linux_dsm_epyc7002/kernel/rcu/rcuperf.c
Joel Fernandes (Google) 12af660321 rcuperf: Measure memory footprint during kfree_rcu() test
During changes to kfree_rcu() code, we often check the amount of free
memory.  As an alternative to checking this manually, this commit adds a
measurement in the test itself.  It measures four times during the test
for available memory, digitally filters these measurements to produce a
running average with a weight of 0.5, and compares this digitally filtered
value with the amount of available memory at the beginning of the test.

Something like the following is printed at the end of the run:

Total time taken by all kfree'ers: 6369738407 ns, loops: 10000, batches: 764, memory footprint: 216MB

Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-02-20 16:03:31 -08:00

854 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Read-Copy Update module-based performance-test facility
*
* Copyright (C) IBM Corporation, 2015
*
* Authors: Paul E. McKenney <paulmck@linux.ibm.com>
*/
#define pr_fmt(fmt) fmt
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <uapi/linux/sched/types.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/freezer.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/stat.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <linux/torture.h>
#include <linux/vmalloc.h>
#include "rcu.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
#define PERF_FLAG "-perf:"
#define PERFOUT_STRING(s) \
pr_alert("%s" PERF_FLAG " %s\n", perf_type, s)
#define VERBOSE_PERFOUT_STRING(s) \
do { if (verbose) pr_alert("%s" PERF_FLAG " %s\n", perf_type, s); } while (0)
#define VERBOSE_PERFOUT_ERRSTRING(s) \
do { if (verbose) pr_alert("%s" PERF_FLAG "!!! %s\n", perf_type, s); } while (0)
/*
* The intended use cases for the nreaders and nwriters module parameters
* are as follows:
*
* 1. Specify only the nr_cpus kernel boot parameter. This will
* set both nreaders and nwriters to the value specified by
* nr_cpus for a mixed reader/writer test.
*
* 2. Specify the nr_cpus kernel boot parameter, but set
* rcuperf.nreaders to zero. This will set nwriters to the
* value specified by nr_cpus for an update-only test.
*
* 3. Specify the nr_cpus kernel boot parameter, but set
* rcuperf.nwriters to zero. This will set nreaders to the
* value specified by nr_cpus for a read-only test.
*
* Various other use cases may of course be specified.
*/
#ifdef MODULE
# define RCUPERF_SHUTDOWN 0
#else
# define RCUPERF_SHUTDOWN 1
#endif
torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
torture_param(int, gp_async_max, 1000, "Max # outstanding waits per reader");
torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
torture_param(int, nreaders, -1, "Number of RCU reader threads");
torture_param(int, nwriters, -1, "Number of RCU updater threads");
torture_param(bool, shutdown, RCUPERF_SHUTDOWN,
"Shutdown at end of performance tests.");
torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() perf test?");
static char *perf_type = "rcu";
module_param(perf_type, charp, 0444);
MODULE_PARM_DESC(perf_type, "Type of RCU to performance-test (rcu, srcu, ...)");
static int nrealreaders;
static int nrealwriters;
static struct task_struct **writer_tasks;
static struct task_struct **reader_tasks;
static struct task_struct *shutdown_task;
static u64 **writer_durations;
static int *writer_n_durations;
static atomic_t n_rcu_perf_reader_started;
static atomic_t n_rcu_perf_writer_started;
static atomic_t n_rcu_perf_writer_finished;
static wait_queue_head_t shutdown_wq;
static u64 t_rcu_perf_writer_started;
static u64 t_rcu_perf_writer_finished;
static unsigned long b_rcu_gp_test_started;
static unsigned long b_rcu_gp_test_finished;
static DEFINE_PER_CPU(atomic_t, n_async_inflight);
#define MAX_MEAS 10000
#define MIN_MEAS 100
/*
* Operations vector for selecting different types of tests.
*/
struct rcu_perf_ops {
int ptype;
void (*init)(void);
void (*cleanup)(void);
int (*readlock)(void);
void (*readunlock)(int idx);
unsigned long (*get_gp_seq)(void);
unsigned long (*gp_diff)(unsigned long new, unsigned long old);
unsigned long (*exp_completed)(void);
void (*async)(struct rcu_head *head, rcu_callback_t func);
void (*gp_barrier)(void);
void (*sync)(void);
void (*exp_sync)(void);
const char *name;
};
static struct rcu_perf_ops *cur_ops;
/*
* Definitions for rcu perf testing.
*/
static int rcu_perf_read_lock(void) __acquires(RCU)
{
rcu_read_lock();
return 0;
}
static void rcu_perf_read_unlock(int idx) __releases(RCU)
{
rcu_read_unlock();
}
static unsigned long __maybe_unused rcu_no_completed(void)
{
return 0;
}
static void rcu_sync_perf_init(void)
{
}
static struct rcu_perf_ops rcu_ops = {
.ptype = RCU_FLAVOR,
.init = rcu_sync_perf_init,
.readlock = rcu_perf_read_lock,
.readunlock = rcu_perf_read_unlock,
.get_gp_seq = rcu_get_gp_seq,
.gp_diff = rcu_seq_diff,
.exp_completed = rcu_exp_batches_completed,
.async = call_rcu,
.gp_barrier = rcu_barrier,
.sync = synchronize_rcu,
.exp_sync = synchronize_rcu_expedited,
.name = "rcu"
};
/*
* Definitions for srcu perf testing.
*/
DEFINE_STATIC_SRCU(srcu_ctl_perf);
static struct srcu_struct *srcu_ctlp = &srcu_ctl_perf;
static int srcu_perf_read_lock(void) __acquires(srcu_ctlp)
{
return srcu_read_lock(srcu_ctlp);
}
static void srcu_perf_read_unlock(int idx) __releases(srcu_ctlp)
{
srcu_read_unlock(srcu_ctlp, idx);
}
static unsigned long srcu_perf_completed(void)
{
return srcu_batches_completed(srcu_ctlp);
}
static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
{
call_srcu(srcu_ctlp, head, func);
}
static void srcu_rcu_barrier(void)
{
srcu_barrier(srcu_ctlp);
}
static void srcu_perf_synchronize(void)
{
synchronize_srcu(srcu_ctlp);
}
static void srcu_perf_synchronize_expedited(void)
{
synchronize_srcu_expedited(srcu_ctlp);
}
static struct rcu_perf_ops srcu_ops = {
.ptype = SRCU_FLAVOR,
.init = rcu_sync_perf_init,
.readlock = srcu_perf_read_lock,
.readunlock = srcu_perf_read_unlock,
.get_gp_seq = srcu_perf_completed,
.gp_diff = rcu_seq_diff,
.exp_completed = srcu_perf_completed,
.async = srcu_call_rcu,
.gp_barrier = srcu_rcu_barrier,
.sync = srcu_perf_synchronize,
.exp_sync = srcu_perf_synchronize_expedited,
.name = "srcu"
};
static struct srcu_struct srcud;
static void srcu_sync_perf_init(void)
{
srcu_ctlp = &srcud;
init_srcu_struct(srcu_ctlp);
}
static void srcu_sync_perf_cleanup(void)
{
cleanup_srcu_struct(srcu_ctlp);
}
static struct rcu_perf_ops srcud_ops = {
.ptype = SRCU_FLAVOR,
.init = srcu_sync_perf_init,
.cleanup = srcu_sync_perf_cleanup,
.readlock = srcu_perf_read_lock,
.readunlock = srcu_perf_read_unlock,
.get_gp_seq = srcu_perf_completed,
.gp_diff = rcu_seq_diff,
.exp_completed = srcu_perf_completed,
.async = srcu_call_rcu,
.gp_barrier = srcu_rcu_barrier,
.sync = srcu_perf_synchronize,
.exp_sync = srcu_perf_synchronize_expedited,
.name = "srcud"
};
/*
* Definitions for RCU-tasks perf testing.
*/
static int tasks_perf_read_lock(void)
{
return 0;
}
static void tasks_perf_read_unlock(int idx)
{
}
static struct rcu_perf_ops tasks_ops = {
.ptype = RCU_TASKS_FLAVOR,
.init = rcu_sync_perf_init,
.readlock = tasks_perf_read_lock,
.readunlock = tasks_perf_read_unlock,
.get_gp_seq = rcu_no_completed,
.gp_diff = rcu_seq_diff,
.async = call_rcu_tasks,
.gp_barrier = rcu_barrier_tasks,
.sync = synchronize_rcu_tasks,
.exp_sync = synchronize_rcu_tasks,
.name = "tasks"
};
static unsigned long rcuperf_seq_diff(unsigned long new, unsigned long old)
{
if (!cur_ops->gp_diff)
return new - old;
return cur_ops->gp_diff(new, old);
}
/*
* If performance tests complete, wait for shutdown to commence.
*/
static void rcu_perf_wait_shutdown(void)
{
cond_resched_tasks_rcu_qs();
if (atomic_read(&n_rcu_perf_writer_finished) < nrealwriters)
return;
while (!torture_must_stop())
schedule_timeout_uninterruptible(1);
}
/*
* RCU perf reader kthread. Repeatedly does empty RCU read-side
* critical section, minimizing update-side interference.
*/
static int
rcu_perf_reader(void *arg)
{
unsigned long flags;
int idx;
long me = (long)arg;
VERBOSE_PERFOUT_STRING("rcu_perf_reader task started");
set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
set_user_nice(current, MAX_NICE);
atomic_inc(&n_rcu_perf_reader_started);
do {
local_irq_save(flags);
idx = cur_ops->readlock();
cur_ops->readunlock(idx);
local_irq_restore(flags);
rcu_perf_wait_shutdown();
} while (!torture_must_stop());
torture_kthread_stopping("rcu_perf_reader");
return 0;
}
/*
* Callback function for asynchronous grace periods from rcu_perf_writer().
*/
static void rcu_perf_async_cb(struct rcu_head *rhp)
{
atomic_dec(this_cpu_ptr(&n_async_inflight));
kfree(rhp);
}
/*
* RCU perf writer kthread. Repeatedly does a grace period.
*/
static int
rcu_perf_writer(void *arg)
{
int i = 0;
int i_max;
long me = (long)arg;
struct rcu_head *rhp = NULL;
struct sched_param sp;
bool started = false, done = false, alldone = false;
u64 t;
u64 *wdp;
u64 *wdpp = writer_durations[me];
VERBOSE_PERFOUT_STRING("rcu_perf_writer task started");
WARN_ON(!wdpp);
set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
sp.sched_priority = 1;
sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
if (holdoff)
schedule_timeout_uninterruptible(holdoff * HZ);
/*
* Wait until rcu_end_inkernel_boot() is called for normal GP tests
* so that RCU is not always expedited for normal GP tests.
* The system_state test is approximate, but works well in practice.
*/
while (!gp_exp && system_state != SYSTEM_RUNNING)
schedule_timeout_uninterruptible(1);
t = ktime_get_mono_fast_ns();
if (atomic_inc_return(&n_rcu_perf_writer_started) >= nrealwriters) {
t_rcu_perf_writer_started = t;
if (gp_exp) {
b_rcu_gp_test_started =
cur_ops->exp_completed() / 2;
} else {
b_rcu_gp_test_started = cur_ops->get_gp_seq();
}
}
do {
if (writer_holdoff)
udelay(writer_holdoff);
wdp = &wdpp[i];
*wdp = ktime_get_mono_fast_ns();
if (gp_async) {
retry:
if (!rhp)
rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
atomic_inc(this_cpu_ptr(&n_async_inflight));
cur_ops->async(rhp, rcu_perf_async_cb);
rhp = NULL;
} else if (!kthread_should_stop()) {
cur_ops->gp_barrier();
goto retry;
} else {
kfree(rhp); /* Because we are stopping. */
}
} else if (gp_exp) {
cur_ops->exp_sync();
} else {
cur_ops->sync();
}
t = ktime_get_mono_fast_ns();
*wdp = t - *wdp;
i_max = i;
if (!started &&
atomic_read(&n_rcu_perf_writer_started) >= nrealwriters)
started = true;
if (!done && i >= MIN_MEAS) {
done = true;
sp.sched_priority = 0;
sched_setscheduler_nocheck(current,
SCHED_NORMAL, &sp);
pr_alert("%s%s rcu_perf_writer %ld has %d measurements\n",
perf_type, PERF_FLAG, me, MIN_MEAS);
if (atomic_inc_return(&n_rcu_perf_writer_finished) >=
nrealwriters) {
schedule_timeout_interruptible(10);
rcu_ftrace_dump(DUMP_ALL);
PERFOUT_STRING("Test complete");
t_rcu_perf_writer_finished = t;
if (gp_exp) {
b_rcu_gp_test_finished =
cur_ops->exp_completed() / 2;
} else {
b_rcu_gp_test_finished =
cur_ops->get_gp_seq();
}
if (shutdown) {
smp_mb(); /* Assign before wake. */
wake_up(&shutdown_wq);
}
}
}
if (done && !alldone &&
atomic_read(&n_rcu_perf_writer_finished) >= nrealwriters)
alldone = true;
if (started && !alldone && i < MAX_MEAS - 1)
i++;
rcu_perf_wait_shutdown();
} while (!torture_must_stop());
if (gp_async) {
cur_ops->gp_barrier();
}
writer_n_durations[me] = i_max;
torture_kthread_stopping("rcu_perf_writer");
return 0;
}
static void
rcu_perf_print_module_parms(struct rcu_perf_ops *cur_ops, const char *tag)
{
pr_alert("%s" PERF_FLAG
"--- %s: nreaders=%d nwriters=%d verbose=%d shutdown=%d\n",
perf_type, tag, nrealreaders, nrealwriters, verbose, shutdown);
}
static void
rcu_perf_cleanup(void)
{
int i;
int j;
int ngps = 0;
u64 *wdp;
u64 *wdpp;
/*
* Would like warning at start, but everything is expedited
* during the mid-boot phase, so have to wait till the end.
*/
if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
VERBOSE_PERFOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
if (rcu_gp_is_normal() && gp_exp)
VERBOSE_PERFOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
if (gp_exp && gp_async)
VERBOSE_PERFOUT_ERRSTRING("No expedited async GPs, so went with async!");
if (torture_cleanup_begin())
return;
if (!cur_ops) {
torture_cleanup_end();
return;
}
if (reader_tasks) {
for (i = 0; i < nrealreaders; i++)
torture_stop_kthread(rcu_perf_reader,
reader_tasks[i]);
kfree(reader_tasks);
}
if (writer_tasks) {
for (i = 0; i < nrealwriters; i++) {
torture_stop_kthread(rcu_perf_writer,
writer_tasks[i]);
if (!writer_n_durations)
continue;
j = writer_n_durations[i];
pr_alert("%s%s writer %d gps: %d\n",
perf_type, PERF_FLAG, i, j);
ngps += j;
}
pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
perf_type, PERF_FLAG,
t_rcu_perf_writer_started, t_rcu_perf_writer_finished,
t_rcu_perf_writer_finished -
t_rcu_perf_writer_started,
ngps,
rcuperf_seq_diff(b_rcu_gp_test_finished,
b_rcu_gp_test_started));
for (i = 0; i < nrealwriters; i++) {
if (!writer_durations)
break;
if (!writer_n_durations)
continue;
wdpp = writer_durations[i];
if (!wdpp)
continue;
for (j = 0; j <= writer_n_durations[i]; j++) {
wdp = &wdpp[j];
pr_alert("%s%s %4d writer-duration: %5d %llu\n",
perf_type, PERF_FLAG,
i, j, *wdp);
if (j % 100 == 0)
schedule_timeout_uninterruptible(1);
}
kfree(writer_durations[i]);
}
kfree(writer_tasks);
kfree(writer_durations);
kfree(writer_n_durations);
}
/* Do torture-type-specific cleanup operations. */
if (cur_ops->cleanup != NULL)
cur_ops->cleanup();
torture_cleanup_end();
}
/*
* Return the number if non-negative. If -1, the number of CPUs.
* If less than -1, that much less than the number of CPUs, but
* at least one.
*/
static int compute_real(int n)
{
int nr;
if (n >= 0) {
nr = n;
} else {
nr = num_online_cpus() + 1 + n;
if (nr <= 0)
nr = 1;
}
return nr;
}
/*
* RCU perf shutdown kthread. Just waits to be awakened, then shuts
* down system.
*/
static int
rcu_perf_shutdown(void *arg)
{
do {
wait_event(shutdown_wq,
atomic_read(&n_rcu_perf_writer_finished) >=
nrealwriters);
} while (atomic_read(&n_rcu_perf_writer_finished) < nrealwriters);
smp_mb(); /* Wake before output. */
rcu_perf_cleanup();
kernel_power_off();
return -EINVAL;
}
/*
* kfree_rcu() performance tests: Start a kfree_rcu() loop on all CPUs for number
* of iterations and measure total time and number of GP for all iterations to complete.
*/
torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
static struct task_struct **kfree_reader_tasks;
static int kfree_nrealthreads;
static atomic_t n_kfree_perf_thread_started;
static atomic_t n_kfree_perf_thread_ended;
struct kfree_obj {
char kfree_obj[8];
struct rcu_head rh;
};
static int
kfree_perf_thread(void *arg)
{
int i, loop = 0;
long me = (long)arg;
struct kfree_obj *alloc_ptr;
u64 start_time, end_time;
long long mem_begin, mem_during = 0;
VERBOSE_PERFOUT_STRING("kfree_perf_thread task started");
set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
set_user_nice(current, MAX_NICE);
start_time = ktime_get_mono_fast_ns();
if (atomic_inc_return(&n_kfree_perf_thread_started) >= kfree_nrealthreads) {
if (gp_exp)
b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
else
b_rcu_gp_test_started = cur_ops->get_gp_seq();
}
do {
if (!mem_during) {
mem_during = mem_begin = si_mem_available();
} else if (loop % (kfree_loops / 4) == 0) {
mem_during = (mem_during + si_mem_available()) / 2;
}
for (i = 0; i < kfree_alloc_num; i++) {
alloc_ptr = kmalloc(sizeof(struct kfree_obj), GFP_KERNEL);
if (!alloc_ptr)
return -ENOMEM;
kfree_rcu(alloc_ptr, rh);
}
cond_resched();
} while (!torture_must_stop() && ++loop < kfree_loops);
if (atomic_inc_return(&n_kfree_perf_thread_ended) >= kfree_nrealthreads) {
end_time = ktime_get_mono_fast_ns();
if (gp_exp)
b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
else
b_rcu_gp_test_finished = cur_ops->get_gp_seq();
pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
(unsigned long long)(end_time - start_time), kfree_loops,
rcuperf_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
(mem_begin - mem_during) >> (20 - PAGE_SHIFT));
if (shutdown) {
smp_mb(); /* Assign before wake. */
wake_up(&shutdown_wq);
}
}
torture_kthread_stopping("kfree_perf_thread");
return 0;
}
static void
kfree_perf_cleanup(void)
{
int i;
if (torture_cleanup_begin())
return;
if (kfree_reader_tasks) {
for (i = 0; i < kfree_nrealthreads; i++)
torture_stop_kthread(kfree_perf_thread,
kfree_reader_tasks[i]);
kfree(kfree_reader_tasks);
}
torture_cleanup_end();
}
/*
* shutdown kthread. Just waits to be awakened, then shuts down system.
*/
static int
kfree_perf_shutdown(void *arg)
{
do {
wait_event(shutdown_wq,
atomic_read(&n_kfree_perf_thread_ended) >=
kfree_nrealthreads);
} while (atomic_read(&n_kfree_perf_thread_ended) < kfree_nrealthreads);
smp_mb(); /* Wake before output. */
kfree_perf_cleanup();
kernel_power_off();
return -EINVAL;
}
static int __init
kfree_perf_init(void)
{
long i;
int firsterr = 0;
kfree_nrealthreads = compute_real(kfree_nthreads);
/* Start up the kthreads. */
if (shutdown) {
init_waitqueue_head(&shutdown_wq);
firsterr = torture_create_kthread(kfree_perf_shutdown, NULL,
shutdown_task);
if (firsterr)
goto unwind;
schedule_timeout_uninterruptible(1);
}
kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
GFP_KERNEL);
if (kfree_reader_tasks == NULL) {
firsterr = -ENOMEM;
goto unwind;
}
for (i = 0; i < kfree_nrealthreads; i++) {
firsterr = torture_create_kthread(kfree_perf_thread, (void *)i,
kfree_reader_tasks[i]);
if (firsterr)
goto unwind;
}
while (atomic_read(&n_kfree_perf_thread_started) < kfree_nrealthreads)
schedule_timeout_uninterruptible(1);
torture_init_end();
return 0;
unwind:
torture_init_end();
kfree_perf_cleanup();
return firsterr;
}
static int __init
rcu_perf_init(void)
{
long i;
int firsterr = 0;
static struct rcu_perf_ops *perf_ops[] = {
&rcu_ops, &srcu_ops, &srcud_ops, &tasks_ops,
};
if (!torture_init_begin(perf_type, verbose))
return -EBUSY;
/* Process args and tell the world that the perf'er is on the job. */
for (i = 0; i < ARRAY_SIZE(perf_ops); i++) {
cur_ops = perf_ops[i];
if (strcmp(perf_type, cur_ops->name) == 0)
break;
}
if (i == ARRAY_SIZE(perf_ops)) {
pr_alert("rcu-perf: invalid perf type: \"%s\"\n", perf_type);
pr_alert("rcu-perf types:");
for (i = 0; i < ARRAY_SIZE(perf_ops); i++)
pr_cont(" %s", perf_ops[i]->name);
pr_cont("\n");
WARN_ON(!IS_MODULE(CONFIG_RCU_PERF_TEST));
firsterr = -EINVAL;
cur_ops = NULL;
goto unwind;
}
if (cur_ops->init)
cur_ops->init();
if (kfree_rcu_test)
return kfree_perf_init();
nrealwriters = compute_real(nwriters);
nrealreaders = compute_real(nreaders);
atomic_set(&n_rcu_perf_reader_started, 0);
atomic_set(&n_rcu_perf_writer_started, 0);
atomic_set(&n_rcu_perf_writer_finished, 0);
rcu_perf_print_module_parms(cur_ops, "Start of test");
/* Start up the kthreads. */
if (shutdown) {
init_waitqueue_head(&shutdown_wq);
firsterr = torture_create_kthread(rcu_perf_shutdown, NULL,
shutdown_task);
if (firsterr)
goto unwind;
schedule_timeout_uninterruptible(1);
}
reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
GFP_KERNEL);
if (reader_tasks == NULL) {
VERBOSE_PERFOUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
for (i = 0; i < nrealreaders; i++) {
firsterr = torture_create_kthread(rcu_perf_reader, (void *)i,
reader_tasks[i]);
if (firsterr)
goto unwind;
}
while (atomic_read(&n_rcu_perf_reader_started) < nrealreaders)
schedule_timeout_uninterruptible(1);
writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
GFP_KERNEL);
writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
GFP_KERNEL);
writer_n_durations =
kcalloc(nrealwriters, sizeof(*writer_n_durations),
GFP_KERNEL);
if (!writer_tasks || !writer_durations || !writer_n_durations) {
VERBOSE_PERFOUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
for (i = 0; i < nrealwriters; i++) {
writer_durations[i] =
kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
GFP_KERNEL);
if (!writer_durations[i]) {
firsterr = -ENOMEM;
goto unwind;
}
firsterr = torture_create_kthread(rcu_perf_writer, (void *)i,
writer_tasks[i]);
if (firsterr)
goto unwind;
}
torture_init_end();
return 0;
unwind:
torture_init_end();
rcu_perf_cleanup();
return firsterr;
}
module_init(rcu_perf_init);
module_exit(rcu_perf_cleanup);