linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_dp.c
Takashi Iwai 48898b038b drm/i915/dp: Correct the order of deletion for ghost eDP devices
The order of the calls does matter indeed.  Swapping the call order of
intel_dp_destroy() and intel_dp_encoder_destroy() fixes the problem.
This is because i2c_del_adapter unregisters the device which parent is
intel_connector, and connectors are removed in intel_dp_destroy().  Thus
intel_dp_encoder_destroy() must be called before intel_dp_destroy().

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=24822
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Keith Packard <keithp@keithp.com>
2011-03-23 09:16:59 +00:00

1992 lines
51 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "drm_dp_helper.h"
#define DP_LINK_STATUS_SIZE 6
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
#define DP_LINK_CONFIGURATION_SIZE 9
struct intel_dp {
struct intel_encoder base;
uint32_t output_reg;
uint32_t DP;
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
bool has_audio;
int force_audio;
uint32_t color_range;
int dpms_mode;
uint8_t link_bw;
uint8_t lane_count;
uint8_t dpcd[4];
struct i2c_adapter adapter;
struct i2c_algo_dp_aux_data algo;
bool is_pch_edp;
uint8_t train_set[4];
uint8_t link_status[DP_LINK_STATUS_SIZE];
struct drm_property *force_audio_property;
};
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
static bool is_edp(struct intel_dp *intel_dp)
{
return intel_dp->base.type == INTEL_OUTPUT_EDP;
}
/**
* is_pch_edp - is the port on the PCH and attached to an eDP panel?
* @intel_dp: DP struct
*
* Returns true if the given DP struct corresponds to a PCH DP port attached
* to an eDP panel, false otherwise. Helpful for determining whether we
* may need FDI resources for a given DP output or not.
*/
static bool is_pch_edp(struct intel_dp *intel_dp)
{
return intel_dp->is_pch_edp;
}
static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
{
return container_of(encoder, struct intel_dp, base.base);
}
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
return container_of(intel_attached_encoder(connector),
struct intel_dp, base);
}
/**
* intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
* @encoder: DRM encoder
*
* Return true if @encoder corresponds to a PCH attached eDP panel. Needed
* by intel_display.c.
*/
bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
{
struct intel_dp *intel_dp;
if (!encoder)
return false;
intel_dp = enc_to_intel_dp(encoder);
return is_pch_edp(intel_dp);
}
static void intel_dp_start_link_train(struct intel_dp *intel_dp);
static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
static void intel_dp_link_down(struct intel_dp *intel_dp);
void
intel_edp_link_config (struct intel_encoder *intel_encoder,
int *lane_num, int *link_bw)
{
struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
*lane_num = intel_dp->lane_count;
if (intel_dp->link_bw == DP_LINK_BW_1_62)
*link_bw = 162000;
else if (intel_dp->link_bw == DP_LINK_BW_2_7)
*link_bw = 270000;
}
static int
intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
int max_lane_count = 4;
if (intel_dp->dpcd[0] >= 0x11) {
max_lane_count = intel_dp->dpcd[2] & 0x1f;
switch (max_lane_count) {
case 1: case 2: case 4:
break;
default:
max_lane_count = 4;
}
}
return max_lane_count;
}
static int
intel_dp_max_link_bw(struct intel_dp *intel_dp)
{
int max_link_bw = intel_dp->dpcd[1];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static int
intel_dp_link_clock(uint8_t link_bw)
{
if (link_bw == DP_LINK_BW_2_7)
return 270000;
else
return 162000;
}
/* I think this is a fiction */
static int
intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (is_edp(intel_dp))
return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
else
return pixel_clock * 3;
}
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
return (max_link_clock * max_lanes * 8) / 10;
}
static int
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_device *dev = connector->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
int max_lanes = intel_dp_max_lane_count(intel_dp);
if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
return MODE_PANEL;
}
/* only refuse the mode on non eDP since we have seen some wierd eDP panels
which are outside spec tolerances but somehow work by magic */
if (!is_edp(intel_dp) &&
(intel_dp_link_required(connector->dev, intel_dp, mode->clock)
> intel_dp_max_data_rate(max_link_clock, max_lanes)))
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t clkcfg;
clkcfg = I915_READ(CLKCFG);
switch (clkcfg & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_400:
return 100;
case CLKCFG_FSB_533:
return 133;
case CLKCFG_FSB_667:
return 166;
case CLKCFG_FSB_800:
return 200;
case CLKCFG_FSB_1067:
return 266;
case CLKCFG_FSB_1333:
return 333;
/* these two are just a guess; one of them might be right */
case CLKCFG_FSB_1600:
case CLKCFG_FSB_1600_ALT:
return 400;
default:
return 133;
}
}
static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
uint32_t output_reg = intel_dp->output_reg;
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t status;
uint32_t aux_clock_divider;
int try, precharge;
/* The clock divider is based off the hrawclk,
* and would like to run at 2MHz. So, take the
* hrawclk value and divide by 2 and use that
*
* Note that PCH attached eDP panels should use a 125MHz input
* clock divider.
*/
if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
if (IS_GEN6(dev))
aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
else
aux_clock_divider = 225; /* eDP input clock at 450Mhz */
} else if (HAS_PCH_SPLIT(dev))
aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
else
aux_clock_divider = intel_hrawclk(dev) / 2;
if (IS_GEN6(dev))
precharge = 3;
else
precharge = 5;
if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
I915_READ(ch_ctl));
return -EBUSY;
}
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
I915_WRITE(ch_data + i,
pack_aux(send + i, send_bytes - i));
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl,
DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
for (;;) {
status = I915_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
udelay(100);
}
/* Clear done status and any errors */
I915_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
return -EBUSY;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
return -EIO;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
return -ETIMEDOUT;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
unpack_aux(I915_READ(ch_data + i),
recv + i, recv_bytes - i);
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_dp *intel_dp,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
if (send_bytes > 16)
return -1;
msg[0] = AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
uint16_t address, uint8_t byte)
{
return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
}
/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_dp *intel_dp,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
msg[0] = AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -EPROTO;
if (ret < 0)
return ret;
ack = reply[0];
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
}
static int
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
struct intel_dp *intel_dp = container_of(adapter,
struct intel_dp,
adapter);
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
unsigned retry;
int msg_bytes;
int reply_bytes;
int ret;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = AUX_I2C_READ << 4;
else
msg[0] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= AUX_I2C_MOT << 4;
msg[1] = address >> 8;
msg[2] = address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (retry = 0; retry < 5; retry++) {
ret = intel_dp_aux_ch(intel_dp,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
return ret;
}
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
case AUX_NATIVE_REPLY_ACK:
/* I2C-over-AUX Reply field is only valid
* when paired with AUX ACK.
*/
break;
case AUX_NATIVE_REPLY_NACK:
DRM_DEBUG_KMS("aux_ch native nack\n");
return -EREMOTEIO;
case AUX_NATIVE_REPLY_DEFER:
udelay(100);
continue;
default:
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
reply[0]);
return -EREMOTEIO;
}
switch (reply[0] & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case AUX_I2C_REPLY_NACK:
DRM_DEBUG_KMS("aux_i2c nack\n");
return -EREMOTEIO;
case AUX_I2C_REPLY_DEFER:
DRM_DEBUG_KMS("aux_i2c defer\n");
udelay(100);
break;
default:
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
return -EREMOTEIO;
}
}
DRM_ERROR("too many retries, giving up\n");
return -EREMOTEIO;
}
static int
intel_dp_i2c_init(struct intel_dp *intel_dp,
struct intel_connector *intel_connector, const char *name)
{
DRM_DEBUG_KMS("i2c_init %s\n", name);
intel_dp->algo.running = false;
intel_dp->algo.address = 0;
intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
intel_dp->adapter.owner = THIS_MODULE;
intel_dp->adapter.class = I2C_CLASS_DDC;
strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
intel_dp->adapter.algo_data = &intel_dp->algo;
intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
return i2c_dp_aux_add_bus(&intel_dp->adapter);
}
static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
int lane_count, clock;
int max_lane_count = intel_dp_max_lane_count(intel_dp);
int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
mode, adjusted_mode);
/*
* the mode->clock is used to calculate the Data&Link M/N
* of the pipe. For the eDP the fixed clock should be used.
*/
mode->clock = dev_priv->panel_fixed_mode->clock;
}
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
for (clock = 0; clock <= max_clock; clock++) {
int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
<= link_avail) {
intel_dp->link_bw = bws[clock];
intel_dp->lane_count = lane_count;
adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
DRM_DEBUG_KMS("Display port link bw %02x lane "
"count %d clock %d\n",
intel_dp->link_bw, intel_dp->lane_count,
adjusted_mode->clock);
return true;
}
}
}
if (is_edp(intel_dp)) {
/* okay we failed just pick the highest */
intel_dp->lane_count = max_lane_count;
intel_dp->link_bw = bws[max_clock];
adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
"count %d clock %d\n",
intel_dp->link_bw, intel_dp->lane_count,
adjusted_mode->clock);
return true;
}
return false;
}
struct intel_dp_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
static void
intel_dp_compute_m_n(int bpp,
int nlanes,
int pixel_clock,
int link_clock,
struct intel_dp_m_n *m_n)
{
m_n->tu = 64;
m_n->gmch_m = (pixel_clock * bpp) >> 3;
m_n->gmch_n = link_clock * nlanes;
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_encoder *encoder;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int lane_count = 4, bpp = 24;
struct intel_dp_m_n m_n;
int pipe = intel_crtc->pipe;
/*
* Find the lane count in the intel_encoder private
*/
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
struct intel_dp *intel_dp;
if (encoder->crtc != crtc)
continue;
intel_dp = enc_to_intel_dp(encoder);
if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
lane_count = intel_dp->lane_count;
break;
} else if (is_edp(intel_dp)) {
lane_count = dev_priv->edp.lanes;
bpp = dev_priv->edp.bpp;
break;
}
}
/*
* Compute the GMCH and Link ratios. The '3' here is
* the number of bytes_per_pixel post-LUT, which we always
* set up for 8-bits of R/G/B, or 3 bytes total.
*/
intel_dp_compute_m_n(bpp, lane_count,
mode->clock, adjusted_mode->clock, &m_n);
if (HAS_PCH_SPLIT(dev)) {
I915_WRITE(TRANSDATA_M1(pipe),
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
} else {
I915_WRITE(PIPE_GMCH_DATA_M(pipe),
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
}
}
static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_crtc *crtc = intel_dp->base.base.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= intel_dp->color_range;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
else
intel_dp->DP |= DP_LINK_TRAIN_OFF;
switch (intel_dp->lane_count) {
case 1:
intel_dp->DP |= DP_PORT_WIDTH_1;
break;
case 2:
intel_dp->DP |= DP_PORT_WIDTH_2;
break;
case 4:
intel_dp->DP |= DP_PORT_WIDTH_4;
break;
}
if (intel_dp->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
intel_dp->link_configuration[0] = intel_dp->link_bw;
intel_dp->link_configuration[1] = intel_dp->lane_count;
/*
* Check for DPCD version > 1.1 and enhanced framing support
*/
if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
intel_dp->DP |= DP_ENHANCED_FRAMING;
}
/* CPT DP's pipe select is decided in TRANS_DP_CTL */
if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
intel_dp->DP |= DP_PIPEB_SELECT;
if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
/* don't miss out required setting for eDP */
intel_dp->DP |= DP_PLL_ENABLE;
if (adjusted_mode->clock < 200000)
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
}
}
static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
/*
* If the panel wasn't on, make sure there's not a currently
* active PP sequence before enabling AUX VDD.
*/
if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
msleep(dev_priv->panel_t3);
pp = I915_READ(PCH_PP_CONTROL);
pp |= EDP_FORCE_VDD;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
}
static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
pp = I915_READ(PCH_PP_CONTROL);
pp &= ~EDP_FORCE_VDD;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
/* Make sure sequencer is idle before allowing subsequent activity */
msleep(dev_priv->panel_t12);
}
/* Returns true if the panel was already on when called */
static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
if (I915_READ(PCH_PP_STATUS) & PP_ON)
return true;
pp = I915_READ(PCH_PP_CONTROL);
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
5000))
DRM_ERROR("panel on wait timed out: 0x%08x\n",
I915_READ(PCH_PP_STATUS));
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
return false;
}
static void ironlake_edp_panel_off (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
pp = I915_READ(PCH_PP_CONTROL);
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
pp &= ~POWER_TARGET_ON;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
DRM_ERROR("panel off wait timed out: 0x%08x\n",
I915_READ(PCH_PP_STATUS));
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
}
static void ironlake_edp_backlight_on (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
DRM_DEBUG_KMS("\n");
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
msleep(300);
pp = I915_READ(PCH_PP_CONTROL);
pp |= EDP_BLC_ENABLE;
I915_WRITE(PCH_PP_CONTROL, pp);
}
static void ironlake_edp_backlight_off (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
DRM_DEBUG_KMS("\n");
pp = I915_READ(PCH_PP_CONTROL);
pp &= ~EDP_BLC_ENABLE;
I915_WRITE(PCH_PP_CONTROL, pp);
}
static void ironlake_edp_pll_on(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("\n");
dpa_ctl = I915_READ(DP_A);
dpa_ctl |= DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(200);
}
static void ironlake_edp_pll_off(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(200);
}
static void intel_dp_prepare(struct drm_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_device *dev = encoder->dev;
if (is_edp(intel_dp)) {
ironlake_edp_backlight_off(dev);
ironlake_edp_panel_off(dev);
if (!is_pch_edp(intel_dp))
ironlake_edp_pll_on(encoder);
else
ironlake_edp_pll_off(encoder);
}
intel_dp_link_down(intel_dp);
}
static void intel_dp_commit(struct drm_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_device *dev = encoder->dev;
if (is_edp(intel_dp))
ironlake_edp_panel_vdd_on(intel_dp);
intel_dp_start_link_train(intel_dp);
if (is_edp(intel_dp)) {
ironlake_edp_panel_on(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp);
}
intel_dp_complete_link_train(intel_dp);
if (is_edp(intel_dp))
ironlake_edp_backlight_on(dev);
}
static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
if (mode != DRM_MODE_DPMS_ON) {
if (is_edp(intel_dp))
ironlake_edp_backlight_off(dev);
intel_dp_link_down(intel_dp);
if (is_edp(intel_dp))
ironlake_edp_panel_off(dev);
if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
ironlake_edp_pll_off(encoder);
} else {
if (is_edp(intel_dp))
ironlake_edp_panel_vdd_on(intel_dp);
if (!(dp_reg & DP_PORT_EN)) {
intel_dp_start_link_train(intel_dp);
if (is_edp(intel_dp)) {
ironlake_edp_panel_on(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp);
}
intel_dp_complete_link_train(intel_dp);
}
if (is_edp(intel_dp))
ironlake_edp_backlight_on(dev);
}
intel_dp->dpms_mode = mode;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
intel_dp_get_link_status(struct intel_dp *intel_dp)
{
int ret;
ret = intel_dp_aux_native_read(intel_dp,
DP_LANE0_1_STATUS,
intel_dp->link_status, DP_LINK_STATUS_SIZE);
if (ret != DP_LINK_STATUS_SIZE)
return false;
return true;
}
static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
uint8_t l = intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
uint8_t l = intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#if 0
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
#endif
/*
* These are source-specific values; current Intel hardware supports
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
*/
#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
static void
intel_get_adjust_train(struct intel_dp *intel_dp)
{
uint8_t v = 0;
uint8_t p = 0;
int lane;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= I830_DP_VOLTAGE_MAX)
v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
if (p >= intel_dp_pre_emphasis_max(v))
p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_1200:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPHASIS_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPHASIS_3_5:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPHASIS_6:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPHASIS_9_5:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
uint8_t l = intel_dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
int lane;
uint8_t lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = intel_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
DP_LANE_CHANNEL_EQ_DONE|\
DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(struct intel_dp *intel_dp)
{
uint8_t lane_align;
uint8_t lane_status;
int lane;
lane_align = intel_dp_link_status(intel_dp->link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
lane_status = intel_get_lane_status(intel_dp->link_status, lane);
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
return false;
}
return true;
}
static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
uint32_t dp_reg_value,
uint8_t dp_train_pat)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
I915_WRITE(intel_dp->output_reg, dp_reg_value);
POSTING_READ(intel_dp->output_reg);
intel_dp_aux_native_write_1(intel_dp,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
ret = intel_dp_aux_native_write(intel_dp,
DP_TRAINING_LANE0_SET,
intel_dp->train_set, 4);
if (ret != 4)
return false;
return true;
}
/* Enable corresponding port and start training pattern 1 */
static void
intel_dp_start_link_train(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
int i;
uint8_t voltage;
bool clock_recovery = false;
int tries;
u32 reg;
uint32_t DP = intel_dp->DP;
/* Enable output, wait for it to become active */
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
intel_wait_for_vblank(dev, intel_crtc->pipe);
/* Write the link configuration data */
intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
intel_dp->link_configuration,
DP_LINK_CONFIGURATION_SIZE);
DP |= DP_PORT_EN;
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
DP &= ~DP_LINK_TRAIN_MASK_CPT;
else
DP &= ~DP_LINK_TRAIN_MASK;
memset(intel_dp->train_set, 0, 4);
voltage = 0xff;
tries = 0;
clock_recovery = false;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels;
if (IS_GEN6(dev) && is_edp(intel_dp)) {
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
else
reg = DP | DP_LINK_TRAIN_PAT_1;
if (!intel_dp_set_link_train(intel_dp, reg,
DP_TRAINING_PATTERN_1))
break;
/* Set training pattern 1 */
udelay(100);
if (!intel_dp_get_link_status(intel_dp))
break;
if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
clock_recovery = true;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count)
break;
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == 5)
break;
} else
tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new intel_dp->train_set as requested by target */
intel_get_adjust_train(intel_dp);
}
intel_dp->DP = DP;
}
static void
intel_dp_complete_link_train(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool channel_eq = false;
int tries, cr_tries;
u32 reg;
uint32_t DP = intel_dp->DP;
/* channel equalization */
tries = 0;
cr_tries = 0;
channel_eq = false;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels;
if (cr_tries > 5) {
DRM_ERROR("failed to train DP, aborting\n");
intel_dp_link_down(intel_dp);
break;
}
if (IS_GEN6(dev) && is_edp(intel_dp)) {
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
else
reg = DP | DP_LINK_TRAIN_PAT_2;
/* channel eq pattern */
if (!intel_dp_set_link_train(intel_dp, reg,
DP_TRAINING_PATTERN_2))
break;
udelay(400);
if (!intel_dp_get_link_status(intel_dp))
break;
/* Make sure clock is still ok */
if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
intel_dp_start_link_train(intel_dp);
cr_tries++;
continue;
}
if (intel_channel_eq_ok(intel_dp)) {
channel_eq = true;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
intel_dp_link_down(intel_dp);
intel_dp_start_link_train(intel_dp);
tries = 0;
cr_tries++;
continue;
}
/* Compute new intel_dp->train_set as requested by target */
intel_get_adjust_train(intel_dp);
++tries;
}
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
reg = DP | DP_LINK_TRAIN_OFF_CPT;
else
reg = DP | DP_LINK_TRAIN_OFF;
I915_WRITE(intel_dp->output_reg, reg);
POSTING_READ(intel_dp->output_reg);
intel_dp_aux_native_write_1(intel_dp,
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}
static void
intel_dp_link_down(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t DP = intel_dp->DP;
if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
return;
DRM_DEBUG_KMS("\n");
if (is_edp(intel_dp)) {
DP &= ~DP_PLL_ENABLE;
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
udelay(100);
}
if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
} else {
DP &= ~DP_LINK_TRAIN_MASK;
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
}
POSTING_READ(intel_dp->output_reg);
msleep(17);
if (is_edp(intel_dp))
DP |= DP_LINK_TRAIN_OFF;
if (!HAS_PCH_CPT(dev) &&
I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
/* Hardware workaround: leaving our transcoder select
* set to transcoder B while it's off will prevent the
* corresponding HDMI output on transcoder A.
*
* Combine this with another hardware workaround:
* transcoder select bit can only be cleared while the
* port is enabled.
*/
DP &= ~DP_PIPEB_SELECT;
I915_WRITE(intel_dp->output_reg, DP);
/* Changes to enable or select take place the vblank
* after being written.
*/
intel_wait_for_vblank(dev, intel_crtc->pipe);
}
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*/
static void
intel_dp_check_link_status(struct intel_dp *intel_dp)
{
if (!intel_dp->base.base.crtc)
return;
if (!intel_dp_get_link_status(intel_dp)) {
intel_dp_link_down(intel_dp);
return;
}
if (!intel_channel_eq_ok(intel_dp)) {
intel_dp_start_link_train(intel_dp);
intel_dp_complete_link_train(intel_dp);
}
}
static enum drm_connector_status
ironlake_dp_detect(struct intel_dp *intel_dp)
{
enum drm_connector_status status;
/* Can't disconnect eDP, but you can close the lid... */
if (is_edp(intel_dp)) {
status = intel_panel_detect(intel_dp->base.base.dev);
if (status == connector_status_unknown)
status = connector_status_connected;
return status;
}
status = connector_status_disconnected;
if (intel_dp_aux_native_read(intel_dp,
0x000, intel_dp->dpcd,
sizeof (intel_dp->dpcd))
== sizeof(intel_dp->dpcd)) {
if (intel_dp->dpcd[0] != 0)
status = connector_status_connected;
}
DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
return status;
}
static enum drm_connector_status
g4x_dp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum drm_connector_status status;
uint32_t temp, bit;
switch (intel_dp->output_reg) {
case DP_B:
bit = DPB_HOTPLUG_INT_STATUS;
break;
case DP_C:
bit = DPC_HOTPLUG_INT_STATUS;
break;
case DP_D:
bit = DPD_HOTPLUG_INT_STATUS;
break;
default:
return connector_status_unknown;
}
temp = I915_READ(PORT_HOTPLUG_STAT);
if ((temp & bit) == 0)
return connector_status_disconnected;
status = connector_status_disconnected;
if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
{
if (intel_dp->dpcd[0] != 0)
status = connector_status_connected;
}
return status;
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
*
* \return true if DP port is connected.
* \return false if DP port is disconnected.
*/
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_device *dev = intel_dp->base.base.dev;
enum drm_connector_status status;
struct edid *edid = NULL;
intel_dp->has_audio = false;
if (HAS_PCH_SPLIT(dev))
status = ironlake_dp_detect(intel_dp);
else
status = g4x_dp_detect(intel_dp);
if (status != connector_status_connected)
return status;
if (intel_dp->force_audio) {
intel_dp->has_audio = intel_dp->force_audio > 0;
} else {
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
intel_dp->has_audio = drm_detect_monitor_audio(edid);
connector->display_info.raw_edid = NULL;
kfree(edid);
}
}
return connector_status_connected;
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_device *dev = intel_dp->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
/* We should parse the EDID data and find out if it has an audio sink
*/
ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
if (ret) {
if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
struct drm_display_mode *newmode;
list_for_each_entry(newmode, &connector->probed_modes,
head) {
if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
dev_priv->panel_fixed_mode =
drm_mode_duplicate(dev, newmode);
break;
}
}
}
return ret;
}
/* if eDP has no EDID, try to use fixed panel mode from VBT */
if (is_edp(intel_dp)) {
if (dev_priv->panel_fixed_mode != NULL) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
drm_mode_probed_add(connector, mode);
return 1;
}
}
return 0;
}
static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct edid *edid;
bool has_audio = false;
edid = drm_get_edid(connector, &intel_dp->adapter);
if (edid) {
has_audio = drm_detect_monitor_audio(edid);
connector->display_info.raw_edid = NULL;
kfree(edid);
}
return has_audio;
}
static int
intel_dp_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
struct intel_dp *intel_dp = intel_attached_dp(connector);
int ret;
ret = drm_connector_property_set_value(connector, property, val);
if (ret)
return ret;
if (property == intel_dp->force_audio_property) {
int i = val;
bool has_audio;
if (i == intel_dp->force_audio)
return 0;
intel_dp->force_audio = i;
if (i == 0)
has_audio = intel_dp_detect_audio(connector);
else
has_audio = i > 0;
if (has_audio == intel_dp->has_audio)
return 0;
intel_dp->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
if (val == !!intel_dp->color_range)
return 0;
intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
goto done;
}
return -EINVAL;
done:
if (intel_dp->base.base.crtc) {
struct drm_crtc *crtc = intel_dp->base.base.crtc;
drm_crtc_helper_set_mode(crtc, &crtc->mode,
crtc->x, crtc->y,
crtc->fb);
}
return 0;
}
static void
intel_dp_destroy (struct drm_connector *connector)
{
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(connector);
}
static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
i2c_del_adapter(&intel_dp->adapter);
drm_encoder_cleanup(encoder);
kfree(intel_dp);
}
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
.dpms = intel_dp_dpms,
.mode_fixup = intel_dp_mode_fixup,
.prepare = intel_dp_prepare,
.mode_set = intel_dp_mode_set,
.commit = intel_dp_commit,
};
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_dp_set_property,
.destroy = intel_dp_destroy,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.best_encoder = intel_best_encoder,
};
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.destroy = intel_dp_encoder_destroy,
};
static void
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
intel_dp_check_link_status(intel_dp);
}
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel (struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_encoder *encoder;
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
struct intel_dp *intel_dp;
if (encoder->crtc != crtc)
continue;
intel_dp = enc_to_intel_dp(encoder);
if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
return intel_dp->output_reg;
}
return -1;
}
/* check the VBT to see whether the eDP is on DP-D port */
bool intel_dpd_is_edp(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct child_device_config *p_child;
int i;
if (!dev_priv->child_dev_num)
return false;
for (i = 0; i < dev_priv->child_dev_num; i++) {
p_child = dev_priv->child_dev + i;
if (p_child->dvo_port == PORT_IDPD &&
p_child->device_type == DEVICE_TYPE_eDP)
return true;
}
return false;
}
static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
intel_dp->force_audio_property =
drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
if (intel_dp->force_audio_property) {
intel_dp->force_audio_property->values[0] = -1;
intel_dp->force_audio_property->values[1] = 1;
drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
}
intel_attach_broadcast_rgb_property(connector);
}
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
struct intel_dp *intel_dp;
struct intel_encoder *intel_encoder;
struct intel_connector *intel_connector;
const char *name = NULL;
int type;
intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
if (!intel_dp)
return;
intel_dp->output_reg = output_reg;
intel_dp->dpms_mode = -1;
intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
if (!intel_connector) {
kfree(intel_dp);
return;
}
intel_encoder = &intel_dp->base;
if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
if (intel_dpd_is_edp(dev))
intel_dp->is_pch_edp = true;
if (output_reg == DP_A || is_pch_edp(intel_dp)) {
type = DRM_MODE_CONNECTOR_eDP;
intel_encoder->type = INTEL_OUTPUT_EDP;
} else {
type = DRM_MODE_CONNECTOR_DisplayPort;
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
}
connector = &intel_connector->base;
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
connector->polled = DRM_CONNECTOR_POLL_HPD;
if (output_reg == DP_B || output_reg == PCH_DP_B)
intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
else if (output_reg == DP_C || output_reg == PCH_DP_C)
intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
else if (output_reg == DP_D || output_reg == PCH_DP_D)
intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
if (is_edp(intel_dp))
intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
intel_connector_attach_encoder(intel_connector, intel_encoder);
drm_sysfs_connector_add(connector);
/* Set up the DDC bus. */
switch (output_reg) {
case DP_A:
name = "DPDDC-A";
break;
case DP_B:
case PCH_DP_B:
dev_priv->hotplug_supported_mask |=
HDMIB_HOTPLUG_INT_STATUS;
name = "DPDDC-B";
break;
case DP_C:
case PCH_DP_C:
dev_priv->hotplug_supported_mask |=
HDMIC_HOTPLUG_INT_STATUS;
name = "DPDDC-C";
break;
case DP_D:
case PCH_DP_D:
dev_priv->hotplug_supported_mask |=
HDMID_HOTPLUG_INT_STATUS;
name = "DPDDC-D";
break;
}
intel_dp_i2c_init(intel_dp, intel_connector, name);
/* Cache some DPCD data in the eDP case */
if (is_edp(intel_dp)) {
int ret;
u32 pp_on, pp_div;
pp_on = I915_READ(PCH_PP_ON_DELAYS);
pp_div = I915_READ(PCH_PP_DIVISOR);
/* Get T3 & T12 values (note: VESA not bspec terminology) */
dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
dev_priv->panel_t3 /= 10; /* t3 in 100us units */
dev_priv->panel_t12 = pp_div & 0xf;
dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
ironlake_edp_panel_vdd_on(intel_dp);
ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
intel_dp->dpcd,
sizeof(intel_dp->dpcd));
ironlake_edp_panel_vdd_off(intel_dp);
if (ret == sizeof(intel_dp->dpcd)) {
if (intel_dp->dpcd[0] >= 0x11)
dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
} else {
/* if this fails, presume the device is a ghost */
DRM_INFO("failed to retrieve link info, disabling eDP\n");
intel_dp_encoder_destroy(&intel_dp->base.base);
intel_dp_destroy(&intel_connector->base);
return;
}
}
intel_encoder->hot_plug = intel_dp_hot_plug;
if (is_edp(intel_dp)) {
/* initialize panel mode from VBT if available for eDP */
if (dev_priv->lfp_lvds_vbt_mode) {
dev_priv->panel_fixed_mode =
drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
if (dev_priv->panel_fixed_mode) {
dev_priv->panel_fixed_mode->type |=
DRM_MODE_TYPE_PREFERRED;
}
}
}
intel_dp_add_properties(intel_dp, connector);
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev) && !IS_GM45(dev)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
}