linux_dsm_epyc7002/drivers/gpu/drm/i2c/tda998x_drv.c
Russell King 896a4130b8 drm/i2c: tda998x: only configure infoframes and audio if supported
The CEA 861B specification indicates the situations when we are able to
send each infoframe based on the version of the EDID's CEA extension.
Update the tda998x driver to follow the CEA specification wrt sending
of infoframes.

Since we only support the generation of AVI version 2, this limits us
to CEA extension version 3, so we treat CEA extension version 2 as
CEA 861 (no infoframes, no audio.)

Tested-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Jon Medhurst <tixy@linaro.org>
Acked-by: Jon Medhurst <tixy@linaro.org>
Tested-by: Jyri Sarha <jsarha@ti.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2016-11-18 00:00:40 +00:00

1735 lines
52 KiB
C

/*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/component.h>
#include <linux/hdmi.h>
#include <linux/module.h>
#include <linux/irq.h>
#include <sound/asoundef.h>
#include <sound/hdmi-codec.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/i2c/tda998x.h>
#define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
struct tda998x_audio_port {
u8 format; /* AFMT_xxx */
u8 config; /* AP value */
};
struct tda998x_priv {
struct i2c_client *cec;
struct i2c_client *hdmi;
struct mutex mutex;
u16 rev;
u8 current_page;
int dpms;
bool supports_infoframes;
u8 vip_cntrl_0;
u8 vip_cntrl_1;
u8 vip_cntrl_2;
unsigned long tmds_clock;
struct tda998x_audio_params audio_params;
struct platform_device *audio_pdev;
struct mutex audio_mutex;
wait_queue_head_t wq_edid;
volatile int wq_edid_wait;
struct work_struct detect_work;
struct timer_list edid_delay_timer;
wait_queue_head_t edid_delay_waitq;
bool edid_delay_active;
struct drm_encoder encoder;
struct drm_connector connector;
struct tda998x_audio_port audio_port[2];
};
#define conn_to_tda998x_priv(x) \
container_of(x, struct tda998x_priv, connector)
#define enc_to_tda998x_priv(x) \
container_of(x, struct tda998x_priv, encoder)
/* The TDA9988 series of devices use a paged register scheme.. to simplify
* things we encode the page # in upper bits of the register #. To read/
* write a given register, we need to make sure CURPAGE register is set
* appropriately. Which implies reads/writes are not atomic. Fun!
*/
#define REG(page, addr) (((page) << 8) | (addr))
#define REG2ADDR(reg) ((reg) & 0xff)
#define REG2PAGE(reg) (((reg) >> 8) & 0xff)
#define REG_CURPAGE 0xff /* write */
/* Page 00h: General Control */
#define REG_VERSION_LSB REG(0x00, 0x00) /* read */
#define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */
# define MAIN_CNTRL0_SR (1 << 0)
# define MAIN_CNTRL0_DECS (1 << 1)
# define MAIN_CNTRL0_DEHS (1 << 2)
# define MAIN_CNTRL0_CECS (1 << 3)
# define MAIN_CNTRL0_CEHS (1 << 4)
# define MAIN_CNTRL0_SCALER (1 << 7)
#define REG_VERSION_MSB REG(0x00, 0x02) /* read */
#define REG_SOFTRESET REG(0x00, 0x0a) /* write */
# define SOFTRESET_AUDIO (1 << 0)
# define SOFTRESET_I2C_MASTER (1 << 1)
#define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */
#define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */
#define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */
# define I2C_MASTER_DIS_MM (1 << 0)
# define I2C_MASTER_DIS_FILT (1 << 1)
# define I2C_MASTER_APP_STRT_LAT (1 << 2)
#define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */
# define FEAT_POWERDOWN_SPDIF (1 << 3)
#define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */
#define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */
#define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */
# define INT_FLAGS_2_EDID_BLK_RD (1 << 1)
#define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */
#define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */
#define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */
#define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */
#define REG_ENA_AP REG(0x00, 0x1e) /* read/write */
#define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */
# define VIP_CNTRL_0_MIRR_A (1 << 7)
# define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4)
# define VIP_CNTRL_0_MIRR_B (1 << 3)
# define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0)
#define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */
# define VIP_CNTRL_1_MIRR_C (1 << 7)
# define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4)
# define VIP_CNTRL_1_MIRR_D (1 << 3)
# define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0)
#define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */
# define VIP_CNTRL_2_MIRR_E (1 << 7)
# define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4)
# define VIP_CNTRL_2_MIRR_F (1 << 3)
# define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0)
#define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */
# define VIP_CNTRL_3_X_TGL (1 << 0)
# define VIP_CNTRL_3_H_TGL (1 << 1)
# define VIP_CNTRL_3_V_TGL (1 << 2)
# define VIP_CNTRL_3_EMB (1 << 3)
# define VIP_CNTRL_3_SYNC_DE (1 << 4)
# define VIP_CNTRL_3_SYNC_HS (1 << 5)
# define VIP_CNTRL_3_DE_INT (1 << 6)
# define VIP_CNTRL_3_EDGE (1 << 7)
#define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */
# define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0)
# define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2)
# define VIP_CNTRL_4_CCIR656 (1 << 4)
# define VIP_CNTRL_4_656_ALT (1 << 5)
# define VIP_CNTRL_4_TST_656 (1 << 6)
# define VIP_CNTRL_4_TST_PAT (1 << 7)
#define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */
# define VIP_CNTRL_5_CKCASE (1 << 0)
# define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1)
#define REG_MUX_AP REG(0x00, 0x26) /* read/write */
# define MUX_AP_SELECT_I2S 0x64
# define MUX_AP_SELECT_SPDIF 0x40
#define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */
#define REG_MAT_CONTRL REG(0x00, 0x80) /* write */
# define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0)
# define MAT_CONTRL_MAT_BP (1 << 2)
#define REG_VIDFORMAT REG(0x00, 0xa0) /* write */
#define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */
#define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */
#define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */
#define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */
#define REG_NPIX_MSB REG(0x00, 0xa5) /* write */
#define REG_NPIX_LSB REG(0x00, 0xa6) /* write */
#define REG_NLINE_MSB REG(0x00, 0xa7) /* write */
#define REG_NLINE_LSB REG(0x00, 0xa8) /* write */
#define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */
#define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */
#define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */
#define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */
#define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */
#define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */
#define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */
#define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */
#define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */
#define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */
#define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */
#define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */
#define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */
#define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */
#define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */
#define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */
#define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */
#define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */
#define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */
#define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */
#define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */
#define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */
#define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */
#define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */
#define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */
#define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */
#define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */
#define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */
#define REG_DE_START_MSB REG(0x00, 0xc5) /* write */
#define REG_DE_START_LSB REG(0x00, 0xc6) /* write */
#define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */
#define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */
#define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */
# define TBG_CNTRL_0_TOP_TGL (1 << 0)
# define TBG_CNTRL_0_TOP_SEL (1 << 1)
# define TBG_CNTRL_0_DE_EXT (1 << 2)
# define TBG_CNTRL_0_TOP_EXT (1 << 3)
# define TBG_CNTRL_0_FRAME_DIS (1 << 5)
# define TBG_CNTRL_0_SYNC_MTHD (1 << 6)
# define TBG_CNTRL_0_SYNC_ONCE (1 << 7)
#define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */
# define TBG_CNTRL_1_H_TGL (1 << 0)
# define TBG_CNTRL_1_V_TGL (1 << 1)
# define TBG_CNTRL_1_TGL_EN (1 << 2)
# define TBG_CNTRL_1_X_EXT (1 << 3)
# define TBG_CNTRL_1_H_EXT (1 << 4)
# define TBG_CNTRL_1_V_EXT (1 << 5)
# define TBG_CNTRL_1_DWIN_DIS (1 << 6)
#define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */
#define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */
# define HVF_CNTRL_0_SM (1 << 7)
# define HVF_CNTRL_0_RWB (1 << 6)
# define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2)
# define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0)
#define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */
# define HVF_CNTRL_1_FOR (1 << 0)
# define HVF_CNTRL_1_YUVBLK (1 << 1)
# define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2)
# define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4)
# define HVF_CNTRL_1_SEMI_PLANAR (1 << 6)
#define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */
#define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */
# define I2S_FORMAT(x) (((x) & 3) << 0)
#define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */
# define AIP_CLKSEL_AIP_SPDIF (0 << 3)
# define AIP_CLKSEL_AIP_I2S (1 << 3)
# define AIP_CLKSEL_FS_ACLK (0 << 0)
# define AIP_CLKSEL_FS_MCLK (1 << 0)
# define AIP_CLKSEL_FS_FS64SPDIF (2 << 0)
/* Page 02h: PLL settings */
#define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */
# define PLL_SERIAL_1_SRL_FDN (1 << 0)
# define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1)
# define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6)
#define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */
# define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
# define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4)
#define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */
# define PLL_SERIAL_3_SRL_CCIR (1 << 0)
# define PLL_SERIAL_3_SRL_DE (1 << 2)
# define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
#define REG_SERIALIZER REG(0x02, 0x03) /* read/write */
#define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */
#define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */
#define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */
#define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */
#define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */
#define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */
#define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */
#define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */
# define AUDIO_DIV_SERCLK_1 0
# define AUDIO_DIV_SERCLK_2 1
# define AUDIO_DIV_SERCLK_4 2
# define AUDIO_DIV_SERCLK_8 3
# define AUDIO_DIV_SERCLK_16 4
# define AUDIO_DIV_SERCLK_32 5
#define REG_SEL_CLK REG(0x02, 0x11) /* read/write */
# define SEL_CLK_SEL_CLK1 (1 << 0)
# define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1)
# define SEL_CLK_ENA_SC_CLK (1 << 3)
#define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */
/* Page 09h: EDID Control */
#define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */
/* next 127 successive registers are the EDID block */
#define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */
#define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */
#define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */
#define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */
#define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */
/* Page 10h: information frames and packets */
#define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */
#define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */
#define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */
#define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */
#define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */
/* Page 11h: audio settings and content info packets */
#define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */
# define AIP_CNTRL_0_RST_FIFO (1 << 0)
# define AIP_CNTRL_0_SWAP (1 << 1)
# define AIP_CNTRL_0_LAYOUT (1 << 2)
# define AIP_CNTRL_0_ACR_MAN (1 << 5)
# define AIP_CNTRL_0_RST_CTS (1 << 6)
#define REG_CA_I2S REG(0x11, 0x01) /* read/write */
# define CA_I2S_CA_I2S(x) (((x) & 31) << 0)
# define CA_I2S_HBR_CHSTAT (1 << 6)
#define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */
#define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */
#define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */
#define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */
#define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */
#define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */
#define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */
#define REG_CTS_N REG(0x11, 0x0c) /* read/write */
# define CTS_N_K(x) (((x) & 7) << 0)
# define CTS_N_M(x) (((x) & 3) << 4)
#define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */
# define ENC_CNTRL_RST_ENC (1 << 0)
# define ENC_CNTRL_RST_SEL (1 << 1)
# define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2)
#define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */
# define DIP_FLAGS_ACR (1 << 0)
# define DIP_FLAGS_GC (1 << 1)
#define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */
# define DIP_IF_FLAGS_IF1 (1 << 1)
# define DIP_IF_FLAGS_IF2 (1 << 2)
# define DIP_IF_FLAGS_IF3 (1 << 3)
# define DIP_IF_FLAGS_IF4 (1 << 4)
# define DIP_IF_FLAGS_IF5 (1 << 5)
#define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */
/* Page 12h: HDCP and OTP */
#define REG_TX3 REG(0x12, 0x9a) /* read/write */
#define REG_TX4 REG(0x12, 0x9b) /* read/write */
# define TX4_PD_RAM (1 << 1)
#define REG_TX33 REG(0x12, 0xb8) /* read/write */
# define TX33_HDMI (1 << 1)
/* Page 13h: Gamut related metadata packets */
/* CEC registers: (not paged)
*/
#define REG_CEC_INTSTATUS 0xee /* read */
# define CEC_INTSTATUS_CEC (1 << 0)
# define CEC_INTSTATUS_HDMI (1 << 1)
#define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */
# define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
# define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6)
# define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
# define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0)
#define REG_CEC_RXSHPDINTENA 0xfc /* read/write */
#define REG_CEC_RXSHPDINT 0xfd /* read */
# define CEC_RXSHPDINT_RXSENS BIT(0)
# define CEC_RXSHPDINT_HPD BIT(1)
#define REG_CEC_RXSHPDLEV 0xfe /* read */
# define CEC_RXSHPDLEV_RXSENS (1 << 0)
# define CEC_RXSHPDLEV_HPD (1 << 1)
#define REG_CEC_ENAMODS 0xff /* read/write */
# define CEC_ENAMODS_DIS_FRO (1 << 6)
# define CEC_ENAMODS_DIS_CCLK (1 << 5)
# define CEC_ENAMODS_EN_RXSENS (1 << 2)
# define CEC_ENAMODS_EN_HDMI (1 << 1)
# define CEC_ENAMODS_EN_CEC (1 << 0)
/* Device versions: */
#define TDA9989N2 0x0101
#define TDA19989 0x0201
#define TDA19989N2 0x0202
#define TDA19988 0x0301
static void
cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
{
struct i2c_client *client = priv->cec;
u8 buf[] = {addr, val};
int ret;
ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0)
dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr);
}
static u8
cec_read(struct tda998x_priv *priv, u8 addr)
{
struct i2c_client *client = priv->cec;
u8 val;
int ret;
ret = i2c_master_send(client, &addr, sizeof(addr));
if (ret < 0)
goto fail;
ret = i2c_master_recv(client, &val, sizeof(val));
if (ret < 0)
goto fail;
return val;
fail:
dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr);
return 0;
}
static int
set_page(struct tda998x_priv *priv, u16 reg)
{
if (REG2PAGE(reg) != priv->current_page) {
struct i2c_client *client = priv->hdmi;
u8 buf[] = {
REG_CURPAGE, REG2PAGE(reg)
};
int ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0) {
dev_err(&client->dev, "%s %04x err %d\n", __func__,
reg, ret);
return ret;
}
priv->current_page = REG2PAGE(reg);
}
return 0;
}
static int
reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
{
struct i2c_client *client = priv->hdmi;
u8 addr = REG2ADDR(reg);
int ret;
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, &addr, sizeof(addr));
if (ret < 0)
goto fail;
ret = i2c_master_recv(client, buf, cnt);
if (ret < 0)
goto fail;
goto out;
fail:
dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
return ret;
}
static void
reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
{
struct i2c_client *client = priv->hdmi;
u8 buf[cnt+1];
int ret;
buf[0] = REG2ADDR(reg);
memcpy(&buf[1], p, cnt);
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, buf, cnt + 1);
if (ret < 0)
dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
}
static int
reg_read(struct tda998x_priv *priv, u16 reg)
{
u8 val = 0;
int ret;
ret = reg_read_range(priv, reg, &val, sizeof(val));
if (ret < 0)
return ret;
return val;
}
static void
reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
{
struct i2c_client *client = priv->hdmi;
u8 buf[] = {REG2ADDR(reg), val};
int ret;
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0)
dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
}
static void
reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
{
struct i2c_client *client = priv->hdmi;
u8 buf[] = {REG2ADDR(reg), val >> 8, val};
int ret;
mutex_lock(&priv->mutex);
ret = set_page(priv, reg);
if (ret < 0)
goto out;
ret = i2c_master_send(client, buf, sizeof(buf));
if (ret < 0)
dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
out:
mutex_unlock(&priv->mutex);
}
static void
reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
{
int old_val;
old_val = reg_read(priv, reg);
if (old_val >= 0)
reg_write(priv, reg, old_val | val);
}
static void
reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
{
int old_val;
old_val = reg_read(priv, reg);
if (old_val >= 0)
reg_write(priv, reg, old_val & ~val);
}
static void
tda998x_reset(struct tda998x_priv *priv)
{
/* reset audio and i2c master: */
reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
msleep(50);
reg_write(priv, REG_SOFTRESET, 0);
msleep(50);
/* reset transmitter: */
reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
/* PLL registers common configuration */
reg_write(priv, REG_PLL_SERIAL_1, 0x00);
reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
reg_write(priv, REG_PLL_SERIAL_3, 0x00);
reg_write(priv, REG_SERIALIZER, 0x00);
reg_write(priv, REG_BUFFER_OUT, 0x00);
reg_write(priv, REG_PLL_SCG1, 0x00);
reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8);
reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
reg_write(priv, REG_PLL_SCGN1, 0xfa);
reg_write(priv, REG_PLL_SCGN2, 0x00);
reg_write(priv, REG_PLL_SCGR1, 0x5b);
reg_write(priv, REG_PLL_SCGR2, 0x00);
reg_write(priv, REG_PLL_SCG2, 0x10);
/* Write the default value MUX register */
reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
}
/*
* The TDA998x has a problem when trying to read the EDID close to a
* HPD assertion: it needs a delay of 100ms to avoid timing out while
* trying to read EDID data.
*
* However, tda998x_encoder_get_modes() may be called at any moment
* after tda998x_connector_detect() indicates that we are connected, so
* we need to delay probing modes in tda998x_encoder_get_modes() after
* we have seen a HPD inactive->active transition. This code implements
* that delay.
*/
static void tda998x_edid_delay_done(unsigned long data)
{
struct tda998x_priv *priv = (struct tda998x_priv *)data;
priv->edid_delay_active = false;
wake_up(&priv->edid_delay_waitq);
schedule_work(&priv->detect_work);
}
static void tda998x_edid_delay_start(struct tda998x_priv *priv)
{
priv->edid_delay_active = true;
mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
}
static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
{
return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
}
/*
* We need to run the KMS hotplug event helper outside of our threaded
* interrupt routine as this can call back into our get_modes method,
* which will want to make use of interrupts.
*/
static void tda998x_detect_work(struct work_struct *work)
{
struct tda998x_priv *priv =
container_of(work, struct tda998x_priv, detect_work);
struct drm_device *dev = priv->encoder.dev;
if (dev)
drm_kms_helper_hotplug_event(dev);
}
/*
* only 2 interrupts may occur: screen plug/unplug and EDID read
*/
static irqreturn_t tda998x_irq_thread(int irq, void *data)
{
struct tda998x_priv *priv = data;
u8 sta, cec, lvl, flag0, flag1, flag2;
bool handled = false;
sta = cec_read(priv, REG_CEC_INTSTATUS);
cec = cec_read(priv, REG_CEC_RXSHPDINT);
lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
flag0 = reg_read(priv, REG_INT_FLAGS_0);
flag1 = reg_read(priv, REG_INT_FLAGS_1);
flag2 = reg_read(priv, REG_INT_FLAGS_2);
DRM_DEBUG_DRIVER(
"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
sta, cec, lvl, flag0, flag1, flag2);
if (cec & CEC_RXSHPDINT_HPD) {
if (lvl & CEC_RXSHPDLEV_HPD)
tda998x_edid_delay_start(priv);
else
schedule_work(&priv->detect_work);
handled = true;
}
if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
priv->wq_edid_wait = 0;
wake_up(&priv->wq_edid);
handled = true;
}
return IRQ_RETVAL(handled);
}
static void
tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
union hdmi_infoframe *frame)
{
u8 buf[32];
ssize_t len;
len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
if (len < 0) {
dev_err(&priv->hdmi->dev,
"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
frame->any.type, len);
return;
}
reg_clear(priv, REG_DIP_IF_FLAGS, bit);
reg_write_range(priv, addr, buf, len);
reg_set(priv, REG_DIP_IF_FLAGS, bit);
}
static int tda998x_write_aif(struct tda998x_priv *priv,
struct hdmi_audio_infoframe *cea)
{
union hdmi_infoframe frame;
frame.audio = *cea;
tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
return 0;
}
static void
tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode)
{
union hdmi_infoframe frame;
drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode);
frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
}
static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
{
if (on) {
reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
} else {
reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
}
}
static int
tda998x_configure_audio(struct tda998x_priv *priv,
struct tda998x_audio_params *params)
{
u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv;
u32 n;
/* Enable audio ports */
reg_write(priv, REG_ENA_AP, params->config);
/* Set audio input source */
switch (params->format) {
case AFMT_SPDIF:
reg_write(priv, REG_ENA_ACLK, 0);
reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF);
clksel_aip = AIP_CLKSEL_AIP_SPDIF;
clksel_fs = AIP_CLKSEL_FS_FS64SPDIF;
cts_n = CTS_N_M(3) | CTS_N_K(3);
break;
case AFMT_I2S:
reg_write(priv, REG_ENA_ACLK, 1);
reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S);
clksel_aip = AIP_CLKSEL_AIP_I2S;
clksel_fs = AIP_CLKSEL_FS_ACLK;
switch (params->sample_width) {
case 16:
cts_n = CTS_N_M(3) | CTS_N_K(1);
break;
case 18:
case 20:
case 24:
cts_n = CTS_N_M(3) | CTS_N_K(2);
break;
default:
case 32:
cts_n = CTS_N_M(3) | CTS_N_K(3);
break;
}
break;
default:
dev_err(&priv->hdmi->dev, "Unsupported I2S format\n");
return -EINVAL;
}
reg_write(priv, REG_AIP_CLKSEL, clksel_aip);
reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
AIP_CNTRL_0_ACR_MAN); /* auto CTS */
reg_write(priv, REG_CTS_N, cts_n);
/*
* Audio input somehow depends on HDMI line rate which is
* related to pixclk. Testing showed that modes with pixclk
* >100MHz need a larger divider while <40MHz need the default.
* There is no detailed info in the datasheet, so we just
* assume 100MHz requires larger divider.
*/
adiv = AUDIO_DIV_SERCLK_8;
if (priv->tmds_clock > 100000)
adiv++; /* AUDIO_DIV_SERCLK_16 */
/* S/PDIF asks for a larger divider */
if (params->format == AFMT_SPDIF)
adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */
reg_write(priv, REG_AUDIO_DIV, adiv);
/*
* This is the approximate value of N, which happens to be
* the recommended values for non-coherent clocks.
*/
n = 128 * params->sample_rate / 1000;
/* Write the CTS and N values */
buf[0] = 0x44;
buf[1] = 0x42;
buf[2] = 0x01;
buf[3] = n;
buf[4] = n >> 8;
buf[5] = n >> 16;
reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
/* Set CTS clock reference */
reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs);
/* Reset CTS generator */
reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
/* Write the channel status
* The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
* there is a separate register for each I2S wire.
*/
buf[0] = params->status[0];
buf[1] = params->status[1];
buf[2] = params->status[3];
buf[3] = params->status[4];
reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
tda998x_audio_mute(priv, true);
msleep(20);
tda998x_audio_mute(priv, false);
return tda998x_write_aif(priv, &params->cea);
}
/* DRM encoder functions */
static void tda998x_encoder_set_config(struct tda998x_priv *priv,
const struct tda998x_encoder_params *p)
{
priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
(p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
VIP_CNTRL_0_SWAP_B(p->swap_b) |
(p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
(p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
VIP_CNTRL_1_SWAP_D(p->swap_d) |
(p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
(p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
VIP_CNTRL_2_SWAP_F(p->swap_f) |
(p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
priv->audio_params = p->audio_params;
}
static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode)
{
struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
/* we only care about on or off: */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == priv->dpms)
return;
switch (mode) {
case DRM_MODE_DPMS_ON:
/* enable video ports, audio will be enabled later */
reg_write(priv, REG_ENA_VP_0, 0xff);
reg_write(priv, REG_ENA_VP_1, 0xff);
reg_write(priv, REG_ENA_VP_2, 0xff);
/* set muxing after enabling ports: */
reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
break;
case DRM_MODE_DPMS_OFF:
/* disable video ports */
reg_write(priv, REG_ENA_VP_0, 0x00);
reg_write(priv, REG_ENA_VP_1, 0x00);
reg_write(priv, REG_ENA_VP_2, 0x00);
break;
}
priv->dpms = mode;
}
static int tda998x_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
/* TDA19988 dotclock can go up to 165MHz */
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
return MODE_CLOCK_HIGH;
if (mode->htotal >= BIT(13))
return MODE_BAD_HVALUE;
if (mode->vtotal >= BIT(11))
return MODE_BAD_VVALUE;
return MODE_OK;
}
static void
tda998x_encoder_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
u16 ref_pix, ref_line, n_pix, n_line;
u16 hs_pix_s, hs_pix_e;
u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
u16 vwin1_line_s, vwin1_line_e;
u16 vwin2_line_s, vwin2_line_e;
u16 de_pix_s, de_pix_e;
u8 reg, div, rep;
/*
* Internally TDA998x is using ITU-R BT.656 style sync but
* we get VESA style sync. TDA998x is using a reference pixel
* relative to ITU to sync to the input frame and for output
* sync generation. Currently, we are using reference detection
* from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
* which is position of rising VS with coincident rising HS.
*
* Now there is some issues to take care of:
* - HDMI data islands require sync-before-active
* - TDA998x register values must be > 0 to be enabled
* - REFLINE needs an additional offset of +1
* - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
*
* So we add +1 to all horizontal and vertical register values,
* plus an additional +3 for REFPIX as we are using RGB input only.
*/
n_pix = mode->htotal;
n_line = mode->vtotal;
hs_pix_e = mode->hsync_end - mode->hdisplay;
hs_pix_s = mode->hsync_start - mode->hdisplay;
de_pix_e = mode->htotal;
de_pix_s = mode->htotal - mode->hdisplay;
ref_pix = 3 + hs_pix_s;
/*
* Attached LCD controllers may generate broken sync. Allow
* those to adjust the position of the rising VS edge by adding
* HSKEW to ref_pix.
*/
if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
ref_pix += adjusted_mode->hskew;
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
ref_line = 1 + mode->vsync_start - mode->vdisplay;
vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
vwin1_line_e = vwin1_line_s + mode->vdisplay;
vs1_pix_s = vs1_pix_e = hs_pix_s;
vs1_line_s = mode->vsync_start - mode->vdisplay;
vs1_line_e = vs1_line_s +
mode->vsync_end - mode->vsync_start;
vwin2_line_s = vwin2_line_e = 0;
vs2_pix_s = vs2_pix_e = 0;
vs2_line_s = vs2_line_e = 0;
} else {
ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2;
vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
vs1_pix_s = vs1_pix_e = hs_pix_s;
vs1_line_s = (mode->vsync_start - mode->vdisplay)/2;
vs1_line_e = vs1_line_s +
(mode->vsync_end - mode->vsync_start)/2;
vwin2_line_s = vwin1_line_s + mode->vtotal/2;
vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2;
vs2_line_s = vs1_line_s + mode->vtotal/2 ;
vs2_line_e = vs2_line_s +
(mode->vsync_end - mode->vsync_start)/2;
}
div = 148500 / mode->clock;
if (div != 0) {
div--;
if (div > 3)
div = 3;
}
mutex_lock(&priv->audio_mutex);
/* mute the audio FIFO: */
reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
/* set HDMI HDCP mode off: */
reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
reg_clear(priv, REG_TX33, TX33_HDMI);
reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
/* no pre-filter or interpolator: */
reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
HVF_CNTRL_0_INTPOL(0));
reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
VIP_CNTRL_4_BLC(0));
reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
PLL_SERIAL_3_SRL_DE);
reg_write(priv, REG_SERIALIZER, 0);
reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
/* TODO enable pixel repeat for pixel rates less than 25Msamp/s */
rep = 0;
reg_write(priv, REG_RPT_CNTRL, 0);
reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) |
SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
PLL_SERIAL_2_SRL_PR(rep));
/* set color matrix bypass flag: */
reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
MAT_CONTRL_MAT_SC(1));
/* set BIAS tmds value: */
reg_write(priv, REG_ANA_GENERAL, 0x09);
/*
* Sync on rising HSYNC/VSYNC
*/
reg = VIP_CNTRL_3_SYNC_HS;
/*
* TDA19988 requires high-active sync at input stage,
* so invert low-active sync provided by master encoder here
*/
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
reg |= VIP_CNTRL_3_H_TGL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
reg |= VIP_CNTRL_3_V_TGL;
reg_write(priv, REG_VIP_CNTRL_3, reg);
reg_write(priv, REG_VIDFORMAT, 0x00);
reg_write16(priv, REG_REFPIX_MSB, ref_pix);
reg_write16(priv, REG_REFLINE_MSB, ref_line);
reg_write16(priv, REG_NPIX_MSB, n_pix);
reg_write16(priv, REG_NLINE_MSB, n_line);
reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
reg_write16(priv, REG_DE_START_MSB, de_pix_s);
reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
if (priv->rev == TDA19988) {
/* let incoming pixels fill the active space (if any) */
reg_write(priv, REG_ENABLE_SPACE, 0x00);
}
/*
* Always generate sync polarity relative to input sync and
* revert input stage toggled sync at output stage
*/
reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
reg |= TBG_CNTRL_1_H_TGL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
reg |= TBG_CNTRL_1_V_TGL;
reg_write(priv, REG_TBG_CNTRL_1, reg);
/* must be last register set: */
reg_write(priv, REG_TBG_CNTRL_0, 0);
priv->tmds_clock = adjusted_mode->clock;
/* CEA-861B section 6 says that:
* CEA version 1 (CEA-861) has no support for infoframes.
* CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
* and optional basic audio.
* CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
* and optional digital audio, with audio infoframes.
*
* Since we only support generation of version 2 AVI infoframes,
* ignore CEA version 2 and below (iow, behave as if we're a
* CEA-861 source.)
*/
priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
if (priv->supports_infoframes) {
/* We need to turn HDMI HDCP stuff on to get audio through */
reg &= ~TBG_CNTRL_1_DWIN_DIS;
reg_write(priv, REG_TBG_CNTRL_1, reg);
reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
reg_set(priv, REG_TX33, TX33_HDMI);
tda998x_write_avi(priv, adjusted_mode);
if (priv->audio_params.format != AFMT_UNUSED)
tda998x_configure_audio(priv, &priv->audio_params);
}
mutex_unlock(&priv->audio_mutex);
}
static enum drm_connector_status
tda998x_connector_detect(struct drm_connector *connector, bool force)
{
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
connector_status_disconnected;
}
static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
{
struct tda998x_priv *priv = data;
u8 offset, segptr;
int ret, i;
offset = (blk & 1) ? 128 : 0;
segptr = blk / 2;
reg_write(priv, REG_DDC_ADDR, 0xa0);
reg_write(priv, REG_DDC_OFFS, offset);
reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
reg_write(priv, REG_DDC_SEGM, segptr);
/* enable reading EDID: */
priv->wq_edid_wait = 1;
reg_write(priv, REG_EDID_CTRL, 0x1);
/* flag must be cleared by sw: */
reg_write(priv, REG_EDID_CTRL, 0x0);
/* wait for block read to complete: */
if (priv->hdmi->irq) {
i = wait_event_timeout(priv->wq_edid,
!priv->wq_edid_wait,
msecs_to_jiffies(100));
if (i < 0) {
dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
return i;
}
} else {
for (i = 100; i > 0; i--) {
msleep(1);
ret = reg_read(priv, REG_INT_FLAGS_2);
if (ret < 0)
return ret;
if (ret & INT_FLAGS_2_EDID_BLK_RD)
break;
}
}
if (i == 0) {
dev_err(&priv->hdmi->dev, "read edid timeout\n");
return -ETIMEDOUT;
}
ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
if (ret != length) {
dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
blk, ret);
return ret;
}
return 0;
}
static int tda998x_connector_get_modes(struct drm_connector *connector)
{
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
struct edid *edid;
int n;
/*
* If we get killed while waiting for the HPD timeout, return
* no modes found: we are not in a restartable path, so we
* can't handle signals gracefully.
*/
if (tda998x_edid_delay_wait(priv))
return 0;
if (priv->rev == TDA19988)
reg_clear(priv, REG_TX4, TX4_PD_RAM);
edid = drm_do_get_edid(connector, read_edid_block, priv);
if (priv->rev == TDA19988)
reg_set(priv, REG_TX4, TX4_PD_RAM);
if (!edid) {
dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
return 0;
}
drm_mode_connector_update_edid_property(connector, edid);
n = drm_add_edid_modes(connector, edid);
drm_edid_to_eld(connector, edid);
kfree(edid);
return n;
}
static void tda998x_encoder_set_polling(struct tda998x_priv *priv,
struct drm_connector *connector)
{
if (priv->hdmi->irq)
connector->polled = DRM_CONNECTOR_POLL_HPD;
else
connector->polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
static void tda998x_destroy(struct tda998x_priv *priv)
{
/* disable all IRQs and free the IRQ handler */
cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
if (priv->audio_pdev)
platform_device_unregister(priv->audio_pdev);
if (priv->hdmi->irq)
free_irq(priv->hdmi->irq, priv);
del_timer_sync(&priv->edid_delay_timer);
cancel_work_sync(&priv->detect_work);
i2c_unregister_device(priv->cec);
}
static int tda998x_audio_hw_params(struct device *dev, void *data,
struct hdmi_codec_daifmt *daifmt,
struct hdmi_codec_params *params)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
int i, ret;
struct tda998x_audio_params audio = {
.sample_width = params->sample_width,
.sample_rate = params->sample_rate,
.cea = params->cea,
};
memcpy(audio.status, params->iec.status,
min(sizeof(audio.status), sizeof(params->iec.status)));
switch (daifmt->fmt) {
case HDMI_I2S:
if (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
daifmt->bit_clk_master || daifmt->frame_clk_master) {
dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
daifmt->bit_clk_inv, daifmt->frame_clk_inv,
daifmt->bit_clk_master,
daifmt->frame_clk_master);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
if (priv->audio_port[i].format == AFMT_I2S)
audio.config = priv->audio_port[i].config;
audio.format = AFMT_I2S;
break;
case HDMI_SPDIF:
for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++)
if (priv->audio_port[i].format == AFMT_SPDIF)
audio.config = priv->audio_port[i].config;
audio.format = AFMT_SPDIF;
break;
default:
dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
return -EINVAL;
}
if (audio.config == 0) {
dev_err(dev, "%s: No audio configutation found\n", __func__);
return -EINVAL;
}
mutex_lock(&priv->audio_mutex);
if (priv->supports_infoframes)
ret = tda998x_configure_audio(priv, &audio);
else
ret = 0;
if (ret == 0)
priv->audio_params = audio;
mutex_unlock(&priv->audio_mutex);
return ret;
}
static void tda998x_audio_shutdown(struct device *dev, void *data)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
mutex_lock(&priv->audio_mutex);
reg_write(priv, REG_ENA_AP, 0);
priv->audio_params.format = AFMT_UNUSED;
mutex_unlock(&priv->audio_mutex);
}
int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
mutex_lock(&priv->audio_mutex);
tda998x_audio_mute(priv, enable);
mutex_unlock(&priv->audio_mutex);
return 0;
}
static int tda998x_audio_get_eld(struct device *dev, void *data,
uint8_t *buf, size_t len)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
struct drm_mode_config *config = &priv->encoder.dev->mode_config;
struct drm_connector *connector;
int ret = -ENODEV;
mutex_lock(&config->mutex);
list_for_each_entry(connector, &config->connector_list, head) {
if (&priv->encoder == connector->encoder) {
memcpy(buf, connector->eld,
min(sizeof(connector->eld), len));
ret = 0;
}
}
mutex_unlock(&config->mutex);
return ret;
}
static const struct hdmi_codec_ops audio_codec_ops = {
.hw_params = tda998x_audio_hw_params,
.audio_shutdown = tda998x_audio_shutdown,
.digital_mute = tda998x_audio_digital_mute,
.get_eld = tda998x_audio_get_eld,
};
static int tda998x_audio_codec_init(struct tda998x_priv *priv,
struct device *dev)
{
struct hdmi_codec_pdata codec_data = {
.ops = &audio_codec_ops,
.max_i2s_channels = 2,
};
int i;
for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) {
if (priv->audio_port[i].format == AFMT_I2S &&
priv->audio_port[i].config != 0)
codec_data.i2s = 1;
if (priv->audio_port[i].format == AFMT_SPDIF &&
priv->audio_port[i].config != 0)
codec_data.spdif = 1;
}
priv->audio_pdev = platform_device_register_data(
dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
&codec_data, sizeof(codec_data));
return PTR_ERR_OR_ZERO(priv->audio_pdev);
}
/* I2C driver functions */
static int tda998x_get_audio_ports(struct tda998x_priv *priv,
struct device_node *np)
{
const u32 *port_data;
u32 size;
int i;
port_data = of_get_property(np, "audio-ports", &size);
if (!port_data)
return 0;
size /= sizeof(u32);
if (size > 2 * ARRAY_SIZE(priv->audio_port) || size % 2 != 0) {
dev_err(&priv->hdmi->dev,
"Bad number of elements in audio-ports dt-property\n");
return -EINVAL;
}
size /= 2;
for (i = 0; i < size; i++) {
u8 afmt = be32_to_cpup(&port_data[2*i]);
u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
if (afmt != AFMT_SPDIF && afmt != AFMT_I2S) {
dev_err(&priv->hdmi->dev,
"Bad audio format %u\n", afmt);
return -EINVAL;
}
priv->audio_port[i].format = afmt;
priv->audio_port[i].config = ena_ap;
}
if (priv->audio_port[0].format == priv->audio_port[1].format) {
dev_err(&priv->hdmi->dev,
"There can only be on I2S port and one SPDIF port\n");
return -EINVAL;
}
return 0;
}
static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv)
{
struct device_node *np = client->dev.of_node;
u32 video;
int rev_lo, rev_hi, ret;
unsigned short cec_addr;
mutex_init(&priv->audio_mutex); /* Protect access from audio thread */
priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
priv->current_page = 0xff;
priv->hdmi = client;
/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
cec_addr = 0x34 + (client->addr & 0x03);
priv->cec = i2c_new_dummy(client->adapter, cec_addr);
if (!priv->cec)
return -ENODEV;
priv->dpms = DRM_MODE_DPMS_OFF;
mutex_init(&priv->mutex); /* protect the page access */
init_waitqueue_head(&priv->edid_delay_waitq);
setup_timer(&priv->edid_delay_timer, tda998x_edid_delay_done,
(unsigned long)priv);
INIT_WORK(&priv->detect_work, tda998x_detect_work);
/* wake up the device: */
cec_write(priv, REG_CEC_ENAMODS,
CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
tda998x_reset(priv);
/* read version: */
rev_lo = reg_read(priv, REG_VERSION_LSB);
rev_hi = reg_read(priv, REG_VERSION_MSB);
if (rev_lo < 0 || rev_hi < 0) {
ret = rev_lo < 0 ? rev_lo : rev_hi;
goto fail;
}
priv->rev = rev_lo | rev_hi << 8;
/* mask off feature bits: */
priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
switch (priv->rev) {
case TDA9989N2:
dev_info(&client->dev, "found TDA9989 n2");
break;
case TDA19989:
dev_info(&client->dev, "found TDA19989");
break;
case TDA19989N2:
dev_info(&client->dev, "found TDA19989 n2");
break;
case TDA19988:
dev_info(&client->dev, "found TDA19988");
break;
default:
dev_err(&client->dev, "found unsupported device: %04x\n",
priv->rev);
goto fail;
}
/* after reset, enable DDC: */
reg_write(priv, REG_DDC_DISABLE, 0x00);
/* set clock on DDC channel: */
reg_write(priv, REG_TX3, 39);
/* if necessary, disable multi-master: */
if (priv->rev == TDA19989)
reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
/* initialize the optional IRQ */
if (client->irq) {
int irqf_trigger;
/* init read EDID waitqueue and HDP work */
init_waitqueue_head(&priv->wq_edid);
/* clear pending interrupts */
reg_read(priv, REG_INT_FLAGS_0);
reg_read(priv, REG_INT_FLAGS_1);
reg_read(priv, REG_INT_FLAGS_2);
irqf_trigger =
irqd_get_trigger_type(irq_get_irq_data(client->irq));
ret = request_threaded_irq(client->irq, NULL,
tda998x_irq_thread,
irqf_trigger | IRQF_ONESHOT,
"tda998x", priv);
if (ret) {
dev_err(&client->dev,
"failed to request IRQ#%u: %d\n",
client->irq, ret);
goto fail;
}
/* enable HPD irq */
cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
}
/* enable EDID read irq: */
reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
if (!np)
return 0; /* non-DT */
/* get the device tree parameters */
ret = of_property_read_u32(np, "video-ports", &video);
if (ret == 0) {
priv->vip_cntrl_0 = video >> 16;
priv->vip_cntrl_1 = video >> 8;
priv->vip_cntrl_2 = video;
}
ret = tda998x_get_audio_ports(priv, np);
if (ret)
goto fail;
if (priv->audio_port[0].format != AFMT_UNUSED)
tda998x_audio_codec_init(priv, &client->dev);
return 0;
fail:
/* if encoder_init fails, the encoder slave is never registered,
* so cleanup here:
*/
if (priv->cec)
i2c_unregister_device(priv->cec);
return -ENXIO;
}
static void tda998x_encoder_prepare(struct drm_encoder *encoder)
{
tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF);
}
static void tda998x_encoder_commit(struct drm_encoder *encoder)
{
tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON);
}
static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = {
.dpms = tda998x_encoder_dpms,
.prepare = tda998x_encoder_prepare,
.commit = tda998x_encoder_commit,
.mode_set = tda998x_encoder_mode_set,
};
static void tda998x_encoder_destroy(struct drm_encoder *encoder)
{
struct tda998x_priv *priv = enc_to_tda998x_priv(encoder);
tda998x_destroy(priv);
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs tda998x_encoder_funcs = {
.destroy = tda998x_encoder_destroy,
};
static struct drm_encoder *
tda998x_connector_best_encoder(struct drm_connector *connector)
{
struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
return &priv->encoder;
}
static
const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
.get_modes = tda998x_connector_get_modes,
.mode_valid = tda998x_connector_mode_valid,
.best_encoder = tda998x_connector_best_encoder,
};
static void tda998x_connector_destroy(struct drm_connector *connector)
{
drm_connector_cleanup(connector);
}
static int tda998x_connector_dpms(struct drm_connector *connector, int mode)
{
if (drm_core_check_feature(connector->dev, DRIVER_ATOMIC))
return drm_atomic_helper_connector_dpms(connector, mode);
else
return drm_helper_connector_dpms(connector, mode);
}
static const struct drm_connector_funcs tda998x_connector_funcs = {
.dpms = tda998x_connector_dpms,
.reset = drm_atomic_helper_connector_reset,
.fill_modes = drm_helper_probe_single_connector_modes,
.detect = tda998x_connector_detect,
.destroy = tda998x_connector_destroy,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int tda998x_bind(struct device *dev, struct device *master, void *data)
{
struct tda998x_encoder_params *params = dev->platform_data;
struct i2c_client *client = to_i2c_client(dev);
struct drm_device *drm = data;
struct tda998x_priv *priv;
u32 crtcs = 0;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
dev_set_drvdata(dev, priv);
if (dev->of_node)
crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
/* If no CRTCs were found, fall back to our old behaviour */
if (crtcs == 0) {
dev_warn(dev, "Falling back to first CRTC\n");
crtcs = 1 << 0;
}
priv->connector.interlace_allowed = 1;
priv->encoder.possible_crtcs = crtcs;
ret = tda998x_create(client, priv);
if (ret)
return ret;
if (!dev->of_node && params)
tda998x_encoder_set_config(priv, params);
tda998x_encoder_set_polling(priv, &priv->connector);
drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs);
ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs,
DRM_MODE_ENCODER_TMDS, NULL);
if (ret)
goto err_encoder;
drm_connector_helper_add(&priv->connector,
&tda998x_connector_helper_funcs);
ret = drm_connector_init(drm, &priv->connector,
&tda998x_connector_funcs,
DRM_MODE_CONNECTOR_HDMIA);
if (ret)
goto err_connector;
drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder);
return 0;
err_connector:
drm_encoder_cleanup(&priv->encoder);
err_encoder:
tda998x_destroy(priv);
return ret;
}
static void tda998x_unbind(struct device *dev, struct device *master,
void *data)
{
struct tda998x_priv *priv = dev_get_drvdata(dev);
drm_connector_cleanup(&priv->connector);
drm_encoder_cleanup(&priv->encoder);
tda998x_destroy(priv);
}
static const struct component_ops tda998x_ops = {
.bind = tda998x_bind,
.unbind = tda998x_unbind,
};
static int
tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
return component_add(&client->dev, &tda998x_ops);
}
static int tda998x_remove(struct i2c_client *client)
{
component_del(&client->dev, &tda998x_ops);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id tda998x_dt_ids[] = {
{ .compatible = "nxp,tda998x", },
{ }
};
MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
#endif
static struct i2c_device_id tda998x_ids[] = {
{ "tda998x", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tda998x_ids);
static struct i2c_driver tda998x_driver = {
.probe = tda998x_probe,
.remove = tda998x_remove,
.driver = {
.name = "tda998x",
.of_match_table = of_match_ptr(tda998x_dt_ids),
},
.id_table = tda998x_ids,
};
module_i2c_driver(tda998x_driver);
MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
MODULE_LICENSE("GPL");