->flags &= ~PF_VCPU;
|
|
write_sequnlock(&tsk->vtime_seqlock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vtime_guest_exit);
|
|
|
|
void vtime_account_idle(struct task_struct *tsk)
|
|
{
|
|
cputime_t delta_cpu = get_vtime_delta(tsk);
|
|
|
|
account_idle_time(delta_cpu);
|
|
}
|
|
|
|
void arch_vtime_task_switch(struct task_struct *prev)
|
|
{
|
|
write_seqlock(&prev->vtime_seqlock);
|
|
prev->vtime_snap_whence = VTIME_SLEEPING;
|
|
write_sequnlock(&prev->vtime_seqlock);
|
|
|
|
write_seqlock(¤t->vtime_seqlock);
|
|
current->vtime_snap_whence = VTIME_SYS;
|
|
current->vtime_snap = sched_clock_cpu(smp_processor_id());
|
|
write_sequnlock(¤t->vtime_seqlock);
|
|
}
|
|
|
|
void vtime_init_idle(struct task_struct *t, int cpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
write_seqlock_irqsave(&t->vtime_seqlock, flags);
|
|
t->vtime_snap_whence = VTIME_SYS;
|
|
t->vtime_snap = sched_clock_cpu(cpu);
|
|
write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
|
|
}
|
|
|
|
cputime_t task_gtime(struct task_struct *t)
|
|
{
|
|
unsigned int seq;
|
|
cputime_t gtime;
|
|
|
|
do {
|
|
seq = read_seqbegin(&t->vtime_seqlock);
|
|
|
|
gtime = t->gtime;
|
|
if (t->flags & PF_VCPU)
|
|
gtime += vtime_delta(t);
|
|
|
|
} while (read_seqretry(&t->vtime_seqlock, seq));
|
|
|
|
return gtime;
|
|
}
|
|
|
|
/*
|
|
* Fetch cputime raw values from fields of task_struct and
|
|
* add up the pending nohz execution time since the last
|
|
* cputime snapshot.
|
|
*/
|
|
static void
|
|
fetch_task_cputime(struct task_struct *t,
|
|
cputime_t *u_dst, cputime_t *s_dst,
|
|
cputime_t *u_src, cputime_t *s_src,
|
|
cputime_t *udelta, cputime_t *sdelta)
|
|
{
|
|
unsigned int seq;
|
|
unsigned long long delta;
|
|
|
|
do {
|
|
*udelta = 0;
|
|
*sdelta = 0;
|
|
|
|
seq = read_seqbegin(&t->vtime_seqlock);
|
|
|
|
if (u_dst)
|
|
*u_dst = *u_src;
|
|
if (s_dst)
|
|
*s_dst = *s_src;
|
|
|
|
/* Task is sleeping, nothing to add */
|
|
if (t->vtime_snap_whence == VTIME_SLEEPING ||
|
|
is_idle_task(t))
|
|
continue;
|
|
|
|
delta = vtime_delta(t);
|
|
|
|
/*
|
|
* Task runs either in user or kernel space, add pending nohz time to
|
|
* the right place.
|
|
*/
|
|
if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
|
|
*udelta = delta;
|
|
} else {
|
|
if (t->vtime_snap_whence == VTIME_SYS)
|
|
*sdelta = delta;
|
|
}
|
|
} while (read_seqretry(&t->vtime_seqlock, seq));
|
|
}
|
|
|
|
|
|
void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
|
|
{
|
|
cputime_t udelta, sdelta;
|
|
|
|
fetch_task_cputime(t, utime, stime, &t->utime,
|
|
&t->stime, &udelta, &sdelta);
|
|
if (utime)
|
|
*utime += udelta;
|
|
if (stime)
|
|
*stime += sdelta;
|
|
}
|
|
|
|
void task_cputime_scaled(struct task_struct *t,
|
|
cputime_t *utimescaled, cputime_t *stimescaled)
|
|
{
|
|
cputime_t udelta, sdelta;
|
|
|
|
fetch_task_cputime(t, utimescaled, stimescaled,
|
|
&t->utimescaled, &t->stimescaled, &udelta, &sdelta);
|
|
if (utimescaled)
|
|
*utimescaled += cputime_to_scaled(udelta);
|
|
if (stimescaled)
|
|
*stimescaled += cputime_to_scaled(sdelta);
|
|
}
|
|
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
|