mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 12:26:46 +07:00
3f7991357f
sc.c:303:26: warning: incorrect type in return expression (different address spaces) csc.c:188:27: warning: incorrect type in return expression (different address spaces) Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
308 lines
7.2 KiB
C
308 lines
7.2 KiB
C
/*
|
|
* Scaler library
|
|
*
|
|
* Copyright (c) 2013 Texas Instruments Inc.
|
|
*
|
|
* David Griego, <dagriego@biglakesoftware.com>
|
|
* Dale Farnsworth, <dale@farnsworth.org>
|
|
* Archit Taneja, <archit@ti.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "sc.h"
|
|
#include "sc_coeff.h"
|
|
|
|
void sc_dump_regs(struct sc_data *sc)
|
|
{
|
|
struct device *dev = &sc->pdev->dev;
|
|
|
|
#define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, \
|
|
ioread32(sc->base + CFG_##r))
|
|
|
|
DUMPREG(SC0);
|
|
DUMPREG(SC1);
|
|
DUMPREG(SC2);
|
|
DUMPREG(SC3);
|
|
DUMPREG(SC4);
|
|
DUMPREG(SC5);
|
|
DUMPREG(SC6);
|
|
DUMPREG(SC8);
|
|
DUMPREG(SC9);
|
|
DUMPREG(SC10);
|
|
DUMPREG(SC11);
|
|
DUMPREG(SC12);
|
|
DUMPREG(SC13);
|
|
DUMPREG(SC17);
|
|
DUMPREG(SC18);
|
|
DUMPREG(SC19);
|
|
DUMPREG(SC20);
|
|
DUMPREG(SC21);
|
|
DUMPREG(SC22);
|
|
DUMPREG(SC23);
|
|
DUMPREG(SC24);
|
|
DUMPREG(SC25);
|
|
|
|
#undef DUMPREG
|
|
}
|
|
|
|
/*
|
|
* set the horizontal scaler coefficients according to the ratio of output to
|
|
* input widths, after accounting for up to two levels of decimation
|
|
*/
|
|
void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
|
|
unsigned int dst_w)
|
|
{
|
|
int sixteenths;
|
|
int idx;
|
|
int i, j;
|
|
u16 *coeff_h = addr;
|
|
const u16 *cp;
|
|
|
|
if (dst_w > src_w) {
|
|
idx = HS_UP_SCALE;
|
|
} else {
|
|
if ((dst_w << 1) < src_w)
|
|
dst_w <<= 1; /* first level decimation */
|
|
if ((dst_w << 1) < src_w)
|
|
dst_w <<= 1; /* second level decimation */
|
|
|
|
if (dst_w == src_w) {
|
|
idx = HS_LE_16_16_SCALE;
|
|
} else {
|
|
sixteenths = (dst_w << 4) / src_w;
|
|
if (sixteenths < 8)
|
|
sixteenths = 8;
|
|
idx = HS_LT_9_16_SCALE + sixteenths - 8;
|
|
}
|
|
}
|
|
|
|
if (idx == sc->hs_index)
|
|
return;
|
|
|
|
cp = scaler_hs_coeffs[idx];
|
|
|
|
for (i = 0; i < SC_NUM_PHASES * 2; i++) {
|
|
for (j = 0; j < SC_H_NUM_TAPS; j++)
|
|
*coeff_h++ = *cp++;
|
|
/*
|
|
* for each phase, the scaler expects space for 8 coefficients
|
|
* in it's memory. For the horizontal scaler, we copy the first
|
|
* 7 coefficients and skip the last slot to move to the next
|
|
* row to hold coefficients for the next phase
|
|
*/
|
|
coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS;
|
|
}
|
|
|
|
sc->hs_index = idx;
|
|
|
|
sc->load_coeff_h = true;
|
|
}
|
|
|
|
/*
|
|
* set the vertical scaler coefficients according to the ratio of output to
|
|
* input heights
|
|
*/
|
|
void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
|
|
unsigned int dst_h)
|
|
{
|
|
int sixteenths;
|
|
int idx;
|
|
int i, j;
|
|
u16 *coeff_v = addr;
|
|
const u16 *cp;
|
|
|
|
if (dst_h > src_h) {
|
|
idx = VS_UP_SCALE;
|
|
} else if (dst_h == src_h) {
|
|
idx = VS_1_TO_1_SCALE;
|
|
} else {
|
|
sixteenths = (dst_h << 4) / src_h;
|
|
if (sixteenths < 8)
|
|
sixteenths = 8;
|
|
idx = VS_LT_9_16_SCALE + sixteenths - 8;
|
|
}
|
|
|
|
if (idx == sc->vs_index)
|
|
return;
|
|
|
|
cp = scaler_vs_coeffs[idx];
|
|
|
|
for (i = 0; i < SC_NUM_PHASES * 2; i++) {
|
|
for (j = 0; j < SC_V_NUM_TAPS; j++)
|
|
*coeff_v++ = *cp++;
|
|
/*
|
|
* for the vertical scaler, we copy the first 5 coefficients and
|
|
* skip the last 3 slots to move to the next row to hold
|
|
* coefficients for the next phase
|
|
*/
|
|
coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS;
|
|
}
|
|
|
|
sc->vs_index = idx;
|
|
sc->load_coeff_v = true;
|
|
}
|
|
|
|
void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
|
|
u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
|
|
unsigned int dst_w, unsigned int dst_h)
|
|
{
|
|
struct device *dev = &sc->pdev->dev;
|
|
u32 val;
|
|
int dcm_x, dcm_shift;
|
|
bool use_rav;
|
|
unsigned long lltmp;
|
|
u32 lin_acc_inc, lin_acc_inc_u;
|
|
u32 col_acc_offset;
|
|
u16 factor = 0;
|
|
int row_acc_init_rav = 0, row_acc_init_rav_b = 0;
|
|
u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0;
|
|
/*
|
|
* location of SC register in payload memory with respect to the first
|
|
* register in the mmr address data block
|
|
*/
|
|
u32 *sc_reg9 = sc_reg8 + 1;
|
|
u32 *sc_reg12 = sc_reg8 + 4;
|
|
u32 *sc_reg13 = sc_reg8 + 5;
|
|
u32 *sc_reg24 = sc_reg17 + 7;
|
|
|
|
val = sc_reg0[0];
|
|
|
|
/* clear all the features(they may get enabled elsewhere later) */
|
|
val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP |
|
|
CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS |
|
|
CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS |
|
|
CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR);
|
|
|
|
if (src_w == dst_w && src_h == dst_h) {
|
|
val |= CFG_SC_BYPASS;
|
|
sc_reg0[0] = val;
|
|
return;
|
|
}
|
|
|
|
/* we only support linear scaling for now */
|
|
val |= CFG_LINEAR;
|
|
|
|
/* configure horizontal scaler */
|
|
|
|
/* enable 2X or 4X decimation */
|
|
dcm_x = src_w / dst_w;
|
|
if (dcm_x > 4) {
|
|
val |= CFG_DCM_4X;
|
|
dcm_shift = 2;
|
|
} else if (dcm_x > 2) {
|
|
val |= CFG_DCM_2X;
|
|
dcm_shift = 1;
|
|
} else {
|
|
dcm_shift = 0;
|
|
}
|
|
|
|
lltmp = dst_w - 1;
|
|
lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp);
|
|
lin_acc_inc_u = 0;
|
|
col_acc_offset = 0;
|
|
|
|
dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n",
|
|
src_w, dst_w, dcm_shift == 2 ? "4x" :
|
|
(dcm_shift == 1 ? "2x" : "none"), lin_acc_inc);
|
|
|
|
/* configure vertical scaler */
|
|
|
|
/* use RAV for vertical scaler if vertical downscaling is > 4x */
|
|
if (dst_h < (src_h >> 2)) {
|
|
use_rav = true;
|
|
val |= CFG_USE_RAV;
|
|
} else {
|
|
use_rav = false;
|
|
}
|
|
|
|
if (use_rav) {
|
|
/* use RAV */
|
|
factor = (u16) ((dst_h << 10) / src_h);
|
|
|
|
row_acc_init_rav = factor + ((1 + factor) >> 1);
|
|
if (row_acc_init_rav >= 1024)
|
|
row_acc_init_rav -= 1024;
|
|
|
|
row_acc_init_rav_b = row_acc_init_rav +
|
|
(1 + (row_acc_init_rav >> 1)) -
|
|
(1024 >> 1);
|
|
|
|
if (row_acc_init_rav_b < 0) {
|
|
row_acc_init_rav_b += row_acc_init_rav;
|
|
row_acc_init_rav *= 2;
|
|
}
|
|
|
|
dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n",
|
|
src_h, dst_h, factor, row_acc_init_rav,
|
|
row_acc_init_rav_b);
|
|
} else {
|
|
/* use polyphase */
|
|
row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1);
|
|
row_acc_offset = 0;
|
|
row_acc_offset_b = 0;
|
|
|
|
dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n",
|
|
src_h, dst_h, row_acc_inc);
|
|
}
|
|
|
|
|
|
sc_reg0[0] = val;
|
|
sc_reg0[1] = row_acc_inc;
|
|
sc_reg0[2] = row_acc_offset;
|
|
sc_reg0[3] = row_acc_offset_b;
|
|
|
|
sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) <<
|
|
CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) |
|
|
(dst_h << CFG_TAR_H_SHIFT);
|
|
|
|
sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT);
|
|
|
|
sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) |
|
|
(row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT);
|
|
|
|
*sc_reg9 = lin_acc_inc;
|
|
|
|
*sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT;
|
|
|
|
*sc_reg13 = factor;
|
|
|
|
*sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT);
|
|
}
|
|
|
|
struct sc_data *sc_create(struct platform_device *pdev)
|
|
{
|
|
struct sc_data *sc;
|
|
|
|
dev_dbg(&pdev->dev, "sc_create\n");
|
|
|
|
sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL);
|
|
if (!sc) {
|
|
dev_err(&pdev->dev, "couldn't alloc sc_data\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
sc->pdev = pdev;
|
|
|
|
sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sc");
|
|
if (!sc->res) {
|
|
dev_err(&pdev->dev, "missing platform resources data\n");
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
sc->base = devm_ioremap_resource(&pdev->dev, sc->res);
|
|
if (IS_ERR(sc->base)) {
|
|
dev_err(&pdev->dev, "failed to ioremap\n");
|
|
return ERR_CAST(sc->base);
|
|
}
|
|
|
|
return sc;
|
|
}
|