linux_dsm_epyc7002/drivers/i2c/busses/i2c-axxia.c
Anders Berg 08678b850c i2c: axxia: Add I2C driver for AXM55xx
Add I2C bus driver for the controller found in the LSI Axxia family SoCs. The
driver implements 10-bit addressing and SMBus transfer modes via emulation
(including SMBus block data read).

Signed-off-by: Anders Berg <anders.berg@avagotech.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2014-10-03 14:11:53 +02:00

560 lines
14 KiB
C

/*
* This driver implements I2C master functionality using the LSI API2C
* controller.
*
* NOTE: The controller has a limitation in that it can only do transfers of
* maximum 255 bytes at a time. If a larger transfer is attempted, error code
* (-EINVAL) is returned.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*/
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#define SCL_WAIT_TIMEOUT_NS 25000000
#define I2C_XFER_TIMEOUT (msecs_to_jiffies(250))
#define I2C_STOP_TIMEOUT (msecs_to_jiffies(100))
#define FIFO_SIZE 8
#define GLOBAL_CONTROL 0x00
#define GLOBAL_MST_EN BIT(0)
#define GLOBAL_SLV_EN BIT(1)
#define GLOBAL_IBML_EN BIT(2)
#define INTERRUPT_STATUS 0x04
#define INTERRUPT_ENABLE 0x08
#define INT_SLV BIT(1)
#define INT_MST BIT(0)
#define WAIT_TIMER_CONTROL 0x0c
#define WT_EN BIT(15)
#define WT_VALUE(_x) ((_x) & 0x7fff)
#define IBML_TIMEOUT 0x10
#define IBML_LOW_MEXT 0x14
#define IBML_LOW_SEXT 0x18
#define TIMER_CLOCK_DIV 0x1c
#define I2C_BUS_MONITOR 0x20
#define SOFT_RESET 0x24
#define MST_COMMAND 0x28
#define CMD_BUSY (1<<3)
#define CMD_MANUAL (0x00 | CMD_BUSY)
#define CMD_AUTO (0x01 | CMD_BUSY)
#define MST_RX_XFER 0x2c
#define MST_TX_XFER 0x30
#define MST_ADDR_1 0x34
#define MST_ADDR_2 0x38
#define MST_DATA 0x3c
#define MST_TX_FIFO 0x40
#define MST_RX_FIFO 0x44
#define MST_INT_ENABLE 0x48
#define MST_INT_STATUS 0x4c
#define MST_STATUS_RFL (1 << 13) /* RX FIFO serivce */
#define MST_STATUS_TFL (1 << 12) /* TX FIFO service */
#define MST_STATUS_SNS (1 << 11) /* Manual mode done */
#define MST_STATUS_SS (1 << 10) /* Automatic mode done */
#define MST_STATUS_SCC (1 << 9) /* Stop complete */
#define MST_STATUS_IP (1 << 8) /* Invalid parameter */
#define MST_STATUS_TSS (1 << 7) /* Timeout */
#define MST_STATUS_AL (1 << 6) /* Arbitration lost */
#define MST_STATUS_ND (1 << 5) /* NAK on data phase */
#define MST_STATUS_NA (1 << 4) /* NAK on address phase */
#define MST_STATUS_NAK (MST_STATUS_NA | \
MST_STATUS_ND)
#define MST_STATUS_ERR (MST_STATUS_NAK | \
MST_STATUS_AL | \
MST_STATUS_IP | \
MST_STATUS_TSS)
#define MST_TX_BYTES_XFRD 0x50
#define MST_RX_BYTES_XFRD 0x54
#define SCL_HIGH_PERIOD 0x80
#define SCL_LOW_PERIOD 0x84
#define SPIKE_FLTR_LEN 0x88
#define SDA_SETUP_TIME 0x8c
#define SDA_HOLD_TIME 0x90
/**
* axxia_i2c_dev - I2C device context
* @base: pointer to register struct
* @msg: pointer to current message
* @msg_xfrd: number of bytes transferred in msg
* @msg_err: error code for completed message
* @msg_complete: xfer completion object
* @dev: device reference
* @adapter: core i2c abstraction
* @i2c_clk: clock reference for i2c input clock
* @bus_clk_rate: current i2c bus clock rate
*/
struct axxia_i2c_dev {
void __iomem *base;
struct i2c_msg *msg;
size_t msg_xfrd;
int msg_err;
struct completion msg_complete;
struct device *dev;
struct i2c_adapter adapter;
struct clk *i2c_clk;
u32 bus_clk_rate;
};
static void i2c_int_disable(struct axxia_i2c_dev *idev, u32 mask)
{
u32 int_en;
int_en = readl(idev->base + MST_INT_ENABLE);
writel(int_en & ~mask, idev->base + MST_INT_ENABLE);
}
static void i2c_int_enable(struct axxia_i2c_dev *idev, u32 mask)
{
u32 int_en;
int_en = readl(idev->base + MST_INT_ENABLE);
writel(int_en | mask, idev->base + MST_INT_ENABLE);
}
/**
* ns_to_clk - Convert time (ns) to clock cycles for the given clock frequency.
*/
static u32 ns_to_clk(u64 ns, u32 clk_mhz)
{
return div_u64(ns * clk_mhz, 1000);
}
static int axxia_i2c_init(struct axxia_i2c_dev *idev)
{
u32 divisor = clk_get_rate(idev->i2c_clk) / idev->bus_clk_rate;
u32 clk_mhz = clk_get_rate(idev->i2c_clk) / 1000000;
u32 t_setup;
u32 t_high, t_low;
u32 tmo_clk;
u32 prescale;
unsigned long timeout;
dev_dbg(idev->dev, "rate=%uHz per_clk=%uMHz -> ratio=1:%u\n",
idev->bus_clk_rate, clk_mhz, divisor);
/* Reset controller */
writel(0x01, idev->base + SOFT_RESET);
timeout = jiffies + msecs_to_jiffies(100);
while (readl(idev->base + SOFT_RESET) & 1) {
if (time_after(jiffies, timeout)) {
dev_warn(idev->dev, "Soft reset failed\n");
break;
}
}
/* Enable Master Mode */
writel(0x1, idev->base + GLOBAL_CONTROL);
if (idev->bus_clk_rate <= 100000) {
/* Standard mode SCL 50/50, tSU:DAT = 250 ns */
t_high = divisor * 1 / 2;
t_low = divisor * 1 / 2;
t_setup = ns_to_clk(250, clk_mhz);
} else {
/* Fast mode SCL 33/66, tSU:DAT = 100 ns */
t_high = divisor * 1 / 3;
t_low = divisor * 2 / 3;
t_setup = ns_to_clk(100, clk_mhz);
}
/* SCL High Time */
writel(t_high, idev->base + SCL_HIGH_PERIOD);
/* SCL Low Time */
writel(t_low, idev->base + SCL_LOW_PERIOD);
/* SDA Setup Time */
writel(t_setup, idev->base + SDA_SETUP_TIME);
/* SDA Hold Time, 300ns */
writel(ns_to_clk(300, clk_mhz), idev->base + SDA_HOLD_TIME);
/* Filter <50ns spikes */
writel(ns_to_clk(50, clk_mhz), idev->base + SPIKE_FLTR_LEN);
/* Configure Time-Out Registers */
tmo_clk = ns_to_clk(SCL_WAIT_TIMEOUT_NS, clk_mhz);
/* Find prescaler value that makes tmo_clk fit in 15-bits counter. */
for (prescale = 0; prescale < 15; ++prescale) {
if (tmo_clk <= 0x7fff)
break;
tmo_clk >>= 1;
}
if (tmo_clk > 0x7fff)
tmo_clk = 0x7fff;
/* Prescale divider (log2) */
writel(prescale, idev->base + TIMER_CLOCK_DIV);
/* Timeout in divided clocks */
writel(WT_EN | WT_VALUE(tmo_clk), idev->base + WAIT_TIMER_CONTROL);
/* Mask all master interrupt bits */
i2c_int_disable(idev, ~0);
/* Interrupt enable */
writel(0x01, idev->base + INTERRUPT_ENABLE);
return 0;
}
static int i2c_m_rd(const struct i2c_msg *msg)
{
return (msg->flags & I2C_M_RD) != 0;
}
static int i2c_m_ten(const struct i2c_msg *msg)
{
return (msg->flags & I2C_M_TEN) != 0;
}
static int i2c_m_recv_len(const struct i2c_msg *msg)
{
return (msg->flags & I2C_M_RECV_LEN) != 0;
}
/**
* axxia_i2c_empty_rx_fifo - Fetch data from RX FIFO and update SMBus block
* transfer length if this is the first byte of such a transfer.
*/
static int axxia_i2c_empty_rx_fifo(struct axxia_i2c_dev *idev)
{
struct i2c_msg *msg = idev->msg;
size_t rx_fifo_avail = readl(idev->base + MST_RX_FIFO);
int bytes_to_transfer = min(rx_fifo_avail, msg->len - idev->msg_xfrd);
while (bytes_to_transfer-- > 0) {
int c = readl(idev->base + MST_DATA);
if (idev->msg_xfrd == 0 && i2c_m_recv_len(msg)) {
/*
* Check length byte for SMBus block read
*/
if (c <= 0 || c > I2C_SMBUS_BLOCK_MAX) {
idev->msg_err = -EPROTO;
i2c_int_disable(idev, ~0);
complete(&idev->msg_complete);
break;
}
msg->len = 1 + c;
writel(msg->len, idev->base + MST_RX_XFER);
}
msg->buf[idev->msg_xfrd++] = c;
}
return 0;
}
/**
* axxia_i2c_fill_tx_fifo - Fill TX FIFO from current message buffer.
* @return: Number of bytes left to transfer.
*/
static int axxia_i2c_fill_tx_fifo(struct axxia_i2c_dev *idev)
{
struct i2c_msg *msg = idev->msg;
size_t tx_fifo_avail = FIFO_SIZE - readl(idev->base + MST_TX_FIFO);
int bytes_to_transfer = min(tx_fifo_avail, msg->len - idev->msg_xfrd);
int ret = msg->len - idev->msg_xfrd - bytes_to_transfer;
while (bytes_to_transfer-- > 0)
writel(msg->buf[idev->msg_xfrd++], idev->base + MST_DATA);
return ret;
}
static irqreturn_t axxia_i2c_isr(int irq, void *_dev)
{
struct axxia_i2c_dev *idev = _dev;
u32 status;
if (!(readl(idev->base + INTERRUPT_STATUS) & INT_MST))
return IRQ_NONE;
/* Read interrupt status bits */
status = readl(idev->base + MST_INT_STATUS);
if (!idev->msg) {
dev_warn(idev->dev, "unexpected interrupt\n");
goto out;
}
/* RX FIFO needs service? */
if (i2c_m_rd(idev->msg) && (status & MST_STATUS_RFL))
axxia_i2c_empty_rx_fifo(idev);
/* TX FIFO needs service? */
if (!i2c_m_rd(idev->msg) && (status & MST_STATUS_TFL)) {
if (axxia_i2c_fill_tx_fifo(idev) == 0)
i2c_int_disable(idev, MST_STATUS_TFL);
}
if (status & MST_STATUS_SCC) {
/* Stop completed */
i2c_int_disable(idev, ~0);
complete(&idev->msg_complete);
} else if (status & MST_STATUS_SNS) {
/* Transfer done */
i2c_int_disable(idev, ~0);
if (i2c_m_rd(idev->msg) && idev->msg_xfrd < idev->msg->len)
axxia_i2c_empty_rx_fifo(idev);
complete(&idev->msg_complete);
} else if (unlikely(status & MST_STATUS_ERR)) {
/* Transfer error */
i2c_int_disable(idev, ~0);
if (status & MST_STATUS_AL)
idev->msg_err = -EAGAIN;
else if (status & MST_STATUS_NAK)
idev->msg_err = -ENXIO;
else
idev->msg_err = -EIO;
dev_dbg(idev->dev, "error %#x, addr=%#x rx=%u/%u tx=%u/%u\n",
status,
idev->msg->addr,
readl(idev->base + MST_RX_BYTES_XFRD),
readl(idev->base + MST_RX_XFER),
readl(idev->base + MST_TX_BYTES_XFRD),
readl(idev->base + MST_TX_XFER));
complete(&idev->msg_complete);
}
out:
/* Clear interrupt */
writel(INT_MST, idev->base + INTERRUPT_STATUS);
return IRQ_HANDLED;
}
static int axxia_i2c_xfer_msg(struct axxia_i2c_dev *idev, struct i2c_msg *msg)
{
u32 int_mask = MST_STATUS_ERR | MST_STATUS_SNS;
u32 rx_xfer, tx_xfer;
u32 addr_1, addr_2;
int ret;
if (msg->len > 255) {
dev_warn(idev->dev, "unsupported length %u\n", msg->len);
return -EINVAL;
}
idev->msg = msg;
idev->msg_xfrd = 0;
idev->msg_err = 0;
reinit_completion(&idev->msg_complete);
if (i2c_m_ten(msg)) {
/* 10-bit address
* addr_1: 5'b11110 | addr[9:8] | (R/nW)
* addr_2: addr[7:0]
*/
addr_1 = 0xF0 | ((msg->addr >> 7) & 0x06);
addr_2 = msg->addr & 0xFF;
} else {
/* 7-bit address
* addr_1: addr[6:0] | (R/nW)
* addr_2: dont care
*/
addr_1 = (msg->addr << 1) & 0xFF;
addr_2 = 0;
}
if (i2c_m_rd(msg)) {
/* I2C read transfer */
rx_xfer = i2c_m_recv_len(msg) ? I2C_SMBUS_BLOCK_MAX : msg->len;
tx_xfer = 0;
addr_1 |= 1; /* Set the R/nW bit of the address */
} else {
/* I2C write transfer */
rx_xfer = 0;
tx_xfer = msg->len;
}
writel(rx_xfer, idev->base + MST_RX_XFER);
writel(tx_xfer, idev->base + MST_TX_XFER);
writel(addr_1, idev->base + MST_ADDR_1);
writel(addr_2, idev->base + MST_ADDR_2);
if (i2c_m_rd(msg))
int_mask |= MST_STATUS_RFL;
else if (axxia_i2c_fill_tx_fifo(idev) != 0)
int_mask |= MST_STATUS_TFL;
/* Start manual mode */
writel(CMD_MANUAL, idev->base + MST_COMMAND);
i2c_int_enable(idev, int_mask);
ret = wait_for_completion_timeout(&idev->msg_complete,
I2C_XFER_TIMEOUT);
i2c_int_disable(idev, int_mask);
if (readl(idev->base + MST_COMMAND) & CMD_BUSY)
dev_warn(idev->dev, "busy after xfer\n");
if (ret == 0)
idev->msg_err = -ETIMEDOUT;
if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO)
axxia_i2c_init(idev);
return idev->msg_err;
}
static int axxia_i2c_stop(struct axxia_i2c_dev *idev)
{
u32 int_mask = MST_STATUS_ERR | MST_STATUS_SCC;
int ret;
reinit_completion(&idev->msg_complete);
/* Issue stop */
writel(0xb, idev->base + MST_COMMAND);
i2c_int_enable(idev, int_mask);
ret = wait_for_completion_timeout(&idev->msg_complete,
I2C_STOP_TIMEOUT);
i2c_int_disable(idev, int_mask);
if (ret == 0)
return -ETIMEDOUT;
if (readl(idev->base + MST_COMMAND) & CMD_BUSY)
dev_warn(idev->dev, "busy after stop\n");
return 0;
}
static int
axxia_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
struct axxia_i2c_dev *idev = i2c_get_adapdata(adap);
int i;
int ret = 0;
for (i = 0; ret == 0 && i < num; ++i)
ret = axxia_i2c_xfer_msg(idev, &msgs[i]);
axxia_i2c_stop(idev);
return ret ? : i;
}
static u32 axxia_i2c_func(struct i2c_adapter *adap)
{
u32 caps = (I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA);
return caps;
}
static const struct i2c_algorithm axxia_i2c_algo = {
.master_xfer = axxia_i2c_xfer,
.functionality = axxia_i2c_func,
};
static int axxia_i2c_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct axxia_i2c_dev *idev = NULL;
struct resource *res;
void __iomem *base;
int irq;
int ret = 0;
idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
if (!idev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "missing interrupt resource\n");
return irq;
}
idev->i2c_clk = devm_clk_get(&pdev->dev, "i2c");
if (IS_ERR(idev->i2c_clk)) {
dev_err(&pdev->dev, "missing clock\n");
return PTR_ERR(idev->i2c_clk);
}
idev->base = base;
idev->dev = &pdev->dev;
init_completion(&idev->msg_complete);
of_property_read_u32(np, "clock-frequency", &idev->bus_clk_rate);
if (idev->bus_clk_rate == 0)
idev->bus_clk_rate = 100000; /* default clock rate */
ret = axxia_i2c_init(idev);
if (ret) {
dev_err(&pdev->dev, "failed to initialize\n");
return ret;
}
ret = devm_request_irq(&pdev->dev, irq, axxia_i2c_isr, 0,
pdev->name, idev);
if (ret) {
dev_err(&pdev->dev, "failed to claim IRQ%d\n", irq);
return ret;
}
clk_prepare_enable(idev->i2c_clk);
i2c_set_adapdata(&idev->adapter, idev);
strlcpy(idev->adapter.name, pdev->name, sizeof(idev->adapter.name));
idev->adapter.owner = THIS_MODULE;
idev->adapter.algo = &axxia_i2c_algo;
idev->adapter.dev.parent = &pdev->dev;
idev->adapter.dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, idev);
ret = i2c_add_adapter(&idev->adapter);
if (ret) {
dev_err(&pdev->dev, "failed to add adapter\n");
return ret;
}
return 0;
}
static int axxia_i2c_remove(struct platform_device *pdev)
{
struct axxia_i2c_dev *idev = platform_get_drvdata(pdev);
clk_disable_unprepare(idev->i2c_clk);
i2c_del_adapter(&idev->adapter);
return 0;
}
/* Match table for of_platform binding */
static const struct of_device_id axxia_i2c_of_match[] = {
{ .compatible = "lsi,api2c", },
{},
};
MODULE_DEVICE_TABLE(of, axxia_i2c_of_match);
static struct platform_driver axxia_i2c_driver = {
.probe = axxia_i2c_probe,
.remove = axxia_i2c_remove,
.driver = {
.name = "axxia-i2c",
.of_match_table = axxia_i2c_of_match,
},
};
module_platform_driver(axxia_i2c_driver);
MODULE_DESCRIPTION("Axxia I2C Bus driver");
MODULE_AUTHOR("Anders Berg <anders.berg@lsi.com>");
MODULE_LICENSE("GPL v2");