mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 17:49:43 +07:00
0a313a998a
Let memblock skip the hotpluggable memory regions in __next_mem_range(), it is used to to prevent memblock from allocating hotpluggable memory for the kernel at early time. The code is the same as __next_mem_range_rev(). Clear hotpluggable flag before releasing free pages to the buddy allocator. If we don't clear hotpluggable flag in free_low_memory_core_early(), the memory which marked hotpluggable flag will not free to buddy allocator. Because __next_mem_range() will skip them. free_low_memory_core_early for_each_free_mem_range for_each_mem_range __next_mem_range [akpm@linux-foundation.org: fix warning] Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Tejun Heo <tj@kernel.org> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1595 lines
45 KiB
C
1595 lines
45 KiB
C
/*
|
|
* Procedures for maintaining information about logical memory blocks.
|
|
*
|
|
* Peter Bergner, IBM Corp. June 2001.
|
|
* Copyright (C) 2001 Peter Bergner.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <asm-generic/sections.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
|
|
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
|
|
#endif
|
|
|
|
struct memblock memblock __initdata_memblock = {
|
|
.memory.regions = memblock_memory_init_regions,
|
|
.memory.cnt = 1, /* empty dummy entry */
|
|
.memory.max = INIT_MEMBLOCK_REGIONS,
|
|
|
|
.reserved.regions = memblock_reserved_init_regions,
|
|
.reserved.cnt = 1, /* empty dummy entry */
|
|
.reserved.max = INIT_MEMBLOCK_REGIONS,
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
.physmem.regions = memblock_physmem_init_regions,
|
|
.physmem.cnt = 1, /* empty dummy entry */
|
|
.physmem.max = INIT_PHYSMEM_REGIONS,
|
|
#endif
|
|
|
|
.bottom_up = false,
|
|
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
|
|
};
|
|
|
|
int memblock_debug __initdata_memblock;
|
|
#ifdef CONFIG_MOVABLE_NODE
|
|
bool movable_node_enabled __initdata_memblock = false;
|
|
#endif
|
|
static int memblock_can_resize __initdata_memblock;
|
|
static int memblock_memory_in_slab __initdata_memblock = 0;
|
|
static int memblock_reserved_in_slab __initdata_memblock = 0;
|
|
|
|
/* inline so we don't get a warning when pr_debug is compiled out */
|
|
static __init_memblock const char *
|
|
memblock_type_name(struct memblock_type *type)
|
|
{
|
|
if (type == &memblock.memory)
|
|
return "memory";
|
|
else if (type == &memblock.reserved)
|
|
return "reserved";
|
|
else
|
|
return "unknown";
|
|
}
|
|
|
|
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
|
|
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
|
|
{
|
|
return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
|
|
}
|
|
|
|
/*
|
|
* Address comparison utilities
|
|
*/
|
|
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
|
|
phys_addr_t base2, phys_addr_t size2)
|
|
{
|
|
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
|
|
}
|
|
|
|
static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
phys_addr_t rgnbase = type->regions[i].base;
|
|
phys_addr_t rgnsize = type->regions[i].size;
|
|
if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
|
|
break;
|
|
}
|
|
|
|
return (i < type->cnt) ? i : -1;
|
|
}
|
|
|
|
/*
|
|
* __memblock_find_range_bottom_up - find free area utility in bottom-up
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Utility called from memblock_find_in_range_node(), find free area bottom-up.
|
|
*
|
|
* RETURNS:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock
|
|
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
|
|
phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
phys_addr_t this_start, this_end, cand;
|
|
u64 i;
|
|
|
|
for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
|
|
this_start = clamp(this_start, start, end);
|
|
this_end = clamp(this_end, start, end);
|
|
|
|
cand = round_up(this_start, align);
|
|
if (cand < this_end && this_end - cand >= size)
|
|
return cand;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __memblock_find_range_top_down - find free area utility, in top-down
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Utility called from memblock_find_in_range_node(), find free area top-down.
|
|
*
|
|
* RETURNS:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock
|
|
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
|
|
phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
phys_addr_t this_start, this_end, cand;
|
|
u64 i;
|
|
|
|
for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
|
|
this_start = clamp(this_start, start, end);
|
|
this_end = clamp(this_end, start, end);
|
|
|
|
if (this_end < size)
|
|
continue;
|
|
|
|
cand = round_down(this_end - size, align);
|
|
if (cand >= this_start)
|
|
return cand;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range_node - find free area in given range and node
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Find @size free area aligned to @align in the specified range and node.
|
|
*
|
|
* When allocation direction is bottom-up, the @start should be greater
|
|
* than the end of the kernel image. Otherwise, it will be trimmed. The
|
|
* reason is that we want the bottom-up allocation just near the kernel
|
|
* image so it is highly likely that the allocated memory and the kernel
|
|
* will reside in the same node.
|
|
*
|
|
* If bottom-up allocation failed, will try to allocate memory top-down.
|
|
*
|
|
* RETURNS:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start,
|
|
phys_addr_t end, int nid)
|
|
{
|
|
phys_addr_t kernel_end, ret;
|
|
|
|
/* pump up @end */
|
|
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
|
|
end = memblock.current_limit;
|
|
|
|
/* avoid allocating the first page */
|
|
start = max_t(phys_addr_t, start, PAGE_SIZE);
|
|
end = max(start, end);
|
|
kernel_end = __pa_symbol(_end);
|
|
|
|
/*
|
|
* try bottom-up allocation only when bottom-up mode
|
|
* is set and @end is above the kernel image.
|
|
*/
|
|
if (memblock_bottom_up() && end > kernel_end) {
|
|
phys_addr_t bottom_up_start;
|
|
|
|
/* make sure we will allocate above the kernel */
|
|
bottom_up_start = max(start, kernel_end);
|
|
|
|
/* ok, try bottom-up allocation first */
|
|
ret = __memblock_find_range_bottom_up(bottom_up_start, end,
|
|
size, align, nid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* we always limit bottom-up allocation above the kernel,
|
|
* but top-down allocation doesn't have the limit, so
|
|
* retrying top-down allocation may succeed when bottom-up
|
|
* allocation failed.
|
|
*
|
|
* bottom-up allocation is expected to be fail very rarely,
|
|
* so we use WARN_ONCE() here to see the stack trace if
|
|
* fail happens.
|
|
*/
|
|
WARN_ONCE(1, "memblock: bottom-up allocation failed, "
|
|
"memory hotunplug may be affected\n");
|
|
}
|
|
|
|
return __memblock_find_range_top_down(start, end, size, align, nid);
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range - find free area in given range
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
*
|
|
* Find @size free area aligned to @align in the specified range.
|
|
*
|
|
* RETURNS:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
|
|
phys_addr_t end, phys_addr_t size,
|
|
phys_addr_t align)
|
|
{
|
|
return memblock_find_in_range_node(size, align, start, end,
|
|
NUMA_NO_NODE);
|
|
}
|
|
|
|
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
|
|
{
|
|
type->total_size -= type->regions[r].size;
|
|
memmove(&type->regions[r], &type->regions[r + 1],
|
|
(type->cnt - (r + 1)) * sizeof(type->regions[r]));
|
|
type->cnt--;
|
|
|
|
/* Special case for empty arrays */
|
|
if (type->cnt == 0) {
|
|
WARN_ON(type->total_size != 0);
|
|
type->cnt = 1;
|
|
type->regions[0].base = 0;
|
|
type->regions[0].size = 0;
|
|
type->regions[0].flags = 0;
|
|
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
|
|
|
|
phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
|
|
phys_addr_t *addr)
|
|
{
|
|
if (memblock.reserved.regions == memblock_reserved_init_regions)
|
|
return 0;
|
|
|
|
*addr = __pa(memblock.reserved.regions);
|
|
|
|
return PAGE_ALIGN(sizeof(struct memblock_region) *
|
|
memblock.reserved.max);
|
|
}
|
|
|
|
phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
|
|
phys_addr_t *addr)
|
|
{
|
|
if (memblock.memory.regions == memblock_memory_init_regions)
|
|
return 0;
|
|
|
|
*addr = __pa(memblock.memory.regions);
|
|
|
|
return PAGE_ALIGN(sizeof(struct memblock_region) *
|
|
memblock.memory.max);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* memblock_double_array - double the size of the memblock regions array
|
|
* @type: memblock type of the regions array being doubled
|
|
* @new_area_start: starting address of memory range to avoid overlap with
|
|
* @new_area_size: size of memory range to avoid overlap with
|
|
*
|
|
* Double the size of the @type regions array. If memblock is being used to
|
|
* allocate memory for a new reserved regions array and there is a previously
|
|
* allocated memory range [@new_area_start,@new_area_start+@new_area_size]
|
|
* waiting to be reserved, ensure the memory used by the new array does
|
|
* not overlap.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int __init_memblock memblock_double_array(struct memblock_type *type,
|
|
phys_addr_t new_area_start,
|
|
phys_addr_t new_area_size)
|
|
{
|
|
struct memblock_region *new_array, *old_array;
|
|
phys_addr_t old_alloc_size, new_alloc_size;
|
|
phys_addr_t old_size, new_size, addr;
|
|
int use_slab = slab_is_available();
|
|
int *in_slab;
|
|
|
|
/* We don't allow resizing until we know about the reserved regions
|
|
* of memory that aren't suitable for allocation
|
|
*/
|
|
if (!memblock_can_resize)
|
|
return -1;
|
|
|
|
/* Calculate new doubled size */
|
|
old_size = type->max * sizeof(struct memblock_region);
|
|
new_size = old_size << 1;
|
|
/*
|
|
* We need to allocated new one align to PAGE_SIZE,
|
|
* so we can free them completely later.
|
|
*/
|
|
old_alloc_size = PAGE_ALIGN(old_size);
|
|
new_alloc_size = PAGE_ALIGN(new_size);
|
|
|
|
/* Retrieve the slab flag */
|
|
if (type == &memblock.memory)
|
|
in_slab = &memblock_memory_in_slab;
|
|
else
|
|
in_slab = &memblock_reserved_in_slab;
|
|
|
|
/* Try to find some space for it.
|
|
*
|
|
* WARNING: We assume that either slab_is_available() and we use it or
|
|
* we use MEMBLOCK for allocations. That means that this is unsafe to
|
|
* use when bootmem is currently active (unless bootmem itself is
|
|
* implemented on top of MEMBLOCK which isn't the case yet)
|
|
*
|
|
* This should however not be an issue for now, as we currently only
|
|
* call into MEMBLOCK while it's still active, or much later when slab
|
|
* is active for memory hotplug operations
|
|
*/
|
|
if (use_slab) {
|
|
new_array = kmalloc(new_size, GFP_KERNEL);
|
|
addr = new_array ? __pa(new_array) : 0;
|
|
} else {
|
|
/* only exclude range when trying to double reserved.regions */
|
|
if (type != &memblock.reserved)
|
|
new_area_start = new_area_size = 0;
|
|
|
|
addr = memblock_find_in_range(new_area_start + new_area_size,
|
|
memblock.current_limit,
|
|
new_alloc_size, PAGE_SIZE);
|
|
if (!addr && new_area_size)
|
|
addr = memblock_find_in_range(0,
|
|
min(new_area_start, memblock.current_limit),
|
|
new_alloc_size, PAGE_SIZE);
|
|
|
|
new_array = addr ? __va(addr) : NULL;
|
|
}
|
|
if (!addr) {
|
|
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
|
|
memblock_type_name(type), type->max, type->max * 2);
|
|
return -1;
|
|
}
|
|
|
|
memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
|
|
memblock_type_name(type), type->max * 2, (u64)addr,
|
|
(u64)addr + new_size - 1);
|
|
|
|
/*
|
|
* Found space, we now need to move the array over before we add the
|
|
* reserved region since it may be our reserved array itself that is
|
|
* full.
|
|
*/
|
|
memcpy(new_array, type->regions, old_size);
|
|
memset(new_array + type->max, 0, old_size);
|
|
old_array = type->regions;
|
|
type->regions = new_array;
|
|
type->max <<= 1;
|
|
|
|
/* Free old array. We needn't free it if the array is the static one */
|
|
if (*in_slab)
|
|
kfree(old_array);
|
|
else if (old_array != memblock_memory_init_regions &&
|
|
old_array != memblock_reserved_init_regions)
|
|
memblock_free(__pa(old_array), old_alloc_size);
|
|
|
|
/*
|
|
* Reserve the new array if that comes from the memblock. Otherwise, we
|
|
* needn't do it
|
|
*/
|
|
if (!use_slab)
|
|
BUG_ON(memblock_reserve(addr, new_alloc_size));
|
|
|
|
/* Update slab flag */
|
|
*in_slab = use_slab;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_merge_regions - merge neighboring compatible regions
|
|
* @type: memblock type to scan
|
|
*
|
|
* Scan @type and merge neighboring compatible regions.
|
|
*/
|
|
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
|
|
{
|
|
int i = 0;
|
|
|
|
/* cnt never goes below 1 */
|
|
while (i < type->cnt - 1) {
|
|
struct memblock_region *this = &type->regions[i];
|
|
struct memblock_region *next = &type->regions[i + 1];
|
|
|
|
if (this->base + this->size != next->base ||
|
|
memblock_get_region_node(this) !=
|
|
memblock_get_region_node(next) ||
|
|
this->flags != next->flags) {
|
|
BUG_ON(this->base + this->size > next->base);
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
this->size += next->size;
|
|
/* move forward from next + 1, index of which is i + 2 */
|
|
memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
|
|
type->cnt--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* memblock_insert_region - insert new memblock region
|
|
* @type: memblock type to insert into
|
|
* @idx: index for the insertion point
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: node id of the new region
|
|
* @flags: flags of the new region
|
|
*
|
|
* Insert new memblock region [@base,@base+@size) into @type at @idx.
|
|
* @type must already have extra room to accomodate the new region.
|
|
*/
|
|
static void __init_memblock memblock_insert_region(struct memblock_type *type,
|
|
int idx, phys_addr_t base,
|
|
phys_addr_t size,
|
|
int nid, unsigned long flags)
|
|
{
|
|
struct memblock_region *rgn = &type->regions[idx];
|
|
|
|
BUG_ON(type->cnt >= type->max);
|
|
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
|
|
rgn->base = base;
|
|
rgn->size = size;
|
|
rgn->flags = flags;
|
|
memblock_set_region_node(rgn, nid);
|
|
type->cnt++;
|
|
type->total_size += size;
|
|
}
|
|
|
|
/**
|
|
* memblock_add_range - add new memblock region
|
|
* @type: memblock type to add new region into
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: nid of the new region
|
|
* @flags: flags of the new region
|
|
*
|
|
* Add new memblock region [@base,@base+@size) into @type. The new region
|
|
* is allowed to overlap with existing ones - overlaps don't affect already
|
|
* existing regions. @type is guaranteed to be minimal (all neighbouring
|
|
* compatible regions are merged) after the addition.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_add_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size,
|
|
int nid, unsigned long flags)
|
|
{
|
|
bool insert = false;
|
|
phys_addr_t obase = base;
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int i, nr_new;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
/* special case for empty array */
|
|
if (type->regions[0].size == 0) {
|
|
WARN_ON(type->cnt != 1 || type->total_size);
|
|
type->regions[0].base = base;
|
|
type->regions[0].size = size;
|
|
type->regions[0].flags = flags;
|
|
memblock_set_region_node(&type->regions[0], nid);
|
|
type->total_size = size;
|
|
return 0;
|
|
}
|
|
repeat:
|
|
/*
|
|
* The following is executed twice. Once with %false @insert and
|
|
* then with %true. The first counts the number of regions needed
|
|
* to accomodate the new area. The second actually inserts them.
|
|
*/
|
|
base = obase;
|
|
nr_new = 0;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
struct memblock_region *rgn = &type->regions[i];
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
/*
|
|
* @rgn overlaps. If it separates the lower part of new
|
|
* area, insert that portion.
|
|
*/
|
|
if (rbase > base) {
|
|
nr_new++;
|
|
if (insert)
|
|
memblock_insert_region(type, i++, base,
|
|
rbase - base, nid,
|
|
flags);
|
|
}
|
|
/* area below @rend is dealt with, forget about it */
|
|
base = min(rend, end);
|
|
}
|
|
|
|
/* insert the remaining portion */
|
|
if (base < end) {
|
|
nr_new++;
|
|
if (insert)
|
|
memblock_insert_region(type, i, base, end - base,
|
|
nid, flags);
|
|
}
|
|
|
|
/*
|
|
* If this was the first round, resize array and repeat for actual
|
|
* insertions; otherwise, merge and return.
|
|
*/
|
|
if (!insert) {
|
|
while (type->cnt + nr_new > type->max)
|
|
if (memblock_double_array(type, obase, size) < 0)
|
|
return -ENOMEM;
|
|
insert = true;
|
|
goto repeat;
|
|
} else {
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
|
|
int nid)
|
|
{
|
|
return memblock_add_range(&memblock.memory, base, size, nid, 0);
|
|
}
|
|
|
|
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_add_range(&memblock.memory, base, size,
|
|
MAX_NUMNODES, 0);
|
|
}
|
|
|
|
/**
|
|
* memblock_isolate_range - isolate given range into disjoint memblocks
|
|
* @type: memblock type to isolate range for
|
|
* @base: base of range to isolate
|
|
* @size: size of range to isolate
|
|
* @start_rgn: out parameter for the start of isolated region
|
|
* @end_rgn: out parameter for the end of isolated region
|
|
*
|
|
* Walk @type and ensure that regions don't cross the boundaries defined by
|
|
* [@base,@base+@size). Crossing regions are split at the boundaries,
|
|
* which may create at most two more regions. The index of the first
|
|
* region inside the range is returned in *@start_rgn and end in *@end_rgn.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size,
|
|
int *start_rgn, int *end_rgn)
|
|
{
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int i;
|
|
|
|
*start_rgn = *end_rgn = 0;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
/* we'll create at most two more regions */
|
|
while (type->cnt + 2 > type->max)
|
|
if (memblock_double_array(type, base, size) < 0)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
struct memblock_region *rgn = &type->regions[i];
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
|
|
if (rbase < base) {
|
|
/*
|
|
* @rgn intersects from below. Split and continue
|
|
* to process the next region - the new top half.
|
|
*/
|
|
rgn->base = base;
|
|
rgn->size -= base - rbase;
|
|
type->total_size -= base - rbase;
|
|
memblock_insert_region(type, i, rbase, base - rbase,
|
|
memblock_get_region_node(rgn),
|
|
rgn->flags);
|
|
} else if (rend > end) {
|
|
/*
|
|
* @rgn intersects from above. Split and redo the
|
|
* current region - the new bottom half.
|
|
*/
|
|
rgn->base = end;
|
|
rgn->size -= end - rbase;
|
|
type->total_size -= end - rbase;
|
|
memblock_insert_region(type, i--, rbase, end - rbase,
|
|
memblock_get_region_node(rgn),
|
|
rgn->flags);
|
|
} else {
|
|
/* @rgn is fully contained, record it */
|
|
if (!*end_rgn)
|
|
*start_rgn = i;
|
|
*end_rgn = i + 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init_memblock memblock_remove_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = end_rgn - 1; i >= start_rgn; i--)
|
|
memblock_remove_region(type, i);
|
|
return 0;
|
|
}
|
|
|
|
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_remove_range(&memblock.memory, base, size);
|
|
}
|
|
|
|
|
|
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
|
|
(unsigned long long)base,
|
|
(unsigned long long)base + size - 1,
|
|
(void *)_RET_IP_);
|
|
|
|
kmemleak_free_part(__va(base), size);
|
|
return memblock_remove_range(&memblock.reserved, base, size);
|
|
}
|
|
|
|
static int __init_memblock memblock_reserve_region(phys_addr_t base,
|
|
phys_addr_t size,
|
|
int nid,
|
|
unsigned long flags)
|
|
{
|
|
struct memblock_type *_rgn = &memblock.reserved;
|
|
|
|
memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
|
|
(unsigned long long)base,
|
|
(unsigned long long)base + size - 1,
|
|
flags, (void *)_RET_IP_);
|
|
|
|
return memblock_add_range(_rgn, base, size, nid, flags);
|
|
}
|
|
|
|
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
|
|
}
|
|
|
|
/**
|
|
* memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* This function isolates region [@base, @base + @size), and mark it with flag
|
|
* MEMBLOCK_HOTPLUG.
|
|
*
|
|
* Return 0 on succees, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
int i, ret, start_rgn, end_rgn;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++)
|
|
memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
|
|
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* This function isolates region [@base, @base + @size), and clear flag
|
|
* MEMBLOCK_HOTPLUG for the isolated regions.
|
|
*
|
|
* Return 0 on succees, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
int i, ret, start_rgn, end_rgn;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++)
|
|
memblock_clear_region_flags(&type->regions[i],
|
|
MEMBLOCK_HOTPLUG);
|
|
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __next__mem_range - next function for for_each_free_mem_range() etc.
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: node selector, %NUMA_NO_NODE for all nodes
|
|
* @type_a: pointer to memblock_type from where the range is taken
|
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Find the first area from *@idx which matches @nid, fill the out
|
|
* parameters, and update *@idx for the next iteration. The lower 32bit of
|
|
* *@idx contains index into type_a and the upper 32bit indexes the
|
|
* areas before each region in type_b. For example, if type_b regions
|
|
* look like the following,
|
|
*
|
|
* 0:[0-16), 1:[32-48), 2:[128-130)
|
|
*
|
|
* The upper 32bit indexes the following regions.
|
|
*
|
|
* 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
|
|
*
|
|
* As both region arrays are sorted, the function advances the two indices
|
|
* in lockstep and returns each intersection.
|
|
*/
|
|
void __init_memblock __next_mem_range(u64 *idx, int nid,
|
|
struct memblock_type *type_a,
|
|
struct memblock_type *type_b,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
int idx_a = *idx & 0xffffffff;
|
|
int idx_b = *idx >> 32;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES,
|
|
"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
for (; idx_a < type_a->cnt; idx_a++) {
|
|
struct memblock_region *m = &type_a->regions[idx_a];
|
|
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
int m_nid = memblock_get_region_node(m);
|
|
|
|
/* only memory regions are associated with nodes, check it */
|
|
if (nid != NUMA_NO_NODE && nid != m_nid)
|
|
continue;
|
|
|
|
/* skip hotpluggable memory regions if needed */
|
|
if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
|
|
continue;
|
|
|
|
if (!type_b) {
|
|
if (out_start)
|
|
*out_start = m_start;
|
|
if (out_end)
|
|
*out_end = m_end;
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
idx_a++;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
|
|
/* scan areas before each reservation */
|
|
for (; idx_b < type_b->cnt + 1; idx_b++) {
|
|
struct memblock_region *r;
|
|
phys_addr_t r_start;
|
|
phys_addr_t r_end;
|
|
|
|
r = &type_b->regions[idx_b];
|
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
|
r_end = idx_b < type_b->cnt ?
|
|
r->base : ULLONG_MAX;
|
|
|
|
/*
|
|
* if idx_b advanced past idx_a,
|
|
* break out to advance idx_a
|
|
*/
|
|
if (r_start >= m_end)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_start < r_end) {
|
|
if (out_start)
|
|
*out_start =
|
|
max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
/*
|
|
* The region which ends first is
|
|
* advanced for the next iteration.
|
|
*/
|
|
if (m_end <= r_end)
|
|
idx_a++;
|
|
else
|
|
idx_b++;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
/**
|
|
* __next_mem_range_rev - generic next function for for_each_*_range_rev()
|
|
*
|
|
* Finds the next range from type_a which is not marked as unsuitable
|
|
* in type_b.
|
|
*
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: nid: node selector, %NUMA_NO_NODE for all nodes
|
|
* @type_a: pointer to memblock_type from where the range is taken
|
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Reverse of __next_mem_range().
|
|
*/
|
|
void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
|
|
struct memblock_type *type_a,
|
|
struct memblock_type *type_b,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
int idx_a = *idx & 0xffffffff;
|
|
int idx_b = *idx >> 32;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
if (*idx == (u64)ULLONG_MAX) {
|
|
idx_a = type_a->cnt - 1;
|
|
idx_b = type_b->cnt;
|
|
}
|
|
|
|
for (; idx_a >= 0; idx_a--) {
|
|
struct memblock_region *m = &type_a->regions[idx_a];
|
|
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
int m_nid = memblock_get_region_node(m);
|
|
|
|
/* only memory regions are associated with nodes, check it */
|
|
if (nid != NUMA_NO_NODE && nid != m_nid)
|
|
continue;
|
|
|
|
/* skip hotpluggable memory regions if needed */
|
|
if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
|
|
continue;
|
|
|
|
if (!type_b) {
|
|
if (out_start)
|
|
*out_start = m_start;
|
|
if (out_end)
|
|
*out_end = m_end;
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
idx_a++;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
|
|
/* scan areas before each reservation */
|
|
for (; idx_b >= 0; idx_b--) {
|
|
struct memblock_region *r;
|
|
phys_addr_t r_start;
|
|
phys_addr_t r_end;
|
|
|
|
r = &type_b->regions[idx_b];
|
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
|
r_end = idx_b < type_b->cnt ?
|
|
r->base : ULLONG_MAX;
|
|
/*
|
|
* if idx_b advanced past idx_a,
|
|
* break out to advance idx_a
|
|
*/
|
|
|
|
if (r_end <= m_start)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_end > r_start) {
|
|
if (out_start)
|
|
*out_start = max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
if (m_start >= r_start)
|
|
idx_a--;
|
|
else
|
|
idx_b--;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
/*
|
|
* Common iterator interface used to define for_each_mem_range().
|
|
*/
|
|
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
|
|
unsigned long *out_start_pfn,
|
|
unsigned long *out_end_pfn, int *out_nid)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
struct memblock_region *r;
|
|
|
|
while (++*idx < type->cnt) {
|
|
r = &type->regions[*idx];
|
|
|
|
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
|
|
continue;
|
|
if (nid == MAX_NUMNODES || nid == r->nid)
|
|
break;
|
|
}
|
|
if (*idx >= type->cnt) {
|
|
*idx = -1;
|
|
return;
|
|
}
|
|
|
|
if (out_start_pfn)
|
|
*out_start_pfn = PFN_UP(r->base);
|
|
if (out_end_pfn)
|
|
*out_end_pfn = PFN_DOWN(r->base + r->size);
|
|
if (out_nid)
|
|
*out_nid = r->nid;
|
|
}
|
|
|
|
/**
|
|
* memblock_set_node - set node ID on memblock regions
|
|
* @base: base of area to set node ID for
|
|
* @size: size of area to set node ID for
|
|
* @type: memblock type to set node ID for
|
|
* @nid: node ID to set
|
|
*
|
|
* Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
|
|
* Regions which cross the area boundaries are split as necessary.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
|
|
struct memblock_type *type, int nid)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++)
|
|
memblock_set_region_node(&type->regions[i], nid);
|
|
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
|
|
static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start,
|
|
phys_addr_t end, int nid)
|
|
{
|
|
phys_addr_t found;
|
|
|
|
if (!align)
|
|
align = SMP_CACHE_BYTES;
|
|
|
|
found = memblock_find_in_range_node(size, align, start, end, nid);
|
|
if (found && !memblock_reserve(found, size)) {
|
|
/*
|
|
* The min_count is set to 0 so that memblock allocations are
|
|
* never reported as leaks.
|
|
*/
|
|
kmemleak_alloc(__va(found), size, 0, 0);
|
|
return found;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t start, phys_addr_t end)
|
|
{
|
|
return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
|
|
}
|
|
|
|
static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
return memblock_alloc_range_nid(size, align, 0, max_addr, nid);
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
|
|
}
|
|
|
|
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
|
{
|
|
return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
|
{
|
|
phys_addr_t alloc;
|
|
|
|
alloc = __memblock_alloc_base(size, align, max_addr);
|
|
|
|
if (alloc == 0)
|
|
panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
|
|
(unsigned long long) size, (unsigned long long) max_addr);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
|
|
{
|
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
phys_addr_t res = memblock_alloc_nid(size, align, nid);
|
|
|
|
if (res)
|
|
return res;
|
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
|
}
|
|
|
|
/**
|
|
* memblock_virt_alloc_internal - allocate boot memory block
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region to allocate (phys address)
|
|
* @max_addr: the upper bound of the memory region to allocate (phys address)
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* The @min_addr limit is dropped if it can not be satisfied and the allocation
|
|
* will fall back to memory below @min_addr. Also, allocation may fall back
|
|
* to any node in the system if the specified node can not
|
|
* hold the requested memory.
|
|
*
|
|
* The allocation is performed from memory region limited by
|
|
* memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
|
|
*
|
|
* The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
|
|
*
|
|
* The phys address of allocated boot memory block is converted to virtual and
|
|
* allocated memory is reset to 0.
|
|
*
|
|
* In addition, function sets the min_count to 0 using kmemleak_alloc for
|
|
* allocated boot memory block, so that it is never reported as leaks.
|
|
*
|
|
* RETURNS:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
static void * __init memblock_virt_alloc_internal(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
phys_addr_t alloc;
|
|
void *ptr;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
/*
|
|
* Detect any accidental use of these APIs after slab is ready, as at
|
|
* this moment memblock may be deinitialized already and its
|
|
* internal data may be destroyed (after execution of free_all_bootmem)
|
|
*/
|
|
if (WARN_ON_ONCE(slab_is_available()))
|
|
return kzalloc_node(size, GFP_NOWAIT, nid);
|
|
|
|
if (!align)
|
|
align = SMP_CACHE_BYTES;
|
|
|
|
if (max_addr > memblock.current_limit)
|
|
max_addr = memblock.current_limit;
|
|
|
|
again:
|
|
alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
|
|
nid);
|
|
if (alloc)
|
|
goto done;
|
|
|
|
if (nid != NUMA_NO_NODE) {
|
|
alloc = memblock_find_in_range_node(size, align, min_addr,
|
|
max_addr, NUMA_NO_NODE);
|
|
if (alloc)
|
|
goto done;
|
|
}
|
|
|
|
if (min_addr) {
|
|
min_addr = 0;
|
|
goto again;
|
|
} else {
|
|
goto error;
|
|
}
|
|
|
|
done:
|
|
memblock_reserve(alloc, size);
|
|
ptr = phys_to_virt(alloc);
|
|
memset(ptr, 0, size);
|
|
|
|
/*
|
|
* The min_count is set to 0 so that bootmem allocated blocks
|
|
* are never reported as leaks. This is because many of these blocks
|
|
* are only referred via the physical address which is not
|
|
* looked up by kmemleak.
|
|
*/
|
|
kmemleak_alloc(ptr, size, 0, 0);
|
|
|
|
return ptr;
|
|
|
|
error:
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
|
|
* additional debug information (including caller info), if enabled.
|
|
*
|
|
* RETURNS:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_virt_alloc_try_nid_nopanic(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
|
|
__func__, (u64)size, (u64)align, nid, (u64)min_addr,
|
|
(u64)max_addr, (void *)_RET_IP_);
|
|
return memblock_virt_alloc_internal(size, align, min_addr,
|
|
max_addr, nid);
|
|
}
|
|
|
|
/**
|
|
* memblock_virt_alloc_try_nid - allocate boot memory block with panicking
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
|
|
* which provides debug information (including caller info), if enabled,
|
|
* and panics if the request can not be satisfied.
|
|
*
|
|
* RETURNS:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_virt_alloc_try_nid(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
void *ptr;
|
|
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
|
|
__func__, (u64)size, (u64)align, nid, (u64)min_addr,
|
|
(u64)max_addr, (void *)_RET_IP_);
|
|
ptr = memblock_virt_alloc_internal(size, align,
|
|
min_addr, max_addr, nid);
|
|
if (ptr)
|
|
return ptr;
|
|
|
|
panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
|
|
__func__, (u64)size, (u64)align, nid, (u64)min_addr,
|
|
(u64)max_addr);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __memblock_free_early - free boot memory block
|
|
* @base: phys starting address of the boot memory block
|
|
* @size: size of the boot memory block in bytes
|
|
*
|
|
* Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
|
|
* The freeing memory will not be released to the buddy allocator.
|
|
*/
|
|
void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
|
|
__func__, (u64)base, (u64)base + size - 1,
|
|
(void *)_RET_IP_);
|
|
kmemleak_free_part(__va(base), size);
|
|
memblock_remove_range(&memblock.reserved, base, size);
|
|
}
|
|
|
|
/*
|
|
* __memblock_free_late - free bootmem block pages directly to buddy allocator
|
|
* @addr: phys starting address of the boot memory block
|
|
* @size: size of the boot memory block in bytes
|
|
*
|
|
* This is only useful when the bootmem allocator has already been torn
|
|
* down, but we are still initializing the system. Pages are released directly
|
|
* to the buddy allocator, no bootmem metadata is updated because it is gone.
|
|
*/
|
|
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
u64 cursor, end;
|
|
|
|
memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
|
|
__func__, (u64)base, (u64)base + size - 1,
|
|
(void *)_RET_IP_);
|
|
kmemleak_free_part(__va(base), size);
|
|
cursor = PFN_UP(base);
|
|
end = PFN_DOWN(base + size);
|
|
|
|
for (; cursor < end; cursor++) {
|
|
__free_pages_bootmem(pfn_to_page(cursor), 0);
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remaining API functions
|
|
*/
|
|
|
|
phys_addr_t __init memblock_phys_mem_size(void)
|
|
{
|
|
return memblock.memory.total_size;
|
|
}
|
|
|
|
phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
|
|
{
|
|
unsigned long pages = 0;
|
|
struct memblock_region *r;
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
for_each_memblock(memory, r) {
|
|
start_pfn = memblock_region_memory_base_pfn(r);
|
|
end_pfn = memblock_region_memory_end_pfn(r);
|
|
start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
|
|
end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
|
|
pages += end_pfn - start_pfn;
|
|
}
|
|
|
|
return PFN_PHYS(pages);
|
|
}
|
|
|
|
/* lowest address */
|
|
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
|
|
{
|
|
return memblock.memory.regions[0].base;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
|
|
{
|
|
int idx = memblock.memory.cnt - 1;
|
|
|
|
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
|
|
}
|
|
|
|
void __init memblock_enforce_memory_limit(phys_addr_t limit)
|
|
{
|
|
phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
|
|
struct memblock_region *r;
|
|
|
|
if (!limit)
|
|
return;
|
|
|
|
/* find out max address */
|
|
for_each_memblock(memory, r) {
|
|
if (limit <= r->size) {
|
|
max_addr = r->base + limit;
|
|
break;
|
|
}
|
|
limit -= r->size;
|
|
}
|
|
|
|
/* truncate both memory and reserved regions */
|
|
memblock_remove_range(&memblock.memory, max_addr,
|
|
(phys_addr_t)ULLONG_MAX);
|
|
memblock_remove_range(&memblock.reserved, max_addr,
|
|
(phys_addr_t)ULLONG_MAX);
|
|
}
|
|
|
|
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
|
|
{
|
|
unsigned int left = 0, right = type->cnt;
|
|
|
|
do {
|
|
unsigned int mid = (right + left) / 2;
|
|
|
|
if (addr < type->regions[mid].base)
|
|
right = mid;
|
|
else if (addr >= (type->regions[mid].base +
|
|
type->regions[mid].size))
|
|
left = mid + 1;
|
|
else
|
|
return mid;
|
|
} while (left < right);
|
|
return -1;
|
|
}
|
|
|
|
int __init memblock_is_reserved(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.reserved, addr) != -1;
|
|
}
|
|
|
|
int __init_memblock memblock_is_memory(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.memory, addr) != -1;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
|
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
int mid = memblock_search(type, PFN_PHYS(pfn));
|
|
|
|
if (mid == -1)
|
|
return -1;
|
|
|
|
*start_pfn = PFN_DOWN(type->regions[mid].base);
|
|
*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
|
|
|
|
return type->regions[mid].nid;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* memblock_is_region_memory - check if a region is a subset of memory
|
|
* @base: base of region to check
|
|
* @size: size of region to check
|
|
*
|
|
* Check if the region [@base, @base+@size) is a subset of a memory block.
|
|
*
|
|
* RETURNS:
|
|
* 0 if false, non-zero if true
|
|
*/
|
|
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int idx = memblock_search(&memblock.memory, base);
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
|
|
if (idx == -1)
|
|
return 0;
|
|
return memblock.memory.regions[idx].base <= base &&
|
|
(memblock.memory.regions[idx].base +
|
|
memblock.memory.regions[idx].size) >= end;
|
|
}
|
|
|
|
/**
|
|
* memblock_is_region_reserved - check if a region intersects reserved memory
|
|
* @base: base of region to check
|
|
* @size: size of region to check
|
|
*
|
|
* Check if the region [@base, @base+@size) intersects a reserved memory block.
|
|
*
|
|
* RETURNS:
|
|
* 0 if false, non-zero if true
|
|
*/
|
|
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
memblock_cap_size(base, &size);
|
|
return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
|
|
}
|
|
|
|
void __init_memblock memblock_trim_memory(phys_addr_t align)
|
|
{
|
|
phys_addr_t start, end, orig_start, orig_end;
|
|
struct memblock_region *r;
|
|
|
|
for_each_memblock(memory, r) {
|
|
orig_start = r->base;
|
|
orig_end = r->base + r->size;
|
|
start = round_up(orig_start, align);
|
|
end = round_down(orig_end, align);
|
|
|
|
if (start == orig_start && end == orig_end)
|
|
continue;
|
|
|
|
if (start < end) {
|
|
r->base = start;
|
|
r->size = end - start;
|
|
} else {
|
|
memblock_remove_region(&memblock.memory,
|
|
r - memblock.memory.regions);
|
|
r--;
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
|
|
{
|
|
memblock.current_limit = limit;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_get_current_limit(void)
|
|
{
|
|
return memblock.current_limit;
|
|
}
|
|
|
|
static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
|
|
{
|
|
unsigned long long base, size;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
struct memblock_region *rgn = &type->regions[i];
|
|
char nid_buf[32] = "";
|
|
|
|
base = rgn->base;
|
|
size = rgn->size;
|
|
flags = rgn->flags;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
if (memblock_get_region_node(rgn) != MAX_NUMNODES)
|
|
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
|
|
memblock_get_region_node(rgn));
|
|
#endif
|
|
pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
|
|
name, i, base, base + size - 1, size, nid_buf, flags);
|
|
}
|
|
}
|
|
|
|
void __init_memblock __memblock_dump_all(void)
|
|
{
|
|
pr_info("MEMBLOCK configuration:\n");
|
|
pr_info(" memory size = %#llx reserved size = %#llx\n",
|
|
(unsigned long long)memblock.memory.total_size,
|
|
(unsigned long long)memblock.reserved.total_size);
|
|
|
|
memblock_dump(&memblock.memory, "memory");
|
|
memblock_dump(&memblock.reserved, "reserved");
|
|
}
|
|
|
|
void __init memblock_allow_resize(void)
|
|
{
|
|
memblock_can_resize = 1;
|
|
}
|
|
|
|
static int __init early_memblock(char *p)
|
|
{
|
|
if (p && strstr(p, "debug"))
|
|
memblock_debug = 1;
|
|
return 0;
|
|
}
|
|
early_param("memblock", early_memblock);
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
|
|
|
|
static int memblock_debug_show(struct seq_file *m, void *private)
|
|
{
|
|
struct memblock_type *type = m->private;
|
|
struct memblock_region *reg;
|
|
int i;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
reg = &type->regions[i];
|
|
seq_printf(m, "%4d: ", i);
|
|
if (sizeof(phys_addr_t) == 4)
|
|
seq_printf(m, "0x%08lx..0x%08lx\n",
|
|
(unsigned long)reg->base,
|
|
(unsigned long)(reg->base + reg->size - 1));
|
|
else
|
|
seq_printf(m, "0x%016llx..0x%016llx\n",
|
|
(unsigned long long)reg->base,
|
|
(unsigned long long)(reg->base + reg->size - 1));
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int memblock_debug_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, memblock_debug_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations memblock_debug_fops = {
|
|
.open = memblock_debug_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static int __init memblock_init_debugfs(void)
|
|
{
|
|
struct dentry *root = debugfs_create_dir("memblock", NULL);
|
|
if (!root)
|
|
return -ENXIO;
|
|
debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
|
|
debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
__initcall(memblock_init_debugfs);
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|