mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 16:56:47 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1065 lines
25 KiB
C
1065 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Dynamic function tracing support.
|
|
*
|
|
* Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
|
|
*
|
|
* Thanks goes to Ingo Molnar, for suggesting the idea.
|
|
* Mathieu Desnoyers, for suggesting postponing the modifications.
|
|
* Arjan van de Ven, for keeping me straight, and explaining to me
|
|
* the dangers of modifying code on the run.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <trace/syscall.h>
|
|
|
|
#include <asm/set_memory.h>
|
|
#include <asm/kprobes.h>
|
|
#include <asm/ftrace.h>
|
|
#include <asm/nops.h>
|
|
|
|
#ifdef CONFIG_DYNAMIC_FTRACE
|
|
|
|
int ftrace_arch_code_modify_prepare(void)
|
|
{
|
|
set_kernel_text_rw();
|
|
set_all_modules_text_rw();
|
|
return 0;
|
|
}
|
|
|
|
int ftrace_arch_code_modify_post_process(void)
|
|
{
|
|
set_all_modules_text_ro();
|
|
set_kernel_text_ro();
|
|
return 0;
|
|
}
|
|
|
|
union ftrace_code_union {
|
|
char code[MCOUNT_INSN_SIZE];
|
|
struct {
|
|
unsigned char e8;
|
|
int offset;
|
|
} __attribute__((packed));
|
|
};
|
|
|
|
static int ftrace_calc_offset(long ip, long addr)
|
|
{
|
|
return (int)(addr - ip);
|
|
}
|
|
|
|
static unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
|
|
{
|
|
static union ftrace_code_union calc;
|
|
|
|
calc.e8 = 0xe8;
|
|
calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
|
|
|
|
/*
|
|
* No locking needed, this must be called via kstop_machine
|
|
* which in essence is like running on a uniprocessor machine.
|
|
*/
|
|
return calc.code;
|
|
}
|
|
|
|
static inline int
|
|
within(unsigned long addr, unsigned long start, unsigned long end)
|
|
{
|
|
return addr >= start && addr < end;
|
|
}
|
|
|
|
static unsigned long text_ip_addr(unsigned long ip)
|
|
{
|
|
/*
|
|
* On x86_64, kernel text mappings are mapped read-only, so we use
|
|
* the kernel identity mapping instead of the kernel text mapping
|
|
* to modify the kernel text.
|
|
*
|
|
* For 32bit kernels, these mappings are same and we can use
|
|
* kernel identity mapping to modify code.
|
|
*/
|
|
if (within(ip, (unsigned long)_text, (unsigned long)_etext))
|
|
ip = (unsigned long)__va(__pa_symbol(ip));
|
|
|
|
return ip;
|
|
}
|
|
|
|
static const unsigned char *ftrace_nop_replace(void)
|
|
{
|
|
return ideal_nops[NOP_ATOMIC5];
|
|
}
|
|
|
|
static int
|
|
ftrace_modify_code_direct(unsigned long ip, unsigned const char *old_code,
|
|
unsigned const char *new_code)
|
|
{
|
|
unsigned char replaced[MCOUNT_INSN_SIZE];
|
|
|
|
ftrace_expected = old_code;
|
|
|
|
/*
|
|
* Note:
|
|
* We are paranoid about modifying text, as if a bug was to happen, it
|
|
* could cause us to read or write to someplace that could cause harm.
|
|
* Carefully read and modify the code with probe_kernel_*(), and make
|
|
* sure what we read is what we expected it to be before modifying it.
|
|
*/
|
|
|
|
/* read the text we want to modify */
|
|
if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
|
|
return -EFAULT;
|
|
|
|
/* Make sure it is what we expect it to be */
|
|
if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
|
|
return -EINVAL;
|
|
|
|
ip = text_ip_addr(ip);
|
|
|
|
/* replace the text with the new text */
|
|
if (probe_kernel_write((void *)ip, new_code, MCOUNT_INSN_SIZE))
|
|
return -EPERM;
|
|
|
|
sync_core();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ftrace_make_nop(struct module *mod,
|
|
struct dyn_ftrace *rec, unsigned long addr)
|
|
{
|
|
unsigned const char *new, *old;
|
|
unsigned long ip = rec->ip;
|
|
|
|
old = ftrace_call_replace(ip, addr);
|
|
new = ftrace_nop_replace();
|
|
|
|
/*
|
|
* On boot up, and when modules are loaded, the MCOUNT_ADDR
|
|
* is converted to a nop, and will never become MCOUNT_ADDR
|
|
* again. This code is either running before SMP (on boot up)
|
|
* or before the code will ever be executed (module load).
|
|
* We do not want to use the breakpoint version in this case,
|
|
* just modify the code directly.
|
|
*/
|
|
if (addr == MCOUNT_ADDR)
|
|
return ftrace_modify_code_direct(rec->ip, old, new);
|
|
|
|
ftrace_expected = NULL;
|
|
|
|
/* Normal cases use add_brk_on_nop */
|
|
WARN_ONCE(1, "invalid use of ftrace_make_nop");
|
|
return -EINVAL;
|
|
}
|
|
|
|
int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
|
|
{
|
|
unsigned const char *new, *old;
|
|
unsigned long ip = rec->ip;
|
|
|
|
old = ftrace_nop_replace();
|
|
new = ftrace_call_replace(ip, addr);
|
|
|
|
/* Should only be called when module is loaded */
|
|
return ftrace_modify_code_direct(rec->ip, old, new);
|
|
}
|
|
|
|
/*
|
|
* The modifying_ftrace_code is used to tell the breakpoint
|
|
* handler to call ftrace_int3_handler(). If it fails to
|
|
* call this handler for a breakpoint added by ftrace, then
|
|
* the kernel may crash.
|
|
*
|
|
* As atomic_writes on x86 do not need a barrier, we do not
|
|
* need to add smp_mb()s for this to work. It is also considered
|
|
* that we can not read the modifying_ftrace_code before
|
|
* executing the breakpoint. That would be quite remarkable if
|
|
* it could do that. Here's the flow that is required:
|
|
*
|
|
* CPU-0 CPU-1
|
|
*
|
|
* atomic_inc(mfc);
|
|
* write int3s
|
|
* <trap-int3> // implicit (r)mb
|
|
* if (atomic_read(mfc))
|
|
* call ftrace_int3_handler()
|
|
*
|
|
* Then when we are finished:
|
|
*
|
|
* atomic_dec(mfc);
|
|
*
|
|
* If we hit a breakpoint that was not set by ftrace, it does not
|
|
* matter if ftrace_int3_handler() is called or not. It will
|
|
* simply be ignored. But it is crucial that a ftrace nop/caller
|
|
* breakpoint is handled. No other user should ever place a
|
|
* breakpoint on an ftrace nop/caller location. It must only
|
|
* be done by this code.
|
|
*/
|
|
atomic_t modifying_ftrace_code __read_mostly;
|
|
|
|
static int
|
|
ftrace_modify_code(unsigned long ip, unsigned const char *old_code,
|
|
unsigned const char *new_code);
|
|
|
|
/*
|
|
* Should never be called:
|
|
* As it is only called by __ftrace_replace_code() which is called by
|
|
* ftrace_replace_code() that x86 overrides, and by ftrace_update_code()
|
|
* which is called to turn mcount into nops or nops into function calls
|
|
* but not to convert a function from not using regs to one that uses
|
|
* regs, which ftrace_modify_call() is for.
|
|
*/
|
|
int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr,
|
|
unsigned long addr)
|
|
{
|
|
WARN_ON(1);
|
|
ftrace_expected = NULL;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static unsigned long ftrace_update_func;
|
|
|
|
static int update_ftrace_func(unsigned long ip, void *new)
|
|
{
|
|
unsigned char old[MCOUNT_INSN_SIZE];
|
|
int ret;
|
|
|
|
memcpy(old, (void *)ip, MCOUNT_INSN_SIZE);
|
|
|
|
ftrace_update_func = ip;
|
|
/* Make sure the breakpoints see the ftrace_update_func update */
|
|
smp_wmb();
|
|
|
|
/* See comment above by declaration of modifying_ftrace_code */
|
|
atomic_inc(&modifying_ftrace_code);
|
|
|
|
ret = ftrace_modify_code(ip, old, new);
|
|
|
|
atomic_dec(&modifying_ftrace_code);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ftrace_update_ftrace_func(ftrace_func_t func)
|
|
{
|
|
unsigned long ip = (unsigned long)(&ftrace_call);
|
|
unsigned char *new;
|
|
int ret;
|
|
|
|
new = ftrace_call_replace(ip, (unsigned long)func);
|
|
ret = update_ftrace_func(ip, new);
|
|
|
|
/* Also update the regs callback function */
|
|
if (!ret) {
|
|
ip = (unsigned long)(&ftrace_regs_call);
|
|
new = ftrace_call_replace(ip, (unsigned long)func);
|
|
ret = update_ftrace_func(ip, new);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int is_ftrace_caller(unsigned long ip)
|
|
{
|
|
if (ip == ftrace_update_func)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A breakpoint was added to the code address we are about to
|
|
* modify, and this is the handle that will just skip over it.
|
|
* We are either changing a nop into a trace call, or a trace
|
|
* call to a nop. While the change is taking place, we treat
|
|
* it just like it was a nop.
|
|
*/
|
|
int ftrace_int3_handler(struct pt_regs *regs)
|
|
{
|
|
unsigned long ip;
|
|
|
|
if (WARN_ON_ONCE(!regs))
|
|
return 0;
|
|
|
|
ip = regs->ip - 1;
|
|
if (!ftrace_location(ip) && !is_ftrace_caller(ip))
|
|
return 0;
|
|
|
|
regs->ip += MCOUNT_INSN_SIZE - 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int ftrace_write(unsigned long ip, const char *val, int size)
|
|
{
|
|
ip = text_ip_addr(ip);
|
|
|
|
if (probe_kernel_write((void *)ip, val, size))
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int add_break(unsigned long ip, const char *old)
|
|
{
|
|
unsigned char replaced[MCOUNT_INSN_SIZE];
|
|
unsigned char brk = BREAKPOINT_INSTRUCTION;
|
|
|
|
if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
|
|
return -EFAULT;
|
|
|
|
ftrace_expected = old;
|
|
|
|
/* Make sure it is what we expect it to be */
|
|
if (memcmp(replaced, old, MCOUNT_INSN_SIZE) != 0)
|
|
return -EINVAL;
|
|
|
|
return ftrace_write(ip, &brk, 1);
|
|
}
|
|
|
|
static int add_brk_on_call(struct dyn_ftrace *rec, unsigned long addr)
|
|
{
|
|
unsigned const char *old;
|
|
unsigned long ip = rec->ip;
|
|
|
|
old = ftrace_call_replace(ip, addr);
|
|
|
|
return add_break(rec->ip, old);
|
|
}
|
|
|
|
|
|
static int add_brk_on_nop(struct dyn_ftrace *rec)
|
|
{
|
|
unsigned const char *old;
|
|
|
|
old = ftrace_nop_replace();
|
|
|
|
return add_break(rec->ip, old);
|
|
}
|
|
|
|
static int add_breakpoints(struct dyn_ftrace *rec, int enable)
|
|
{
|
|
unsigned long ftrace_addr;
|
|
int ret;
|
|
|
|
ftrace_addr = ftrace_get_addr_curr(rec);
|
|
|
|
ret = ftrace_test_record(rec, enable);
|
|
|
|
switch (ret) {
|
|
case FTRACE_UPDATE_IGNORE:
|
|
return 0;
|
|
|
|
case FTRACE_UPDATE_MAKE_CALL:
|
|
/* converting nop to call */
|
|
return add_brk_on_nop(rec);
|
|
|
|
case FTRACE_UPDATE_MODIFY_CALL:
|
|
case FTRACE_UPDATE_MAKE_NOP:
|
|
/* converting a call to a nop */
|
|
return add_brk_on_call(rec, ftrace_addr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On error, we need to remove breakpoints. This needs to
|
|
* be done caefully. If the address does not currently have a
|
|
* breakpoint, we know we are done. Otherwise, we look at the
|
|
* remaining 4 bytes of the instruction. If it matches a nop
|
|
* we replace the breakpoint with the nop. Otherwise we replace
|
|
* it with the call instruction.
|
|
*/
|
|
static int remove_breakpoint(struct dyn_ftrace *rec)
|
|
{
|
|
unsigned char ins[MCOUNT_INSN_SIZE];
|
|
unsigned char brk = BREAKPOINT_INSTRUCTION;
|
|
const unsigned char *nop;
|
|
unsigned long ftrace_addr;
|
|
unsigned long ip = rec->ip;
|
|
|
|
/* If we fail the read, just give up */
|
|
if (probe_kernel_read(ins, (void *)ip, MCOUNT_INSN_SIZE))
|
|
return -EFAULT;
|
|
|
|
/* If this does not have a breakpoint, we are done */
|
|
if (ins[0] != brk)
|
|
return 0;
|
|
|
|
nop = ftrace_nop_replace();
|
|
|
|
/*
|
|
* If the last 4 bytes of the instruction do not match
|
|
* a nop, then we assume that this is a call to ftrace_addr.
|
|
*/
|
|
if (memcmp(&ins[1], &nop[1], MCOUNT_INSN_SIZE - 1) != 0) {
|
|
/*
|
|
* For extra paranoidism, we check if the breakpoint is on
|
|
* a call that would actually jump to the ftrace_addr.
|
|
* If not, don't touch the breakpoint, we make just create
|
|
* a disaster.
|
|
*/
|
|
ftrace_addr = ftrace_get_addr_new(rec);
|
|
nop = ftrace_call_replace(ip, ftrace_addr);
|
|
|
|
if (memcmp(&ins[1], &nop[1], MCOUNT_INSN_SIZE - 1) == 0)
|
|
goto update;
|
|
|
|
/* Check both ftrace_addr and ftrace_old_addr */
|
|
ftrace_addr = ftrace_get_addr_curr(rec);
|
|
nop = ftrace_call_replace(ip, ftrace_addr);
|
|
|
|
ftrace_expected = nop;
|
|
|
|
if (memcmp(&ins[1], &nop[1], MCOUNT_INSN_SIZE - 1) != 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
update:
|
|
return ftrace_write(ip, nop, 1);
|
|
}
|
|
|
|
static int add_update_code(unsigned long ip, unsigned const char *new)
|
|
{
|
|
/* skip breakpoint */
|
|
ip++;
|
|
new++;
|
|
return ftrace_write(ip, new, MCOUNT_INSN_SIZE - 1);
|
|
}
|
|
|
|
static int add_update_call(struct dyn_ftrace *rec, unsigned long addr)
|
|
{
|
|
unsigned long ip = rec->ip;
|
|
unsigned const char *new;
|
|
|
|
new = ftrace_call_replace(ip, addr);
|
|
return add_update_code(ip, new);
|
|
}
|
|
|
|
static int add_update_nop(struct dyn_ftrace *rec)
|
|
{
|
|
unsigned long ip = rec->ip;
|
|
unsigned const char *new;
|
|
|
|
new = ftrace_nop_replace();
|
|
return add_update_code(ip, new);
|
|
}
|
|
|
|
static int add_update(struct dyn_ftrace *rec, int enable)
|
|
{
|
|
unsigned long ftrace_addr;
|
|
int ret;
|
|
|
|
ret = ftrace_test_record(rec, enable);
|
|
|
|
ftrace_addr = ftrace_get_addr_new(rec);
|
|
|
|
switch (ret) {
|
|
case FTRACE_UPDATE_IGNORE:
|
|
return 0;
|
|
|
|
case FTRACE_UPDATE_MODIFY_CALL:
|
|
case FTRACE_UPDATE_MAKE_CALL:
|
|
/* converting nop to call */
|
|
return add_update_call(rec, ftrace_addr);
|
|
|
|
case FTRACE_UPDATE_MAKE_NOP:
|
|
/* converting a call to a nop */
|
|
return add_update_nop(rec);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int finish_update_call(struct dyn_ftrace *rec, unsigned long addr)
|
|
{
|
|
unsigned long ip = rec->ip;
|
|
unsigned const char *new;
|
|
|
|
new = ftrace_call_replace(ip, addr);
|
|
|
|
return ftrace_write(ip, new, 1);
|
|
}
|
|
|
|
static int finish_update_nop(struct dyn_ftrace *rec)
|
|
{
|
|
unsigned long ip = rec->ip;
|
|
unsigned const char *new;
|
|
|
|
new = ftrace_nop_replace();
|
|
|
|
return ftrace_write(ip, new, 1);
|
|
}
|
|
|
|
static int finish_update(struct dyn_ftrace *rec, int enable)
|
|
{
|
|
unsigned long ftrace_addr;
|
|
int ret;
|
|
|
|
ret = ftrace_update_record(rec, enable);
|
|
|
|
ftrace_addr = ftrace_get_addr_new(rec);
|
|
|
|
switch (ret) {
|
|
case FTRACE_UPDATE_IGNORE:
|
|
return 0;
|
|
|
|
case FTRACE_UPDATE_MODIFY_CALL:
|
|
case FTRACE_UPDATE_MAKE_CALL:
|
|
/* converting nop to call */
|
|
return finish_update_call(rec, ftrace_addr);
|
|
|
|
case FTRACE_UPDATE_MAKE_NOP:
|
|
/* converting a call to a nop */
|
|
return finish_update_nop(rec);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void do_sync_core(void *data)
|
|
{
|
|
sync_core();
|
|
}
|
|
|
|
static void run_sync(void)
|
|
{
|
|
int enable_irqs;
|
|
|
|
/* No need to sync if there's only one CPU */
|
|
if (num_online_cpus() == 1)
|
|
return;
|
|
|
|
enable_irqs = irqs_disabled();
|
|
|
|
/* We may be called with interrupts disabled (on bootup). */
|
|
if (enable_irqs)
|
|
local_irq_enable();
|
|
on_each_cpu(do_sync_core, NULL, 1);
|
|
if (enable_irqs)
|
|
local_irq_disable();
|
|
}
|
|
|
|
void ftrace_replace_code(int enable)
|
|
{
|
|
struct ftrace_rec_iter *iter;
|
|
struct dyn_ftrace *rec;
|
|
const char *report = "adding breakpoints";
|
|
int count = 0;
|
|
int ret;
|
|
|
|
for_ftrace_rec_iter(iter) {
|
|
rec = ftrace_rec_iter_record(iter);
|
|
|
|
ret = add_breakpoints(rec, enable);
|
|
if (ret)
|
|
goto remove_breakpoints;
|
|
count++;
|
|
}
|
|
|
|
run_sync();
|
|
|
|
report = "updating code";
|
|
count = 0;
|
|
|
|
for_ftrace_rec_iter(iter) {
|
|
rec = ftrace_rec_iter_record(iter);
|
|
|
|
ret = add_update(rec, enable);
|
|
if (ret)
|
|
goto remove_breakpoints;
|
|
count++;
|
|
}
|
|
|
|
run_sync();
|
|
|
|
report = "removing breakpoints";
|
|
count = 0;
|
|
|
|
for_ftrace_rec_iter(iter) {
|
|
rec = ftrace_rec_iter_record(iter);
|
|
|
|
ret = finish_update(rec, enable);
|
|
if (ret)
|
|
goto remove_breakpoints;
|
|
count++;
|
|
}
|
|
|
|
run_sync();
|
|
|
|
return;
|
|
|
|
remove_breakpoints:
|
|
pr_warn("Failed on %s (%d):\n", report, count);
|
|
ftrace_bug(ret, rec);
|
|
for_ftrace_rec_iter(iter) {
|
|
rec = ftrace_rec_iter_record(iter);
|
|
/*
|
|
* Breakpoints are handled only when this function is in
|
|
* progress. The system could not work with them.
|
|
*/
|
|
if (remove_breakpoint(rec))
|
|
BUG();
|
|
}
|
|
run_sync();
|
|
}
|
|
|
|
static int
|
|
ftrace_modify_code(unsigned long ip, unsigned const char *old_code,
|
|
unsigned const char *new_code)
|
|
{
|
|
int ret;
|
|
|
|
ret = add_break(ip, old_code);
|
|
if (ret)
|
|
goto out;
|
|
|
|
run_sync();
|
|
|
|
ret = add_update_code(ip, new_code);
|
|
if (ret)
|
|
goto fail_update;
|
|
|
|
run_sync();
|
|
|
|
ret = ftrace_write(ip, new_code, 1);
|
|
/*
|
|
* The breakpoint is handled only when this function is in progress.
|
|
* The system could not work if we could not remove it.
|
|
*/
|
|
BUG_ON(ret);
|
|
out:
|
|
run_sync();
|
|
return ret;
|
|
|
|
fail_update:
|
|
/* Also here the system could not work with the breakpoint */
|
|
if (ftrace_write(ip, old_code, 1))
|
|
BUG();
|
|
goto out;
|
|
}
|
|
|
|
void arch_ftrace_update_code(int command)
|
|
{
|
|
/* See comment above by declaration of modifying_ftrace_code */
|
|
atomic_inc(&modifying_ftrace_code);
|
|
|
|
ftrace_modify_all_code(command);
|
|
|
|
atomic_dec(&modifying_ftrace_code);
|
|
}
|
|
|
|
int __init ftrace_dyn_arch_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_X86_64) || defined(CONFIG_FUNCTION_GRAPH_TRACER)
|
|
static unsigned char *ftrace_jmp_replace(unsigned long ip, unsigned long addr)
|
|
{
|
|
static union ftrace_code_union calc;
|
|
|
|
/* Jmp not a call (ignore the .e8) */
|
|
calc.e8 = 0xe9;
|
|
calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
|
|
|
|
/*
|
|
* ftrace external locks synchronize the access to the static variable.
|
|
*/
|
|
return calc.code;
|
|
}
|
|
#endif
|
|
|
|
/* Currently only x86_64 supports dynamic trampolines */
|
|
#ifdef CONFIG_X86_64
|
|
|
|
#ifdef CONFIG_MODULES
|
|
#include <linux/moduleloader.h>
|
|
/* Module allocation simplifies allocating memory for code */
|
|
static inline void *alloc_tramp(unsigned long size)
|
|
{
|
|
return module_alloc(size);
|
|
}
|
|
static inline void tramp_free(void *tramp, int size)
|
|
{
|
|
int npages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
set_memory_nx((unsigned long)tramp, npages);
|
|
set_memory_rw((unsigned long)tramp, npages);
|
|
module_memfree(tramp);
|
|
}
|
|
#else
|
|
/* Trampolines can only be created if modules are supported */
|
|
static inline void *alloc_tramp(unsigned long size)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline void tramp_free(void *tramp, int size) { }
|
|
#endif
|
|
|
|
/* Defined as markers to the end of the ftrace default trampolines */
|
|
extern void ftrace_regs_caller_end(void);
|
|
extern void ftrace_epilogue(void);
|
|
extern void ftrace_caller_op_ptr(void);
|
|
extern void ftrace_regs_caller_op_ptr(void);
|
|
|
|
/* movq function_trace_op(%rip), %rdx */
|
|
/* 0x48 0x8b 0x15 <offset-to-ftrace_trace_op (4 bytes)> */
|
|
#define OP_REF_SIZE 7
|
|
|
|
/*
|
|
* The ftrace_ops is passed to the function callback. Since the
|
|
* trampoline only services a single ftrace_ops, we can pass in
|
|
* that ops directly.
|
|
*
|
|
* The ftrace_op_code_union is used to create a pointer to the
|
|
* ftrace_ops that will be passed to the callback function.
|
|
*/
|
|
union ftrace_op_code_union {
|
|
char code[OP_REF_SIZE];
|
|
struct {
|
|
char op[3];
|
|
int offset;
|
|
} __attribute__((packed));
|
|
};
|
|
|
|
static unsigned long
|
|
create_trampoline(struct ftrace_ops *ops, unsigned int *tramp_size)
|
|
{
|
|
unsigned const char *jmp;
|
|
unsigned long start_offset;
|
|
unsigned long end_offset;
|
|
unsigned long op_offset;
|
|
unsigned long offset;
|
|
unsigned long size;
|
|
unsigned long ip;
|
|
unsigned long *ptr;
|
|
void *trampoline;
|
|
/* 48 8b 15 <offset> is movq <offset>(%rip), %rdx */
|
|
unsigned const char op_ref[] = { 0x48, 0x8b, 0x15 };
|
|
union ftrace_op_code_union op_ptr;
|
|
int ret;
|
|
|
|
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
|
|
start_offset = (unsigned long)ftrace_regs_caller;
|
|
end_offset = (unsigned long)ftrace_regs_caller_end;
|
|
op_offset = (unsigned long)ftrace_regs_caller_op_ptr;
|
|
} else {
|
|
start_offset = (unsigned long)ftrace_caller;
|
|
end_offset = (unsigned long)ftrace_epilogue;
|
|
op_offset = (unsigned long)ftrace_caller_op_ptr;
|
|
}
|
|
|
|
size = end_offset - start_offset;
|
|
|
|
/*
|
|
* Allocate enough size to store the ftrace_caller code,
|
|
* the jmp to ftrace_epilogue, as well as the address of
|
|
* the ftrace_ops this trampoline is used for.
|
|
*/
|
|
trampoline = alloc_tramp(size + MCOUNT_INSN_SIZE + sizeof(void *));
|
|
if (!trampoline)
|
|
return 0;
|
|
|
|
*tramp_size = size + MCOUNT_INSN_SIZE + sizeof(void *);
|
|
|
|
/* Copy ftrace_caller onto the trampoline memory */
|
|
ret = probe_kernel_read(trampoline, (void *)start_offset, size);
|
|
if (WARN_ON(ret < 0)) {
|
|
tramp_free(trampoline, *tramp_size);
|
|
return 0;
|
|
}
|
|
|
|
ip = (unsigned long)trampoline + size;
|
|
|
|
/* The trampoline ends with a jmp to ftrace_epilogue */
|
|
jmp = ftrace_jmp_replace(ip, (unsigned long)ftrace_epilogue);
|
|
memcpy(trampoline + size, jmp, MCOUNT_INSN_SIZE);
|
|
|
|
/*
|
|
* The address of the ftrace_ops that is used for this trampoline
|
|
* is stored at the end of the trampoline. This will be used to
|
|
* load the third parameter for the callback. Basically, that
|
|
* location at the end of the trampoline takes the place of
|
|
* the global function_trace_op variable.
|
|
*/
|
|
|
|
ptr = (unsigned long *)(trampoline + size + MCOUNT_INSN_SIZE);
|
|
*ptr = (unsigned long)ops;
|
|
|
|
op_offset -= start_offset;
|
|
memcpy(&op_ptr, trampoline + op_offset, OP_REF_SIZE);
|
|
|
|
/* Are we pointing to the reference? */
|
|
if (WARN_ON(memcmp(op_ptr.op, op_ref, 3) != 0)) {
|
|
tramp_free(trampoline, *tramp_size);
|
|
return 0;
|
|
}
|
|
|
|
/* Load the contents of ptr into the callback parameter */
|
|
offset = (unsigned long)ptr;
|
|
offset -= (unsigned long)trampoline + op_offset + OP_REF_SIZE;
|
|
|
|
op_ptr.offset = offset;
|
|
|
|
/* put in the new offset to the ftrace_ops */
|
|
memcpy(trampoline + op_offset, &op_ptr, OP_REF_SIZE);
|
|
|
|
/* ALLOC_TRAMP flags lets us know we created it */
|
|
ops->flags |= FTRACE_OPS_FL_ALLOC_TRAMP;
|
|
|
|
return (unsigned long)trampoline;
|
|
}
|
|
|
|
static unsigned long calc_trampoline_call_offset(bool save_regs)
|
|
{
|
|
unsigned long start_offset;
|
|
unsigned long call_offset;
|
|
|
|
if (save_regs) {
|
|
start_offset = (unsigned long)ftrace_regs_caller;
|
|
call_offset = (unsigned long)ftrace_regs_call;
|
|
} else {
|
|
start_offset = (unsigned long)ftrace_caller;
|
|
call_offset = (unsigned long)ftrace_call;
|
|
}
|
|
|
|
return call_offset - start_offset;
|
|
}
|
|
|
|
void arch_ftrace_update_trampoline(struct ftrace_ops *ops)
|
|
{
|
|
ftrace_func_t func;
|
|
unsigned char *new;
|
|
unsigned long offset;
|
|
unsigned long ip;
|
|
unsigned int size;
|
|
int ret, npages;
|
|
|
|
if (ops->trampoline) {
|
|
/*
|
|
* The ftrace_ops caller may set up its own trampoline.
|
|
* In such a case, this code must not modify it.
|
|
*/
|
|
if (!(ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP))
|
|
return;
|
|
npages = PAGE_ALIGN(ops->trampoline_size) >> PAGE_SHIFT;
|
|
set_memory_rw(ops->trampoline, npages);
|
|
} else {
|
|
ops->trampoline = create_trampoline(ops, &size);
|
|
if (!ops->trampoline)
|
|
return;
|
|
ops->trampoline_size = size;
|
|
npages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
}
|
|
|
|
offset = calc_trampoline_call_offset(ops->flags & FTRACE_OPS_FL_SAVE_REGS);
|
|
ip = ops->trampoline + offset;
|
|
|
|
func = ftrace_ops_get_func(ops);
|
|
|
|
/* Do a safe modify in case the trampoline is executing */
|
|
new = ftrace_call_replace(ip, (unsigned long)func);
|
|
ret = update_ftrace_func(ip, new);
|
|
set_memory_ro(ops->trampoline, npages);
|
|
|
|
/* The update should never fail */
|
|
WARN_ON(ret);
|
|
}
|
|
|
|
/* Return the address of the function the trampoline calls */
|
|
static void *addr_from_call(void *ptr)
|
|
{
|
|
union ftrace_code_union calc;
|
|
int ret;
|
|
|
|
ret = probe_kernel_read(&calc, ptr, MCOUNT_INSN_SIZE);
|
|
if (WARN_ON_ONCE(ret < 0))
|
|
return NULL;
|
|
|
|
/* Make sure this is a call */
|
|
if (WARN_ON_ONCE(calc.e8 != 0xe8)) {
|
|
pr_warn("Expected e8, got %x\n", calc.e8);
|
|
return NULL;
|
|
}
|
|
|
|
return ptr + MCOUNT_INSN_SIZE + calc.offset;
|
|
}
|
|
|
|
void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent,
|
|
unsigned long frame_pointer);
|
|
|
|
/*
|
|
* If the ops->trampoline was not allocated, then it probably
|
|
* has a static trampoline func, or is the ftrace caller itself.
|
|
*/
|
|
static void *static_tramp_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
|
|
{
|
|
unsigned long offset;
|
|
bool save_regs = rec->flags & FTRACE_FL_REGS_EN;
|
|
void *ptr;
|
|
|
|
if (ops && ops->trampoline) {
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
/*
|
|
* We only know about function graph tracer setting as static
|
|
* trampoline.
|
|
*/
|
|
if (ops->trampoline == FTRACE_GRAPH_ADDR)
|
|
return (void *)prepare_ftrace_return;
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
offset = calc_trampoline_call_offset(save_regs);
|
|
|
|
if (save_regs)
|
|
ptr = (void *)FTRACE_REGS_ADDR + offset;
|
|
else
|
|
ptr = (void *)FTRACE_ADDR + offset;
|
|
|
|
return addr_from_call(ptr);
|
|
}
|
|
|
|
void *arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
|
|
{
|
|
unsigned long offset;
|
|
|
|
/* If we didn't allocate this trampoline, consider it static */
|
|
if (!ops || !(ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP))
|
|
return static_tramp_func(ops, rec);
|
|
|
|
offset = calc_trampoline_call_offset(ops->flags & FTRACE_OPS_FL_SAVE_REGS);
|
|
return addr_from_call((void *)ops->trampoline + offset);
|
|
}
|
|
|
|
void arch_ftrace_trampoline_free(struct ftrace_ops *ops)
|
|
{
|
|
if (!ops || !(ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP))
|
|
return;
|
|
|
|
tramp_free((void *)ops->trampoline, ops->trampoline_size);
|
|
ops->trampoline = 0;
|
|
}
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
#endif /* CONFIG_DYNAMIC_FTRACE */
|
|
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
|
|
#ifdef CONFIG_DYNAMIC_FTRACE
|
|
extern void ftrace_graph_call(void);
|
|
|
|
static int ftrace_mod_jmp(unsigned long ip, void *func)
|
|
{
|
|
unsigned char *new;
|
|
|
|
new = ftrace_jmp_replace(ip, (unsigned long)func);
|
|
|
|
return update_ftrace_func(ip, new);
|
|
}
|
|
|
|
int ftrace_enable_ftrace_graph_caller(void)
|
|
{
|
|
unsigned long ip = (unsigned long)(&ftrace_graph_call);
|
|
|
|
return ftrace_mod_jmp(ip, &ftrace_graph_caller);
|
|
}
|
|
|
|
int ftrace_disable_ftrace_graph_caller(void)
|
|
{
|
|
unsigned long ip = (unsigned long)(&ftrace_graph_call);
|
|
|
|
return ftrace_mod_jmp(ip, &ftrace_stub);
|
|
}
|
|
|
|
#endif /* !CONFIG_DYNAMIC_FTRACE */
|
|
|
|
/*
|
|
* Hook the return address and push it in the stack of return addrs
|
|
* in current thread info.
|
|
*/
|
|
void prepare_ftrace_return(unsigned long self_addr, unsigned long *parent,
|
|
unsigned long frame_pointer)
|
|
{
|
|
unsigned long old;
|
|
int faulted;
|
|
struct ftrace_graph_ent trace;
|
|
unsigned long return_hooker = (unsigned long)
|
|
&return_to_handler;
|
|
|
|
/*
|
|
* When resuming from suspend-to-ram, this function can be indirectly
|
|
* called from early CPU startup code while the CPU is in real mode,
|
|
* which would fail miserably. Make sure the stack pointer is a
|
|
* virtual address.
|
|
*
|
|
* This check isn't as accurate as virt_addr_valid(), but it should be
|
|
* good enough for this purpose, and it's fast.
|
|
*/
|
|
if (unlikely((long)__builtin_frame_address(0) >= 0))
|
|
return;
|
|
|
|
if (unlikely(ftrace_graph_is_dead()))
|
|
return;
|
|
|
|
if (unlikely(atomic_read(¤t->tracing_graph_pause)))
|
|
return;
|
|
|
|
/*
|
|
* Protect against fault, even if it shouldn't
|
|
* happen. This tool is too much intrusive to
|
|
* ignore such a protection.
|
|
*/
|
|
asm volatile(
|
|
"1: " _ASM_MOV " (%[parent]), %[old]\n"
|
|
"2: " _ASM_MOV " %[return_hooker], (%[parent])\n"
|
|
" movl $0, %[faulted]\n"
|
|
"3:\n"
|
|
|
|
".section .fixup, \"ax\"\n"
|
|
"4: movl $1, %[faulted]\n"
|
|
" jmp 3b\n"
|
|
".previous\n"
|
|
|
|
_ASM_EXTABLE(1b, 4b)
|
|
_ASM_EXTABLE(2b, 4b)
|
|
|
|
: [old] "=&r" (old), [faulted] "=r" (faulted)
|
|
: [parent] "r" (parent), [return_hooker] "r" (return_hooker)
|
|
: "memory"
|
|
);
|
|
|
|
if (unlikely(faulted)) {
|
|
ftrace_graph_stop();
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
trace.func = self_addr;
|
|
trace.depth = current->curr_ret_stack + 1;
|
|
|
|
/* Only trace if the calling function expects to */
|
|
if (!ftrace_graph_entry(&trace)) {
|
|
*parent = old;
|
|
return;
|
|
}
|
|
|
|
if (ftrace_push_return_trace(old, self_addr, &trace.depth,
|
|
frame_pointer, parent) == -EBUSY) {
|
|
*parent = old;
|
|
return;
|
|
}
|
|
}
|
|
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
|