linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/hw.c
Brian Norris e720ba1dcc ath10k: add missing sanity check on diag download
ath10k_hw_diag_fast_download() generally has good boundary checking, but
it misses verifying that the next metadata header actually fits in the
remaining buffer space. Add such a check.

Fixes: 39501ea641 ("ath10k: download firmware via diag Copy Engine for QCA6174 and QCA9377.")
Signed-off-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2018-10-02 07:49:09 +03:00

1132 lines
31 KiB
C

/*
* Copyright (c) 2014-2017 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include "core.h"
#include "hw.h"
#include "hif.h"
#include "wmi-ops.h"
#include "bmi.h"
const struct ath10k_hw_regs qca988x_regs = {
.rtc_soc_base_address = 0x00004000,
.rtc_wmac_base_address = 0x00005000,
.soc_core_base_address = 0x00009000,
.wlan_mac_base_address = 0x00020000,
.ce_wrapper_base_address = 0x00057000,
.ce0_base_address = 0x00057400,
.ce1_base_address = 0x00057800,
.ce2_base_address = 0x00057c00,
.ce3_base_address = 0x00058000,
.ce4_base_address = 0x00058400,
.ce5_base_address = 0x00058800,
.ce6_base_address = 0x00058c00,
.ce7_base_address = 0x00059000,
.soc_reset_control_si0_rst_mask = 0x00000001,
.soc_reset_control_ce_rst_mask = 0x00040000,
.soc_chip_id_address = 0x000000ec,
.scratch_3_address = 0x00000030,
.fw_indicator_address = 0x00009030,
.pcie_local_base_address = 0x00080000,
.ce_wrap_intr_sum_host_msi_lsb = 0x00000008,
.ce_wrap_intr_sum_host_msi_mask = 0x0000ff00,
.pcie_intr_fw_mask = 0x00000400,
.pcie_intr_ce_mask_all = 0x0007f800,
.pcie_intr_clr_address = 0x00000014,
};
const struct ath10k_hw_regs qca6174_regs = {
.rtc_soc_base_address = 0x00000800,
.rtc_wmac_base_address = 0x00001000,
.soc_core_base_address = 0x0003a000,
.wlan_mac_base_address = 0x00010000,
.ce_wrapper_base_address = 0x00034000,
.ce0_base_address = 0x00034400,
.ce1_base_address = 0x00034800,
.ce2_base_address = 0x00034c00,
.ce3_base_address = 0x00035000,
.ce4_base_address = 0x00035400,
.ce5_base_address = 0x00035800,
.ce6_base_address = 0x00035c00,
.ce7_base_address = 0x00036000,
.soc_reset_control_si0_rst_mask = 0x00000000,
.soc_reset_control_ce_rst_mask = 0x00000001,
.soc_chip_id_address = 0x000000f0,
.scratch_3_address = 0x00000028,
.fw_indicator_address = 0x0003a028,
.pcie_local_base_address = 0x00080000,
.ce_wrap_intr_sum_host_msi_lsb = 0x00000008,
.ce_wrap_intr_sum_host_msi_mask = 0x0000ff00,
.pcie_intr_fw_mask = 0x00000400,
.pcie_intr_ce_mask_all = 0x0007f800,
.pcie_intr_clr_address = 0x00000014,
.cpu_pll_init_address = 0x00404020,
.cpu_speed_address = 0x00404024,
.core_clk_div_address = 0x00404028,
};
const struct ath10k_hw_regs qca99x0_regs = {
.rtc_soc_base_address = 0x00080000,
.rtc_wmac_base_address = 0x00000000,
.soc_core_base_address = 0x00082000,
.wlan_mac_base_address = 0x00030000,
.ce_wrapper_base_address = 0x0004d000,
.ce0_base_address = 0x0004a000,
.ce1_base_address = 0x0004a400,
.ce2_base_address = 0x0004a800,
.ce3_base_address = 0x0004ac00,
.ce4_base_address = 0x0004b000,
.ce5_base_address = 0x0004b400,
.ce6_base_address = 0x0004b800,
.ce7_base_address = 0x0004bc00,
/* Note: qca99x0 supports upto 12 Copy Engines. Other than address of
* CE0 and CE1 no other copy engine is directly referred in the code.
* It is not really necessary to assign address for newly supported
* CEs in this address table.
* Copy Engine Address
* CE8 0x0004c000
* CE9 0x0004c400
* CE10 0x0004c800
* CE11 0x0004cc00
*/
.soc_reset_control_si0_rst_mask = 0x00000001,
.soc_reset_control_ce_rst_mask = 0x00000100,
.soc_chip_id_address = 0x000000ec,
.scratch_3_address = 0x00040050,
.fw_indicator_address = 0x00040050,
.pcie_local_base_address = 0x00000000,
.ce_wrap_intr_sum_host_msi_lsb = 0x0000000c,
.ce_wrap_intr_sum_host_msi_mask = 0x00fff000,
.pcie_intr_fw_mask = 0x00100000,
.pcie_intr_ce_mask_all = 0x000fff00,
.pcie_intr_clr_address = 0x00000010,
};
const struct ath10k_hw_regs qca4019_regs = {
.rtc_soc_base_address = 0x00080000,
.soc_core_base_address = 0x00082000,
.wlan_mac_base_address = 0x00030000,
.ce_wrapper_base_address = 0x0004d000,
.ce0_base_address = 0x0004a000,
.ce1_base_address = 0x0004a400,
.ce2_base_address = 0x0004a800,
.ce3_base_address = 0x0004ac00,
.ce4_base_address = 0x0004b000,
.ce5_base_address = 0x0004b400,
.ce6_base_address = 0x0004b800,
.ce7_base_address = 0x0004bc00,
/* qca4019 supports upto 12 copy engines. Since base address
* of ce8 to ce11 are not directly referred in the code,
* no need have them in separate members in this table.
* Copy Engine Address
* CE8 0x0004c000
* CE9 0x0004c400
* CE10 0x0004c800
* CE11 0x0004cc00
*/
.soc_reset_control_si0_rst_mask = 0x00000001,
.soc_reset_control_ce_rst_mask = 0x00000100,
.soc_chip_id_address = 0x000000ec,
.fw_indicator_address = 0x0004f00c,
.ce_wrap_intr_sum_host_msi_lsb = 0x0000000c,
.ce_wrap_intr_sum_host_msi_mask = 0x00fff000,
.pcie_intr_fw_mask = 0x00100000,
.pcie_intr_ce_mask_all = 0x000fff00,
.pcie_intr_clr_address = 0x00000010,
};
const struct ath10k_hw_values qca988x_values = {
.rtc_state_val_on = 3,
.ce_count = 8,
.msi_assign_ce_max = 7,
.num_target_ce_config_wlan = 7,
.ce_desc_meta_data_mask = 0xFFFC,
.ce_desc_meta_data_lsb = 2,
};
const struct ath10k_hw_values qca6174_values = {
.rtc_state_val_on = 3,
.ce_count = 8,
.msi_assign_ce_max = 7,
.num_target_ce_config_wlan = 7,
.ce_desc_meta_data_mask = 0xFFFC,
.ce_desc_meta_data_lsb = 2,
};
const struct ath10k_hw_values qca99x0_values = {
.rtc_state_val_on = 5,
.ce_count = 12,
.msi_assign_ce_max = 12,
.num_target_ce_config_wlan = 10,
.ce_desc_meta_data_mask = 0xFFF0,
.ce_desc_meta_data_lsb = 4,
};
const struct ath10k_hw_values qca9888_values = {
.rtc_state_val_on = 3,
.ce_count = 12,
.msi_assign_ce_max = 12,
.num_target_ce_config_wlan = 10,
.ce_desc_meta_data_mask = 0xFFF0,
.ce_desc_meta_data_lsb = 4,
};
const struct ath10k_hw_values qca4019_values = {
.ce_count = 12,
.num_target_ce_config_wlan = 10,
.ce_desc_meta_data_mask = 0xFFF0,
.ce_desc_meta_data_lsb = 4,
};
const struct ath10k_hw_regs wcn3990_regs = {
.rtc_soc_base_address = 0x00000000,
.rtc_wmac_base_address = 0x00000000,
.soc_core_base_address = 0x00000000,
.ce_wrapper_base_address = 0x0024C000,
.ce0_base_address = 0x00240000,
.ce1_base_address = 0x00241000,
.ce2_base_address = 0x00242000,
.ce3_base_address = 0x00243000,
.ce4_base_address = 0x00244000,
.ce5_base_address = 0x00245000,
.ce6_base_address = 0x00246000,
.ce7_base_address = 0x00247000,
.ce8_base_address = 0x00248000,
.ce9_base_address = 0x00249000,
.ce10_base_address = 0x0024A000,
.ce11_base_address = 0x0024B000,
.soc_chip_id_address = 0x000000f0,
.soc_reset_control_si0_rst_mask = 0x00000001,
.soc_reset_control_ce_rst_mask = 0x00000100,
.ce_wrap_intr_sum_host_msi_lsb = 0x0000000c,
.ce_wrap_intr_sum_host_msi_mask = 0x00fff000,
.pcie_intr_fw_mask = 0x00100000,
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_src_ring = {
.msb = 0x00000010,
.lsb = 0x00000010,
.mask = GENMASK(17, 17),
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_ring = {
.msb = 0x00000012,
.lsb = 0x00000012,
.mask = GENMASK(18, 18),
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_dmax = {
.msb = 0x00000000,
.lsb = 0x00000000,
.mask = GENMASK(15, 0),
};
static struct ath10k_hw_ce_ctrl1 wcn3990_ctrl1 = {
.addr = 0x00000018,
.src_ring = &wcn3990_src_ring,
.dst_ring = &wcn3990_dst_ring,
.dmax = &wcn3990_dmax,
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_host_ie_cc = {
.mask = GENMASK(0, 0),
};
static struct ath10k_hw_ce_host_ie wcn3990_host_ie = {
.copy_complete = &wcn3990_host_ie_cc,
};
static struct ath10k_hw_ce_host_wm_regs wcn3990_wm_reg = {
.dstr_lmask = 0x00000010,
.dstr_hmask = 0x00000008,
.srcr_lmask = 0x00000004,
.srcr_hmask = 0x00000002,
.cc_mask = 0x00000001,
.wm_mask = 0x0000001E,
.addr = 0x00000030,
};
static struct ath10k_hw_ce_misc_regs wcn3990_misc_reg = {
.axi_err = 0x00000100,
.dstr_add_err = 0x00000200,
.srcr_len_err = 0x00000100,
.dstr_mlen_vio = 0x00000080,
.dstr_overflow = 0x00000040,
.srcr_overflow = 0x00000020,
.err_mask = 0x000003E0,
.addr = 0x00000038,
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_low = {
.msb = 0x00000000,
.lsb = 0x00000010,
.mask = GENMASK(31, 16),
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_src_wm_high = {
.msb = 0x0000000f,
.lsb = 0x00000000,
.mask = GENMASK(15, 0),
};
static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_src_ring = {
.addr = 0x0000004c,
.low_rst = 0x00000000,
.high_rst = 0x00000000,
.wm_low = &wcn3990_src_wm_low,
.wm_high = &wcn3990_src_wm_high,
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_low = {
.lsb = 0x00000010,
.mask = GENMASK(31, 16),
};
static struct ath10k_hw_ce_regs_addr_map wcn3990_dst_wm_high = {
.msb = 0x0000000f,
.lsb = 0x00000000,
.mask = GENMASK(15, 0),
};
static struct ath10k_hw_ce_dst_src_wm_regs wcn3990_wm_dst_ring = {
.addr = 0x00000050,
.low_rst = 0x00000000,
.high_rst = 0x00000000,
.wm_low = &wcn3990_dst_wm_low,
.wm_high = &wcn3990_dst_wm_high,
};
static struct ath10k_hw_ce_ctrl1_upd wcn3990_ctrl1_upd = {
.shift = 19,
.mask = 0x00080000,
.enable = 0x00000000,
};
const struct ath10k_hw_ce_regs wcn3990_ce_regs = {
.sr_base_addr = 0x00000000,
.sr_size_addr = 0x00000008,
.dr_base_addr = 0x0000000c,
.dr_size_addr = 0x00000014,
.misc_ie_addr = 0x00000034,
.sr_wr_index_addr = 0x0000003c,
.dst_wr_index_addr = 0x00000040,
.current_srri_addr = 0x00000044,
.current_drri_addr = 0x00000048,
.ce_rri_low = 0x0024C004,
.ce_rri_high = 0x0024C008,
.host_ie_addr = 0x0000002c,
.ctrl1_regs = &wcn3990_ctrl1,
.host_ie = &wcn3990_host_ie,
.wm_regs = &wcn3990_wm_reg,
.misc_regs = &wcn3990_misc_reg,
.wm_srcr = &wcn3990_wm_src_ring,
.wm_dstr = &wcn3990_wm_dst_ring,
.upd = &wcn3990_ctrl1_upd,
};
const struct ath10k_hw_values wcn3990_values = {
.rtc_state_val_on = 5,
.ce_count = 12,
.msi_assign_ce_max = 12,
.num_target_ce_config_wlan = 12,
.ce_desc_meta_data_mask = 0xFFF0,
.ce_desc_meta_data_lsb = 4,
};
static struct ath10k_hw_ce_regs_addr_map qcax_src_ring = {
.msb = 0x00000010,
.lsb = 0x00000010,
.mask = GENMASK(16, 16),
};
static struct ath10k_hw_ce_regs_addr_map qcax_dst_ring = {
.msb = 0x00000011,
.lsb = 0x00000011,
.mask = GENMASK(17, 17),
};
static struct ath10k_hw_ce_regs_addr_map qcax_dmax = {
.msb = 0x0000000f,
.lsb = 0x00000000,
.mask = GENMASK(15, 0),
};
static struct ath10k_hw_ce_ctrl1 qcax_ctrl1 = {
.addr = 0x00000010,
.hw_mask = 0x0007ffff,
.sw_mask = 0x0007ffff,
.hw_wr_mask = 0x00000000,
.sw_wr_mask = 0x0007ffff,
.reset_mask = 0xffffffff,
.reset = 0x00000080,
.src_ring = &qcax_src_ring,
.dst_ring = &qcax_dst_ring,
.dmax = &qcax_dmax,
};
static struct ath10k_hw_ce_regs_addr_map qcax_cmd_halt_status = {
.msb = 0x00000003,
.lsb = 0x00000003,
.mask = GENMASK(3, 3),
};
static struct ath10k_hw_ce_cmd_halt qcax_cmd_halt = {
.msb = 0x00000000,
.mask = GENMASK(0, 0),
.status_reset = 0x00000000,
.status = &qcax_cmd_halt_status,
};
static struct ath10k_hw_ce_regs_addr_map qcax_host_ie_cc = {
.msb = 0x00000000,
.lsb = 0x00000000,
.mask = GENMASK(0, 0),
};
static struct ath10k_hw_ce_host_ie qcax_host_ie = {
.copy_complete_reset = 0x00000000,
.copy_complete = &qcax_host_ie_cc,
};
static struct ath10k_hw_ce_host_wm_regs qcax_wm_reg = {
.dstr_lmask = 0x00000010,
.dstr_hmask = 0x00000008,
.srcr_lmask = 0x00000004,
.srcr_hmask = 0x00000002,
.cc_mask = 0x00000001,
.wm_mask = 0x0000001E,
.addr = 0x00000030,
};
static struct ath10k_hw_ce_misc_regs qcax_misc_reg = {
.axi_err = 0x00000400,
.dstr_add_err = 0x00000200,
.srcr_len_err = 0x00000100,
.dstr_mlen_vio = 0x00000080,
.dstr_overflow = 0x00000040,
.srcr_overflow = 0x00000020,
.err_mask = 0x000007E0,
.addr = 0x00000038,
};
static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_low = {
.msb = 0x0000001f,
.lsb = 0x00000010,
.mask = GENMASK(31, 16),
};
static struct ath10k_hw_ce_regs_addr_map qcax_src_wm_high = {
.msb = 0x0000000f,
.lsb = 0x00000000,
.mask = GENMASK(15, 0),
};
static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_src_ring = {
.addr = 0x0000004c,
.low_rst = 0x00000000,
.high_rst = 0x00000000,
.wm_low = &qcax_src_wm_low,
.wm_high = &qcax_src_wm_high,
};
static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_low = {
.lsb = 0x00000010,
.mask = GENMASK(31, 16),
};
static struct ath10k_hw_ce_regs_addr_map qcax_dst_wm_high = {
.msb = 0x0000000f,
.lsb = 0x00000000,
.mask = GENMASK(15, 0),
};
static struct ath10k_hw_ce_dst_src_wm_regs qcax_wm_dst_ring = {
.addr = 0x00000050,
.low_rst = 0x00000000,
.high_rst = 0x00000000,
.wm_low = &qcax_dst_wm_low,
.wm_high = &qcax_dst_wm_high,
};
const struct ath10k_hw_ce_regs qcax_ce_regs = {
.sr_base_addr = 0x00000000,
.sr_size_addr = 0x00000004,
.dr_base_addr = 0x00000008,
.dr_size_addr = 0x0000000c,
.ce_cmd_addr = 0x00000018,
.misc_ie_addr = 0x00000034,
.sr_wr_index_addr = 0x0000003c,
.dst_wr_index_addr = 0x00000040,
.current_srri_addr = 0x00000044,
.current_drri_addr = 0x00000048,
.host_ie_addr = 0x0000002c,
.ctrl1_regs = &qcax_ctrl1,
.cmd_halt = &qcax_cmd_halt,
.host_ie = &qcax_host_ie,
.wm_regs = &qcax_wm_reg,
.misc_regs = &qcax_misc_reg,
.wm_srcr = &qcax_wm_src_ring,
.wm_dstr = &qcax_wm_dst_ring,
};
const struct ath10k_hw_clk_params qca6174_clk[ATH10K_HW_REFCLK_COUNT] = {
{
.refclk = 48000000,
.div = 0xe,
.rnfrac = 0x2aaa8,
.settle_time = 2400,
.refdiv = 0,
.outdiv = 1,
},
{
.refclk = 19200000,
.div = 0x24,
.rnfrac = 0x2aaa8,
.settle_time = 960,
.refdiv = 0,
.outdiv = 1,
},
{
.refclk = 24000000,
.div = 0x1d,
.rnfrac = 0x15551,
.settle_time = 1200,
.refdiv = 0,
.outdiv = 1,
},
{
.refclk = 26000000,
.div = 0x1b,
.rnfrac = 0x4ec4,
.settle_time = 1300,
.refdiv = 0,
.outdiv = 1,
},
{
.refclk = 37400000,
.div = 0x12,
.rnfrac = 0x34b49,
.settle_time = 1870,
.refdiv = 0,
.outdiv = 1,
},
{
.refclk = 38400000,
.div = 0x12,
.rnfrac = 0x15551,
.settle_time = 1920,
.refdiv = 0,
.outdiv = 1,
},
{
.refclk = 40000000,
.div = 0x12,
.rnfrac = 0x26665,
.settle_time = 2000,
.refdiv = 0,
.outdiv = 1,
},
{
.refclk = 52000000,
.div = 0x1b,
.rnfrac = 0x4ec4,
.settle_time = 2600,
.refdiv = 0,
.outdiv = 1,
},
};
void ath10k_hw_fill_survey_time(struct ath10k *ar, struct survey_info *survey,
u32 cc, u32 rcc, u32 cc_prev, u32 rcc_prev)
{
u32 cc_fix = 0;
u32 rcc_fix = 0;
enum ath10k_hw_cc_wraparound_type wraparound_type;
survey->filled |= SURVEY_INFO_TIME |
SURVEY_INFO_TIME_BUSY;
wraparound_type = ar->hw_params.cc_wraparound_type;
if (cc < cc_prev || rcc < rcc_prev) {
switch (wraparound_type) {
case ATH10K_HW_CC_WRAP_SHIFTED_ALL:
if (cc < cc_prev) {
cc_fix = 0x7fffffff;
survey->filled &= ~SURVEY_INFO_TIME_BUSY;
}
break;
case ATH10K_HW_CC_WRAP_SHIFTED_EACH:
if (cc < cc_prev)
cc_fix = 0x7fffffff;
if (rcc < rcc_prev)
rcc_fix = 0x7fffffff;
break;
case ATH10K_HW_CC_WRAP_DISABLED:
break;
}
}
cc -= cc_prev - cc_fix;
rcc -= rcc_prev - rcc_fix;
survey->time = CCNT_TO_MSEC(ar, cc);
survey->time_busy = CCNT_TO_MSEC(ar, rcc);
}
/* The firmware does not support setting the coverage class. Instead this
* function monitors and modifies the corresponding MAC registers.
*/
static void ath10k_hw_qca988x_set_coverage_class(struct ath10k *ar,
s16 value)
{
u32 slottime_reg;
u32 slottime;
u32 timeout_reg;
u32 ack_timeout;
u32 cts_timeout;
u32 phyclk_reg;
u32 phyclk;
u64 fw_dbglog_mask;
u32 fw_dbglog_level;
mutex_lock(&ar->conf_mutex);
/* Only modify registers if the core is started. */
if ((ar->state != ATH10K_STATE_ON) &&
(ar->state != ATH10K_STATE_RESTARTED)) {
spin_lock_bh(&ar->data_lock);
/* Store config value for when radio boots up */
ar->fw_coverage.coverage_class = value;
spin_unlock_bh(&ar->data_lock);
goto unlock;
}
/* Retrieve the current values of the two registers that need to be
* adjusted.
*/
slottime_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
WAVE1_PCU_GBL_IFS_SLOT);
timeout_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
WAVE1_PCU_ACK_CTS_TIMEOUT);
phyclk_reg = ath10k_hif_read32(ar, WLAN_MAC_BASE_ADDRESS +
WAVE1_PHYCLK);
phyclk = MS(phyclk_reg, WAVE1_PHYCLK_USEC) + 1;
if (value < 0)
value = ar->fw_coverage.coverage_class;
/* Break out if the coverage class and registers have the expected
* value.
*/
if (value == ar->fw_coverage.coverage_class &&
slottime_reg == ar->fw_coverage.reg_slottime_conf &&
timeout_reg == ar->fw_coverage.reg_ack_cts_timeout_conf &&
phyclk_reg == ar->fw_coverage.reg_phyclk)
goto unlock;
/* Store new initial register values from the firmware. */
if (slottime_reg != ar->fw_coverage.reg_slottime_conf)
ar->fw_coverage.reg_slottime_orig = slottime_reg;
if (timeout_reg != ar->fw_coverage.reg_ack_cts_timeout_conf)
ar->fw_coverage.reg_ack_cts_timeout_orig = timeout_reg;
ar->fw_coverage.reg_phyclk = phyclk_reg;
/* Calculate new value based on the (original) firmware calculation. */
slottime_reg = ar->fw_coverage.reg_slottime_orig;
timeout_reg = ar->fw_coverage.reg_ack_cts_timeout_orig;
/* Do some sanity checks on the slottime register. */
if (slottime_reg % phyclk) {
ath10k_warn(ar,
"failed to set coverage class: expected integer microsecond value in register\n");
goto store_regs;
}
slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
slottime = slottime / phyclk;
if (slottime != 9 && slottime != 20) {
ath10k_warn(ar,
"failed to set coverage class: expected slot time of 9 or 20us in HW register. It is %uus.\n",
slottime);
goto store_regs;
}
/* Recalculate the register values by adding the additional propagation
* delay (3us per coverage class).
*/
slottime = MS(slottime_reg, WAVE1_PCU_GBL_IFS_SLOT);
slottime += value * 3 * phyclk;
slottime = min_t(u32, slottime, WAVE1_PCU_GBL_IFS_SLOT_MAX);
slottime = SM(slottime, WAVE1_PCU_GBL_IFS_SLOT);
slottime_reg = (slottime_reg & ~WAVE1_PCU_GBL_IFS_SLOT_MASK) | slottime;
/* Update ack timeout (lower halfword). */
ack_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
ack_timeout += 3 * value * phyclk;
ack_timeout = min_t(u32, ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
ack_timeout = SM(ack_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_ACK);
/* Update cts timeout (upper halfword). */
cts_timeout = MS(timeout_reg, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
cts_timeout += 3 * value * phyclk;
cts_timeout = min_t(u32, cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_MAX);
cts_timeout = SM(cts_timeout, WAVE1_PCU_ACK_CTS_TIMEOUT_CTS);
timeout_reg = ack_timeout | cts_timeout;
ath10k_hif_write32(ar,
WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_GBL_IFS_SLOT,
slottime_reg);
ath10k_hif_write32(ar,
WLAN_MAC_BASE_ADDRESS + WAVE1_PCU_ACK_CTS_TIMEOUT,
timeout_reg);
/* Ensure we have a debug level of WARN set for the case that the
* coverage class is larger than 0. This is important as we need to
* set the registers again if the firmware does an internal reset and
* this way we will be notified of the event.
*/
fw_dbglog_mask = ath10k_debug_get_fw_dbglog_mask(ar);
fw_dbglog_level = ath10k_debug_get_fw_dbglog_level(ar);
if (value > 0) {
if (fw_dbglog_level > ATH10K_DBGLOG_LEVEL_WARN)
fw_dbglog_level = ATH10K_DBGLOG_LEVEL_WARN;
fw_dbglog_mask = ~0;
}
ath10k_wmi_dbglog_cfg(ar, fw_dbglog_mask, fw_dbglog_level);
store_regs:
/* After an error we will not retry setting the coverage class. */
spin_lock_bh(&ar->data_lock);
ar->fw_coverage.coverage_class = value;
spin_unlock_bh(&ar->data_lock);
ar->fw_coverage.reg_slottime_conf = slottime_reg;
ar->fw_coverage.reg_ack_cts_timeout_conf = timeout_reg;
unlock:
mutex_unlock(&ar->conf_mutex);
}
/**
* ath10k_hw_qca6174_enable_pll_clock() - enable the qca6174 hw pll clock
* @ar: the ath10k blob
*
* This function is very hardware specific, the clock initialization
* steps is very sensitive and could lead to unknown crash, so they
* should be done in sequence.
*
* *** Be aware if you planned to refactor them. ***
*
* Return: 0 if successfully enable the pll, otherwise EINVAL
*/
static int ath10k_hw_qca6174_enable_pll_clock(struct ath10k *ar)
{
int ret, wait_limit;
u32 clk_div_addr, pll_init_addr, speed_addr;
u32 addr, reg_val, mem_val;
struct ath10k_hw_params *hw;
const struct ath10k_hw_clk_params *hw_clk;
hw = &ar->hw_params;
if (ar->regs->core_clk_div_address == 0 ||
ar->regs->cpu_pll_init_address == 0 ||
ar->regs->cpu_speed_address == 0)
return -EINVAL;
clk_div_addr = ar->regs->core_clk_div_address;
pll_init_addr = ar->regs->cpu_pll_init_address;
speed_addr = ar->regs->cpu_speed_address;
/* Read efuse register to find out the right hw clock configuration */
addr = (RTC_SOC_BASE_ADDRESS | EFUSE_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
/* sanitize if the hw refclk index is out of the boundary */
if (MS(reg_val, EFUSE_XTAL_SEL) > ATH10K_HW_REFCLK_COUNT)
return -EINVAL;
hw_clk = &hw->hw_clk[MS(reg_val, EFUSE_XTAL_SEL)];
/* Set the rnfrac and outdiv params to bb_pll register */
addr = (RTC_SOC_BASE_ADDRESS | BB_PLL_CONFIG_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
reg_val &= ~(BB_PLL_CONFIG_FRAC_MASK | BB_PLL_CONFIG_OUTDIV_MASK);
reg_val |= (SM(hw_clk->rnfrac, BB_PLL_CONFIG_FRAC) |
SM(hw_clk->outdiv, BB_PLL_CONFIG_OUTDIV));
ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
if (ret)
return -EINVAL;
/* Set the correct settle time value to pll_settle register */
addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_SETTLE_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
reg_val &= ~WLAN_PLL_SETTLE_TIME_MASK;
reg_val |= SM(hw_clk->settle_time, WLAN_PLL_SETTLE_TIME);
ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
if (ret)
return -EINVAL;
/* Set the clock_ctrl div to core_clk_ctrl register */
addr = (RTC_SOC_BASE_ADDRESS | SOC_CORE_CLK_CTRL_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
reg_val &= ~SOC_CORE_CLK_CTRL_DIV_MASK;
reg_val |= SM(1, SOC_CORE_CLK_CTRL_DIV);
ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
if (ret)
return -EINVAL;
/* Set the clock_div register */
mem_val = 1;
ret = ath10k_bmi_write_memory(ar, clk_div_addr, &mem_val,
sizeof(mem_val));
if (ret)
return -EINVAL;
/* Configure the pll_control register */
addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
reg_val |= (SM(hw_clk->refdiv, WLAN_PLL_CONTROL_REFDIV) |
SM(hw_clk->div, WLAN_PLL_CONTROL_DIV) |
SM(1, WLAN_PLL_CONTROL_NOPWD));
ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
if (ret)
return -EINVAL;
/* busy wait (max 1s) the rtc_sync status register indicate ready */
wait_limit = 100000;
addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
do {
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
break;
wait_limit--;
udelay(10);
} while (wait_limit > 0);
if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
return -EINVAL;
/* Unset the pll_bypass in pll_control register */
addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
reg_val &= ~WLAN_PLL_CONTROL_BYPASS_MASK;
reg_val |= SM(0, WLAN_PLL_CONTROL_BYPASS);
ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
if (ret)
return -EINVAL;
/* busy wait (max 1s) the rtc_sync status register indicate ready */
wait_limit = 100000;
addr = (RTC_WMAC_BASE_ADDRESS | RTC_SYNC_STATUS_OFFSET);
do {
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
if (!MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
break;
wait_limit--;
udelay(10);
} while (wait_limit > 0);
if (MS(reg_val, RTC_SYNC_STATUS_PLL_CHANGING))
return -EINVAL;
/* Enable the hardware cpu clock register */
addr = (RTC_SOC_BASE_ADDRESS | SOC_CPU_CLOCK_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
reg_val &= ~SOC_CPU_CLOCK_STANDARD_MASK;
reg_val |= SM(1, SOC_CPU_CLOCK_STANDARD);
ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
if (ret)
return -EINVAL;
/* unset the nopwd from pll_control register */
addr = (RTC_WMAC_BASE_ADDRESS | WLAN_PLL_CONTROL_OFFSET);
ret = ath10k_bmi_read_soc_reg(ar, addr, &reg_val);
if (ret)
return -EINVAL;
reg_val &= ~WLAN_PLL_CONTROL_NOPWD_MASK;
ret = ath10k_bmi_write_soc_reg(ar, addr, reg_val);
if (ret)
return -EINVAL;
/* enable the pll_init register */
mem_val = 1;
ret = ath10k_bmi_write_memory(ar, pll_init_addr, &mem_val,
sizeof(mem_val));
if (ret)
return -EINVAL;
/* set the target clock frequency to speed register */
ret = ath10k_bmi_write_memory(ar, speed_addr, &hw->target_cpu_freq,
sizeof(hw->target_cpu_freq));
if (ret)
return -EINVAL;
return 0;
}
/* Program CPU_ADDR_MSB to allow different memory
* region access.
*/
static void ath10k_hw_map_target_mem(struct ath10k *ar, u32 msb)
{
u32 address = SOC_CORE_BASE_ADDRESS + FW_RAM_CONFIG_ADDRESS;
ath10k_hif_write32(ar, address, msb);
}
/* 1. Write to memory region of target, such as IRAM adn DRAM.
* 2. Target address( 0 ~ 00100000 & 0x00400000~0x00500000)
* can be written directly. See ath10k_pci_targ_cpu_to_ce_addr() too.
* 3. In order to access the region other than the above,
* we need to set the value of register CPU_ADDR_MSB.
* 4. Target memory access space is limited to 1M size. If the size is larger
* than 1M, need to split it and program CPU_ADDR_MSB accordingly.
*/
static int ath10k_hw_diag_segment_msb_download(struct ath10k *ar,
const void *buffer,
u32 address,
u32 length)
{
u32 addr = address & REGION_ACCESS_SIZE_MASK;
int ret, remain_size, size;
const u8 *buf;
ath10k_hw_map_target_mem(ar, CPU_ADDR_MSB_REGION_VAL(address));
if (addr + length > REGION_ACCESS_SIZE_LIMIT) {
size = REGION_ACCESS_SIZE_LIMIT - addr;
remain_size = length - size;
ret = ath10k_hif_diag_write(ar, address, buffer, size);
if (ret) {
ath10k_warn(ar,
"failed to download the first %d bytes segment to address:0x%x: %d\n",
size, address, ret);
goto done;
}
/* Change msb to the next memory region*/
ath10k_hw_map_target_mem(ar,
CPU_ADDR_MSB_REGION_VAL(address) + 1);
buf = buffer + size;
ret = ath10k_hif_diag_write(ar,
address & ~REGION_ACCESS_SIZE_MASK,
buf, remain_size);
if (ret) {
ath10k_warn(ar,
"failed to download the second %d bytes segment to address:0x%x: %d\n",
remain_size,
address & ~REGION_ACCESS_SIZE_MASK,
ret);
goto done;
}
} else {
ret = ath10k_hif_diag_write(ar, address, buffer, length);
if (ret) {
ath10k_warn(ar,
"failed to download the only %d bytes segment to address:0x%x: %d\n",
length, address, ret);
goto done;
}
}
done:
/* Change msb to DRAM */
ath10k_hw_map_target_mem(ar,
CPU_ADDR_MSB_REGION_VAL(DRAM_BASE_ADDRESS));
return ret;
}
static int ath10k_hw_diag_segment_download(struct ath10k *ar,
const void *buffer,
u32 address,
u32 length)
{
if (address >= DRAM_BASE_ADDRESS + REGION_ACCESS_SIZE_LIMIT)
/* Needs to change MSB for memory write */
return ath10k_hw_diag_segment_msb_download(ar, buffer,
address, length);
else
return ath10k_hif_diag_write(ar, address, buffer, length);
}
int ath10k_hw_diag_fast_download(struct ath10k *ar,
u32 address,
const void *buffer,
u32 length)
{
const u8 *buf = buffer;
bool sgmt_end = false;
u32 base_addr = 0;
u32 base_len = 0;
u32 left = 0;
struct bmi_segmented_file_header *hdr;
struct bmi_segmented_metadata *metadata;
int ret = 0;
if (length < sizeof(*hdr))
return -EINVAL;
/* check firmware header. If it has no correct magic number
* or it's compressed, returns error.
*/
hdr = (struct bmi_segmented_file_header *)buf;
if (__le32_to_cpu(hdr->magic_num) != BMI_SGMTFILE_MAGIC_NUM) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"Not a supported firmware, magic_num:0x%x\n",
hdr->magic_num);
return -EINVAL;
}
if (hdr->file_flags != 0) {
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"Not a supported firmware, file_flags:0x%x\n",
hdr->file_flags);
return -EINVAL;
}
metadata = (struct bmi_segmented_metadata *)hdr->data;
left = length - sizeof(*hdr);
while (left > 0) {
if (left < sizeof(*metadata)) {
ath10k_warn(ar, "firmware segment is truncated: %d\n",
left);
ret = -EINVAL;
break;
}
base_addr = __le32_to_cpu(metadata->addr);
base_len = __le32_to_cpu(metadata->length);
buf = metadata->data;
left -= sizeof(*metadata);
switch (base_len) {
case BMI_SGMTFILE_BEGINADDR:
/* base_addr is the start address to run */
ret = ath10k_bmi_set_start(ar, base_addr);
base_len = 0;
break;
case BMI_SGMTFILE_DONE:
/* no more segment */
base_len = 0;
sgmt_end = true;
ret = 0;
break;
case BMI_SGMTFILE_BDDATA:
case BMI_SGMTFILE_EXEC:
ath10k_warn(ar,
"firmware has unsupported segment:%d\n",
base_len);
ret = -EINVAL;
break;
default:
if (base_len > left) {
/* sanity check */
ath10k_warn(ar,
"firmware has invalid segment length, %d > %d\n",
base_len, left);
ret = -EINVAL;
break;
}
ret = ath10k_hw_diag_segment_download(ar,
buf,
base_addr,
base_len);
if (ret)
ath10k_warn(ar,
"failed to download firmware via diag interface:%d\n",
ret);
break;
}
if (ret || sgmt_end)
break;
metadata = (struct bmi_segmented_metadata *)(buf + base_len);
left -= base_len;
}
if (ret == 0)
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"boot firmware fast diag download successfully.\n");
return ret;
}
const struct ath10k_hw_ops qca988x_ops = {
.set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
};
static int ath10k_qca99x0_rx_desc_get_l3_pad_bytes(struct htt_rx_desc *rxd)
{
return MS(__le32_to_cpu(rxd->msdu_end.qca99x0.info1),
RX_MSDU_END_INFO1_L3_HDR_PAD);
}
const struct ath10k_hw_ops qca99x0_ops = {
.rx_desc_get_l3_pad_bytes = ath10k_qca99x0_rx_desc_get_l3_pad_bytes,
};
const struct ath10k_hw_ops qca6174_ops = {
.set_coverage_class = ath10k_hw_qca988x_set_coverage_class,
.enable_pll_clk = ath10k_hw_qca6174_enable_pll_clock,
};
const struct ath10k_hw_ops wcn3990_ops = {};