mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 12:53:29 +07:00
86a8280a7f
- s/acccess/access/ - s/accoding/according/ - s/addad/added/ - s/addreess/address/ - s/allocatiom/allocation/ - s/Assember/Assembler/ - s/compactnes/compactness/ - s/conneced/connected/ - s/decending/descending/ - s/diectly/directly/ - s/diplacement/displacement/ Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net> [geert: Squashed, fix arch/m68k/ifpsp060/src/pfpsp.S] Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
330 lines
7.9 KiB
C
330 lines
7.9 KiB
C
/*
|
|
* pci.c -- PCI bus support for ColdFire processors
|
|
*
|
|
* (C) Copyright 2012, Greg Ungerer <gerg@uclinux.com>
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/io.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/coldfire.h>
|
|
#include <asm/mcfsim.h>
|
|
#include <asm/m54xxpci.h>
|
|
|
|
/*
|
|
* Memory and IO mappings. We use a 1:1 mapping for local host memory to
|
|
* PCI bus memory (no reason not to really). IO space doesn't matter, we
|
|
* always use access functions for that. The device configuration space is
|
|
* mapped over the IO map space when we enable it in the PCICAR register.
|
|
*/
|
|
#define PCI_MEM_PA 0xf0000000 /* Host physical address */
|
|
#define PCI_MEM_BA 0xf0000000 /* Bus physical address */
|
|
#define PCI_MEM_SIZE 0x08000000 /* 128 MB */
|
|
#define PCI_MEM_MASK (PCI_MEM_SIZE - 1)
|
|
|
|
#define PCI_IO_PA 0xf8000000 /* Host physical address */
|
|
#define PCI_IO_BA 0x00000000 /* Bus physical address */
|
|
#define PCI_IO_SIZE 0x00010000 /* 64k */
|
|
#define PCI_IO_MASK (PCI_IO_SIZE - 1)
|
|
|
|
static struct pci_bus *rootbus;
|
|
static unsigned long iospace;
|
|
|
|
/*
|
|
* We need to be carefull probing on bus 0 (directly connected to host
|
|
* bridge). We should only access the well defined possible devices in
|
|
* use, ignore aliases and the like.
|
|
*/
|
|
static unsigned char mcf_host_slot2sid[32] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 1, 2, 0, 3, 4, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
|
|
static unsigned char mcf_host_irq[] = {
|
|
0, 69, 69, 71, 71,
|
|
};
|
|
|
|
|
|
static inline void syncio(void)
|
|
{
|
|
/* The ColdFire "nop" instruction waits for all bus IO to complete */
|
|
__asm__ __volatile__ ("nop");
|
|
}
|
|
|
|
/*
|
|
* Configuration space access functions. Configuration space access is
|
|
* through the IO mapping window, enabling it via the PCICAR register.
|
|
*/
|
|
static unsigned long mcf_mk_pcicar(int bus, unsigned int devfn, int where)
|
|
{
|
|
return (bus << PCICAR_BUSN) | (devfn << PCICAR_DEVFNN) | (where & 0xfc);
|
|
}
|
|
|
|
static int mcf_pci_readconfig(struct pci_bus *bus, unsigned int devfn,
|
|
int where, int size, u32 *value)
|
|
{
|
|
unsigned long addr;
|
|
|
|
*value = 0xffffffff;
|
|
|
|
if (bus->number == 0) {
|
|
if (mcf_host_slot2sid[PCI_SLOT(devfn)] == 0)
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
syncio();
|
|
addr = mcf_mk_pcicar(bus->number, devfn, where);
|
|
__raw_writel(PCICAR_E | addr, PCICAR);
|
|
addr = iospace + (where & 0x3);
|
|
|
|
switch (size) {
|
|
case 1:
|
|
*value = __raw_readb(addr);
|
|
break;
|
|
case 2:
|
|
*value = le16_to_cpu(__raw_readw(addr));
|
|
break;
|
|
default:
|
|
*value = le32_to_cpu(__raw_readl(addr));
|
|
break;
|
|
}
|
|
|
|
syncio();
|
|
__raw_writel(0, PCICAR);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int mcf_pci_writeconfig(struct pci_bus *bus, unsigned int devfn,
|
|
int where, int size, u32 value)
|
|
{
|
|
unsigned long addr;
|
|
|
|
if (bus->number == 0) {
|
|
if (mcf_host_slot2sid[PCI_SLOT(devfn)] == 0)
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
syncio();
|
|
addr = mcf_mk_pcicar(bus->number, devfn, where);
|
|
__raw_writel(PCICAR_E | addr, PCICAR);
|
|
addr = iospace + (where & 0x3);
|
|
|
|
switch (size) {
|
|
case 1:
|
|
__raw_writeb(value, addr);
|
|
break;
|
|
case 2:
|
|
__raw_writew(cpu_to_le16(value), addr);
|
|
break;
|
|
default:
|
|
__raw_writel(cpu_to_le32(value), addr);
|
|
break;
|
|
}
|
|
|
|
syncio();
|
|
__raw_writel(0, PCICAR);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static struct pci_ops mcf_pci_ops = {
|
|
.read = mcf_pci_readconfig,
|
|
.write = mcf_pci_writeconfig,
|
|
};
|
|
|
|
/*
|
|
* IO address space access functions. Pretty strait forward, these are
|
|
* directly mapped in to the IO mapping window. And that is mapped into
|
|
* virtual address space.
|
|
*/
|
|
u8 mcf_pci_inb(u32 addr)
|
|
{
|
|
return __raw_readb(iospace + (addr & PCI_IO_MASK));
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_inb);
|
|
|
|
u16 mcf_pci_inw(u32 addr)
|
|
{
|
|
return le16_to_cpu(__raw_readw(iospace + (addr & PCI_IO_MASK)));
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_inw);
|
|
|
|
u32 mcf_pci_inl(u32 addr)
|
|
{
|
|
return le32_to_cpu(__raw_readl(iospace + (addr & PCI_IO_MASK)));
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_inl);
|
|
|
|
void mcf_pci_insb(u32 addr, u8 *buf, u32 len)
|
|
{
|
|
for (; len; len--)
|
|
*buf++ = mcf_pci_inb(addr);
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_insb);
|
|
|
|
void mcf_pci_insw(u32 addr, u16 *buf, u32 len)
|
|
{
|
|
for (; len; len--)
|
|
*buf++ = mcf_pci_inw(addr);
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_insw);
|
|
|
|
void mcf_pci_insl(u32 addr, u32 *buf, u32 len)
|
|
{
|
|
for (; len; len--)
|
|
*buf++ = mcf_pci_inl(addr);
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_insl);
|
|
|
|
void mcf_pci_outb(u8 v, u32 addr)
|
|
{
|
|
__raw_writeb(v, iospace + (addr & PCI_IO_MASK));
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_outb);
|
|
|
|
void mcf_pci_outw(u16 v, u32 addr)
|
|
{
|
|
__raw_writew(cpu_to_le16(v), iospace + (addr & PCI_IO_MASK));
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_outw);
|
|
|
|
void mcf_pci_outl(u32 v, u32 addr)
|
|
{
|
|
__raw_writel(cpu_to_le32(v), iospace + (addr & PCI_IO_MASK));
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_outl);
|
|
|
|
void mcf_pci_outsb(u32 addr, const u8 *buf, u32 len)
|
|
{
|
|
for (; len; len--)
|
|
mcf_pci_outb(*buf++, addr);
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_outsb);
|
|
|
|
void mcf_pci_outsw(u32 addr, const u16 *buf, u32 len)
|
|
{
|
|
for (; len; len--)
|
|
mcf_pci_outw(*buf++, addr);
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_outsw);
|
|
|
|
void mcf_pci_outsl(u32 addr, const u32 *buf, u32 len)
|
|
{
|
|
for (; len; len--)
|
|
mcf_pci_outl(*buf++, addr);
|
|
}
|
|
EXPORT_SYMBOL(mcf_pci_outsl);
|
|
|
|
/*
|
|
* Initialize the PCI bus registers, and scan the bus.
|
|
*/
|
|
static struct resource mcf_pci_mem = {
|
|
.name = "PCI Memory space",
|
|
.start = PCI_MEM_PA,
|
|
.end = PCI_MEM_PA + PCI_MEM_SIZE - 1,
|
|
.flags = IORESOURCE_MEM,
|
|
};
|
|
|
|
static struct resource mcf_pci_io = {
|
|
.name = "PCI IO space",
|
|
.start = 0x400,
|
|
.end = 0x10000 - 1,
|
|
.flags = IORESOURCE_IO,
|
|
};
|
|
|
|
/*
|
|
* Interrupt mapping and setting.
|
|
*/
|
|
static int mcf_pci_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
|
|
{
|
|
int sid;
|
|
|
|
sid = mcf_host_slot2sid[slot];
|
|
if (sid)
|
|
return mcf_host_irq[sid];
|
|
return 0;
|
|
}
|
|
|
|
static int __init mcf_pci_init(void)
|
|
{
|
|
pr_info("ColdFire: PCI bus initialization...\n");
|
|
|
|
/* Reset the external PCI bus */
|
|
__raw_writel(PCIGSCR_RESET, PCIGSCR);
|
|
__raw_writel(0, PCITCR);
|
|
|
|
request_resource(&iomem_resource, &mcf_pci_mem);
|
|
request_resource(&iomem_resource, &mcf_pci_io);
|
|
|
|
/* Configure PCI arbiter */
|
|
__raw_writel(PACR_INTMPRI | PACR_INTMINTE | PACR_EXTMPRI(0x1f) |
|
|
PACR_EXTMINTE(0x1f), PACR);
|
|
|
|
/* Set required multi-function pins for PCI bus use */
|
|
__raw_writew(0x3ff, MCFGPIO_PAR_PCIBG);
|
|
__raw_writew(0x3ff, MCFGPIO_PAR_PCIBR);
|
|
|
|
/* Set up config space for local host bus controller */
|
|
__raw_writel(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
|
|
PCI_COMMAND_INVALIDATE, PCISCR);
|
|
__raw_writel(PCICR1_LT(32) | PCICR1_CL(8), PCICR1);
|
|
__raw_writel(0, PCICR2);
|
|
|
|
/*
|
|
* Set up the initiator windows for memory and IO mapping.
|
|
* These give the CPU bus access onto the PCI bus. One for each of
|
|
* PCI memory and IO address spaces.
|
|
*/
|
|
__raw_writel(WXBTAR(PCI_MEM_PA, PCI_MEM_BA, PCI_MEM_SIZE),
|
|
PCIIW0BTAR);
|
|
__raw_writel(WXBTAR(PCI_IO_PA, PCI_IO_BA, PCI_IO_SIZE),
|
|
PCIIW1BTAR);
|
|
__raw_writel(PCIIWCR_W0_MEM /*| PCIIWCR_W0_MRDL*/ | PCIIWCR_W0_E |
|
|
PCIIWCR_W1_IO | PCIIWCR_W1_E, PCIIWCR);
|
|
|
|
/*
|
|
* Set up the target windows for access from the PCI bus back to the
|
|
* CPU bus. All we need is access to system RAM (for mastering).
|
|
*/
|
|
__raw_writel(CONFIG_RAMBASE, PCIBAR1);
|
|
__raw_writel(CONFIG_RAMBASE | PCITBATR1_E, PCITBATR1);
|
|
|
|
/* Keep a virtual mapping to IO/config space active */
|
|
iospace = (unsigned long) ioremap(PCI_IO_PA, PCI_IO_SIZE);
|
|
if (iospace == 0)
|
|
return -ENODEV;
|
|
pr_info("Coldfire: PCI IO/config window mapped to 0x%x\n",
|
|
(u32) iospace);
|
|
|
|
/* Turn of PCI reset, and wait for devices to settle */
|
|
__raw_writel(0, PCIGSCR);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(msecs_to_jiffies(200));
|
|
|
|
rootbus = pci_scan_bus(0, &mcf_pci_ops, NULL);
|
|
if (!rootbus)
|
|
return -ENODEV;
|
|
|
|
rootbus->resource[0] = &mcf_pci_io;
|
|
rootbus->resource[1] = &mcf_pci_mem;
|
|
|
|
pci_fixup_irqs(pci_common_swizzle, mcf_pci_map_irq);
|
|
pci_bus_size_bridges(rootbus);
|
|
pci_bus_assign_resources(rootbus);
|
|
pci_bus_add_devices(rootbus);
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(mcf_pci_init);
|