mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
886d751a2e
With the current code, the condition in the if() doesn't make much sense due to precedence of operators. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Link: http://lkml.kernel.org/r/1356030701-16284-25-git-send-email-sasha.levin@oracle.com Cc: Matt Fleming <matt.fleming@intel.com> Cc: Matthew Garrett <mjg@redhat.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Seth Forshee <seth.forshee@canonical.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
1252 lines
29 KiB
C
1252 lines
29 KiB
C
/* -----------------------------------------------------------------------
|
|
*
|
|
* Copyright 2011 Intel Corporation; author Matt Fleming
|
|
*
|
|
* This file is part of the Linux kernel, and is made available under
|
|
* the terms of the GNU General Public License version 2.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/pci.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
|
|
#undef memcpy /* Use memcpy from misc.c */
|
|
|
|
#include "eboot.h"
|
|
|
|
static efi_system_table_t *sys_table;
|
|
|
|
static void efi_printk(char *str)
|
|
{
|
|
char *s8;
|
|
|
|
for (s8 = str; *s8; s8++) {
|
|
struct efi_simple_text_output_protocol *out;
|
|
efi_char16_t ch[2] = { 0 };
|
|
|
|
ch[0] = *s8;
|
|
out = (struct efi_simple_text_output_protocol *)sys_table->con_out;
|
|
|
|
if (*s8 == '\n') {
|
|
efi_char16_t nl[2] = { '\r', 0 };
|
|
efi_call_phys2(out->output_string, out, nl);
|
|
}
|
|
|
|
efi_call_phys2(out->output_string, out, ch);
|
|
}
|
|
}
|
|
|
|
static efi_status_t __get_map(efi_memory_desc_t **map, unsigned long *map_size,
|
|
unsigned long *desc_size)
|
|
{
|
|
efi_memory_desc_t *m = NULL;
|
|
efi_status_t status;
|
|
unsigned long key;
|
|
u32 desc_version;
|
|
|
|
*map_size = sizeof(*m) * 32;
|
|
again:
|
|
/*
|
|
* Add an additional efi_memory_desc_t because we're doing an
|
|
* allocation which may be in a new descriptor region.
|
|
*/
|
|
*map_size += sizeof(*m);
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, *map_size, (void **)&m);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail;
|
|
|
|
status = efi_call_phys5(sys_table->boottime->get_memory_map, map_size,
|
|
m, &key, desc_size, &desc_version);
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
efi_call_phys1(sys_table->boottime->free_pool, m);
|
|
goto again;
|
|
}
|
|
|
|
if (status != EFI_SUCCESS)
|
|
efi_call_phys1(sys_table->boottime->free_pool, m);
|
|
|
|
fail:
|
|
*map = m;
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Allocate at the highest possible address that is not above 'max'.
|
|
*/
|
|
static efi_status_t high_alloc(unsigned long size, unsigned long align,
|
|
unsigned long *addr, unsigned long max)
|
|
{
|
|
unsigned long map_size, desc_size;
|
|
efi_memory_desc_t *map;
|
|
efi_status_t status;
|
|
unsigned long nr_pages;
|
|
u64 max_addr = 0;
|
|
int i;
|
|
|
|
status = __get_map(&map, &map_size, &desc_size);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail;
|
|
|
|
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
again:
|
|
for (i = 0; i < map_size / desc_size; i++) {
|
|
efi_memory_desc_t *desc;
|
|
unsigned long m = (unsigned long)map;
|
|
u64 start, end;
|
|
|
|
desc = (efi_memory_desc_t *)(m + (i * desc_size));
|
|
if (desc->type != EFI_CONVENTIONAL_MEMORY)
|
|
continue;
|
|
|
|
if (desc->num_pages < nr_pages)
|
|
continue;
|
|
|
|
start = desc->phys_addr;
|
|
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
|
|
|
|
if ((start + size) > end || (start + size) > max)
|
|
continue;
|
|
|
|
if (end - size > max)
|
|
end = max;
|
|
|
|
if (round_down(end - size, align) < start)
|
|
continue;
|
|
|
|
start = round_down(end - size, align);
|
|
|
|
/*
|
|
* Don't allocate at 0x0. It will confuse code that
|
|
* checks pointers against NULL.
|
|
*/
|
|
if (start == 0x0)
|
|
continue;
|
|
|
|
if (start > max_addr)
|
|
max_addr = start;
|
|
}
|
|
|
|
if (!max_addr)
|
|
status = EFI_NOT_FOUND;
|
|
else {
|
|
status = efi_call_phys4(sys_table->boottime->allocate_pages,
|
|
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
|
nr_pages, &max_addr);
|
|
if (status != EFI_SUCCESS) {
|
|
max = max_addr;
|
|
max_addr = 0;
|
|
goto again;
|
|
}
|
|
|
|
*addr = max_addr;
|
|
}
|
|
|
|
free_pool:
|
|
efi_call_phys1(sys_table->boottime->free_pool, map);
|
|
|
|
fail:
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Allocate at the lowest possible address.
|
|
*/
|
|
static efi_status_t low_alloc(unsigned long size, unsigned long align,
|
|
unsigned long *addr)
|
|
{
|
|
unsigned long map_size, desc_size;
|
|
efi_memory_desc_t *map;
|
|
efi_status_t status;
|
|
unsigned long nr_pages;
|
|
int i;
|
|
|
|
status = __get_map(&map, &map_size, &desc_size);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail;
|
|
|
|
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
for (i = 0; i < map_size / desc_size; i++) {
|
|
efi_memory_desc_t *desc;
|
|
unsigned long m = (unsigned long)map;
|
|
u64 start, end;
|
|
|
|
desc = (efi_memory_desc_t *)(m + (i * desc_size));
|
|
|
|
if (desc->type != EFI_CONVENTIONAL_MEMORY)
|
|
continue;
|
|
|
|
if (desc->num_pages < nr_pages)
|
|
continue;
|
|
|
|
start = desc->phys_addr;
|
|
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
|
|
|
|
/*
|
|
* Don't allocate at 0x0. It will confuse code that
|
|
* checks pointers against NULL. Skip the first 8
|
|
* bytes so we start at a nice even number.
|
|
*/
|
|
if (start == 0x0)
|
|
start += 8;
|
|
|
|
start = round_up(start, align);
|
|
if ((start + size) > end)
|
|
continue;
|
|
|
|
status = efi_call_phys4(sys_table->boottime->allocate_pages,
|
|
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
|
nr_pages, &start);
|
|
if (status == EFI_SUCCESS) {
|
|
*addr = start;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == map_size / desc_size)
|
|
status = EFI_NOT_FOUND;
|
|
|
|
free_pool:
|
|
efi_call_phys1(sys_table->boottime->free_pool, map);
|
|
fail:
|
|
return status;
|
|
}
|
|
|
|
static void low_free(unsigned long size, unsigned long addr)
|
|
{
|
|
unsigned long nr_pages;
|
|
|
|
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
efi_call_phys2(sys_table->boottime->free_pages, addr, size);
|
|
}
|
|
|
|
static void find_bits(unsigned long mask, u8 *pos, u8 *size)
|
|
{
|
|
u8 first, len;
|
|
|
|
first = 0;
|
|
len = 0;
|
|
|
|
if (mask) {
|
|
while (!(mask & 0x1)) {
|
|
mask = mask >> 1;
|
|
first++;
|
|
}
|
|
|
|
while (mask & 0x1) {
|
|
mask = mask >> 1;
|
|
len++;
|
|
}
|
|
}
|
|
|
|
*pos = first;
|
|
*size = len;
|
|
}
|
|
|
|
static efi_status_t setup_efi_pci(struct boot_params *params)
|
|
{
|
|
efi_pci_io_protocol *pci;
|
|
efi_status_t status;
|
|
void **pci_handle;
|
|
efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
|
|
unsigned long nr_pci, size = 0;
|
|
int i;
|
|
struct setup_data *data;
|
|
|
|
data = (struct setup_data *)params->hdr.setup_data;
|
|
|
|
while (data && data->next)
|
|
data = (struct setup_data *)data->next;
|
|
|
|
status = efi_call_phys5(sys_table->boottime->locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL, &pci_proto,
|
|
NULL, &size, pci_handle);
|
|
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, size, &pci_handle);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_phys5(sys_table->boottime->locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL, &pci_proto,
|
|
NULL, &size, pci_handle);
|
|
}
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_handle;
|
|
|
|
nr_pci = size / sizeof(void *);
|
|
for (i = 0; i < nr_pci; i++) {
|
|
void *h = pci_handle[i];
|
|
uint64_t attributes;
|
|
struct pci_setup_rom *rom;
|
|
|
|
status = efi_call_phys3(sys_table->boottime->handle_protocol,
|
|
h, &pci_proto, &pci);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
if (!pci)
|
|
continue;
|
|
|
|
status = efi_call_phys4(pci->attributes, pci,
|
|
EfiPciIoAttributeOperationGet, 0,
|
|
&attributes);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
if (!(attributes & EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM))
|
|
continue;
|
|
|
|
if (!pci->romimage || !pci->romsize)
|
|
continue;
|
|
|
|
size = pci->romsize + sizeof(*rom);
|
|
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, size, &rom);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
rom->data.type = SETUP_PCI;
|
|
rom->data.len = size - sizeof(struct setup_data);
|
|
rom->data.next = 0;
|
|
rom->pcilen = pci->romsize;
|
|
|
|
status = efi_call_phys5(pci->pci.read, pci,
|
|
EfiPciIoWidthUint16, PCI_VENDOR_ID,
|
|
1, &(rom->vendor));
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_struct;
|
|
|
|
status = efi_call_phys5(pci->pci.read, pci,
|
|
EfiPciIoWidthUint16, PCI_DEVICE_ID,
|
|
1, &(rom->devid));
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_struct;
|
|
|
|
status = efi_call_phys5(pci->get_location, pci,
|
|
&(rom->segment), &(rom->bus),
|
|
&(rom->device), &(rom->function));
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_struct;
|
|
|
|
memcpy(rom->romdata, pci->romimage, pci->romsize);
|
|
|
|
if (data)
|
|
data->next = (uint64_t)rom;
|
|
else
|
|
params->hdr.setup_data = (uint64_t)rom;
|
|
|
|
data = (struct setup_data *)rom;
|
|
|
|
continue;
|
|
free_struct:
|
|
efi_call_phys1(sys_table->boottime->free_pool, rom);
|
|
}
|
|
|
|
free_handle:
|
|
efi_call_phys1(sys_table->boottime->free_pool, pci_handle);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* See if we have Graphics Output Protocol
|
|
*/
|
|
static efi_status_t setup_gop(struct screen_info *si, efi_guid_t *proto,
|
|
unsigned long size)
|
|
{
|
|
struct efi_graphics_output_protocol *gop, *first_gop;
|
|
struct efi_pixel_bitmask pixel_info;
|
|
unsigned long nr_gops;
|
|
efi_status_t status;
|
|
void **gop_handle;
|
|
u16 width, height;
|
|
u32 fb_base, fb_size;
|
|
u32 pixels_per_scan_line;
|
|
int pixel_format;
|
|
int i;
|
|
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, size, &gop_handle);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_phys5(sys_table->boottime->locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL, proto,
|
|
NULL, &size, gop_handle);
|
|
if (status != EFI_SUCCESS)
|
|
goto free_handle;
|
|
|
|
first_gop = NULL;
|
|
|
|
nr_gops = size / sizeof(void *);
|
|
for (i = 0; i < nr_gops; i++) {
|
|
struct efi_graphics_output_mode_info *info;
|
|
efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID;
|
|
bool conout_found = false;
|
|
void *dummy;
|
|
void *h = gop_handle[i];
|
|
|
|
status = efi_call_phys3(sys_table->boottime->handle_protocol,
|
|
h, proto, &gop);
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
status = efi_call_phys3(sys_table->boottime->handle_protocol,
|
|
h, &conout_proto, &dummy);
|
|
|
|
if (status == EFI_SUCCESS)
|
|
conout_found = true;
|
|
|
|
status = efi_call_phys4(gop->query_mode, gop,
|
|
gop->mode->mode, &size, &info);
|
|
if (status == EFI_SUCCESS && (!first_gop || conout_found)) {
|
|
/*
|
|
* Systems that use the UEFI Console Splitter may
|
|
* provide multiple GOP devices, not all of which are
|
|
* backed by real hardware. The workaround is to search
|
|
* for a GOP implementing the ConOut protocol, and if
|
|
* one isn't found, to just fall back to the first GOP.
|
|
*/
|
|
width = info->horizontal_resolution;
|
|
height = info->vertical_resolution;
|
|
fb_base = gop->mode->frame_buffer_base;
|
|
fb_size = gop->mode->frame_buffer_size;
|
|
pixel_format = info->pixel_format;
|
|
pixel_info = info->pixel_information;
|
|
pixels_per_scan_line = info->pixels_per_scan_line;
|
|
|
|
/*
|
|
* Once we've found a GOP supporting ConOut,
|
|
* don't bother looking any further.
|
|
*/
|
|
if (conout_found)
|
|
break;
|
|
|
|
first_gop = gop;
|
|
}
|
|
}
|
|
|
|
/* Did we find any GOPs? */
|
|
if (!first_gop)
|
|
goto free_handle;
|
|
|
|
/* EFI framebuffer */
|
|
si->orig_video_isVGA = VIDEO_TYPE_EFI;
|
|
|
|
si->lfb_width = width;
|
|
si->lfb_height = height;
|
|
si->lfb_base = fb_base;
|
|
si->pages = 1;
|
|
|
|
if (pixel_format == PIXEL_RGB_RESERVED_8BIT_PER_COLOR) {
|
|
si->lfb_depth = 32;
|
|
si->lfb_linelength = pixels_per_scan_line * 4;
|
|
si->red_size = 8;
|
|
si->red_pos = 0;
|
|
si->green_size = 8;
|
|
si->green_pos = 8;
|
|
si->blue_size = 8;
|
|
si->blue_pos = 16;
|
|
si->rsvd_size = 8;
|
|
si->rsvd_pos = 24;
|
|
} else if (pixel_format == PIXEL_BGR_RESERVED_8BIT_PER_COLOR) {
|
|
si->lfb_depth = 32;
|
|
si->lfb_linelength = pixels_per_scan_line * 4;
|
|
si->red_size = 8;
|
|
si->red_pos = 16;
|
|
si->green_size = 8;
|
|
si->green_pos = 8;
|
|
si->blue_size = 8;
|
|
si->blue_pos = 0;
|
|
si->rsvd_size = 8;
|
|
si->rsvd_pos = 24;
|
|
} else if (pixel_format == PIXEL_BIT_MASK) {
|
|
find_bits(pixel_info.red_mask, &si->red_pos, &si->red_size);
|
|
find_bits(pixel_info.green_mask, &si->green_pos,
|
|
&si->green_size);
|
|
find_bits(pixel_info.blue_mask, &si->blue_pos, &si->blue_size);
|
|
find_bits(pixel_info.reserved_mask, &si->rsvd_pos,
|
|
&si->rsvd_size);
|
|
si->lfb_depth = si->red_size + si->green_size +
|
|
si->blue_size + si->rsvd_size;
|
|
si->lfb_linelength = (pixels_per_scan_line * si->lfb_depth) / 8;
|
|
} else {
|
|
si->lfb_depth = 4;
|
|
si->lfb_linelength = si->lfb_width / 2;
|
|
si->red_size = 0;
|
|
si->red_pos = 0;
|
|
si->green_size = 0;
|
|
si->green_pos = 0;
|
|
si->blue_size = 0;
|
|
si->blue_pos = 0;
|
|
si->rsvd_size = 0;
|
|
si->rsvd_pos = 0;
|
|
}
|
|
|
|
si->lfb_size = si->lfb_linelength * si->lfb_height;
|
|
|
|
si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS;
|
|
|
|
free_handle:
|
|
efi_call_phys1(sys_table->boottime->free_pool, gop_handle);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* See if we have Universal Graphics Adapter (UGA) protocol
|
|
*/
|
|
static efi_status_t setup_uga(struct screen_info *si, efi_guid_t *uga_proto,
|
|
unsigned long size)
|
|
{
|
|
struct efi_uga_draw_protocol *uga, *first_uga;
|
|
unsigned long nr_ugas;
|
|
efi_status_t status;
|
|
u32 width, height;
|
|
void **uga_handle = NULL;
|
|
int i;
|
|
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, size, &uga_handle);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_phys5(sys_table->boottime->locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL, uga_proto,
|
|
NULL, &size, uga_handle);
|
|
if (status != EFI_SUCCESS)
|
|
goto free_handle;
|
|
|
|
first_uga = NULL;
|
|
|
|
nr_ugas = size / sizeof(void *);
|
|
for (i = 0; i < nr_ugas; i++) {
|
|
efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
|
|
void *handle = uga_handle[i];
|
|
u32 w, h, depth, refresh;
|
|
void *pciio;
|
|
|
|
status = efi_call_phys3(sys_table->boottime->handle_protocol,
|
|
handle, uga_proto, &uga);
|
|
if (status != EFI_SUCCESS)
|
|
continue;
|
|
|
|
efi_call_phys3(sys_table->boottime->handle_protocol,
|
|
handle, &pciio_proto, &pciio);
|
|
|
|
status = efi_call_phys5(uga->get_mode, uga, &w, &h,
|
|
&depth, &refresh);
|
|
if (status == EFI_SUCCESS && (!first_uga || pciio)) {
|
|
width = w;
|
|
height = h;
|
|
|
|
/*
|
|
* Once we've found a UGA supporting PCIIO,
|
|
* don't bother looking any further.
|
|
*/
|
|
if (pciio)
|
|
break;
|
|
|
|
first_uga = uga;
|
|
}
|
|
}
|
|
|
|
if (!first_uga)
|
|
goto free_handle;
|
|
|
|
/* EFI framebuffer */
|
|
si->orig_video_isVGA = VIDEO_TYPE_EFI;
|
|
|
|
si->lfb_depth = 32;
|
|
si->lfb_width = width;
|
|
si->lfb_height = height;
|
|
|
|
si->red_size = 8;
|
|
si->red_pos = 16;
|
|
si->green_size = 8;
|
|
si->green_pos = 8;
|
|
si->blue_size = 8;
|
|
si->blue_pos = 0;
|
|
si->rsvd_size = 8;
|
|
si->rsvd_pos = 24;
|
|
|
|
|
|
free_handle:
|
|
efi_call_phys1(sys_table->boottime->free_pool, uga_handle);
|
|
return status;
|
|
}
|
|
|
|
void setup_graphics(struct boot_params *boot_params)
|
|
{
|
|
efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
|
|
struct screen_info *si;
|
|
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
unsigned long size;
|
|
void **gop_handle = NULL;
|
|
void **uga_handle = NULL;
|
|
|
|
si = &boot_params->screen_info;
|
|
memset(si, 0, sizeof(*si));
|
|
|
|
size = 0;
|
|
status = efi_call_phys5(sys_table->boottime->locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL, &graphics_proto,
|
|
NULL, &size, gop_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
status = setup_gop(si, &graphics_proto, size);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
size = 0;
|
|
status = efi_call_phys5(sys_table->boottime->locate_handle,
|
|
EFI_LOCATE_BY_PROTOCOL, &uga_proto,
|
|
NULL, &size, uga_handle);
|
|
if (status == EFI_BUFFER_TOO_SMALL)
|
|
setup_uga(si, &uga_proto, size);
|
|
}
|
|
}
|
|
|
|
struct initrd {
|
|
efi_file_handle_t *handle;
|
|
u64 size;
|
|
};
|
|
|
|
/*
|
|
* Check the cmdline for a LILO-style initrd= arguments.
|
|
*
|
|
* We only support loading an initrd from the same filesystem as the
|
|
* kernel image.
|
|
*/
|
|
static efi_status_t handle_ramdisks(efi_loaded_image_t *image,
|
|
struct setup_header *hdr)
|
|
{
|
|
struct initrd *initrds;
|
|
unsigned long initrd_addr;
|
|
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
|
|
u64 initrd_total;
|
|
efi_file_io_interface_t *io;
|
|
efi_file_handle_t *fh;
|
|
efi_status_t status;
|
|
int nr_initrds;
|
|
char *str;
|
|
int i, j, k;
|
|
|
|
initrd_addr = 0;
|
|
initrd_total = 0;
|
|
|
|
str = (char *)(unsigned long)hdr->cmd_line_ptr;
|
|
|
|
j = 0; /* See close_handles */
|
|
|
|
if (!str || !*str)
|
|
return EFI_SUCCESS;
|
|
|
|
for (nr_initrds = 0; *str; nr_initrds++) {
|
|
str = strstr(str, "initrd=");
|
|
if (!str)
|
|
break;
|
|
|
|
str += 7;
|
|
|
|
/* Skip any leading slashes */
|
|
while (*str == '/' || *str == '\\')
|
|
str++;
|
|
|
|
while (*str && *str != ' ' && *str != '\n')
|
|
str++;
|
|
}
|
|
|
|
if (!nr_initrds)
|
|
return EFI_SUCCESS;
|
|
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA,
|
|
nr_initrds * sizeof(*initrds),
|
|
&initrds);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc mem for initrds\n");
|
|
goto fail;
|
|
}
|
|
|
|
str = (char *)(unsigned long)hdr->cmd_line_ptr;
|
|
for (i = 0; i < nr_initrds; i++) {
|
|
struct initrd *initrd;
|
|
efi_file_handle_t *h;
|
|
efi_file_info_t *info;
|
|
efi_char16_t filename_16[256];
|
|
unsigned long info_sz;
|
|
efi_guid_t info_guid = EFI_FILE_INFO_ID;
|
|
efi_char16_t *p;
|
|
u64 file_sz;
|
|
|
|
str = strstr(str, "initrd=");
|
|
if (!str)
|
|
break;
|
|
|
|
str += 7;
|
|
|
|
initrd = &initrds[i];
|
|
p = filename_16;
|
|
|
|
/* Skip any leading slashes */
|
|
while (*str == '/' || *str == '\\')
|
|
str++;
|
|
|
|
while (*str && *str != ' ' && *str != '\n') {
|
|
if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
|
|
break;
|
|
|
|
*p++ = *str++;
|
|
}
|
|
|
|
*p = '\0';
|
|
|
|
/* Only open the volume once. */
|
|
if (!i) {
|
|
efi_boot_services_t *boottime;
|
|
|
|
boottime = sys_table->boottime;
|
|
|
|
status = efi_call_phys3(boottime->handle_protocol,
|
|
image->device_handle, &fs_proto, &io);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to handle fs_proto\n");
|
|
goto free_initrds;
|
|
}
|
|
|
|
status = efi_call_phys2(io->open_volume, io, &fh);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to open volume\n");
|
|
goto free_initrds;
|
|
}
|
|
}
|
|
|
|
status = efi_call_phys5(fh->open, fh, &h, filename_16,
|
|
EFI_FILE_MODE_READ, (u64)0);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to open initrd file\n");
|
|
goto close_handles;
|
|
}
|
|
|
|
initrd->handle = h;
|
|
|
|
info_sz = 0;
|
|
status = efi_call_phys4(h->get_info, h, &info_guid,
|
|
&info_sz, NULL);
|
|
if (status != EFI_BUFFER_TOO_SMALL) {
|
|
efi_printk("Failed to get initrd info size\n");
|
|
goto close_handles;
|
|
}
|
|
|
|
grow:
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, info_sz, &info);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc mem for initrd info\n");
|
|
goto close_handles;
|
|
}
|
|
|
|
status = efi_call_phys4(h->get_info, h, &info_guid,
|
|
&info_sz, info);
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
efi_call_phys1(sys_table->boottime->free_pool, info);
|
|
goto grow;
|
|
}
|
|
|
|
file_sz = info->file_size;
|
|
efi_call_phys1(sys_table->boottime->free_pool, info);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to get initrd info\n");
|
|
goto close_handles;
|
|
}
|
|
|
|
initrd->size = file_sz;
|
|
initrd_total += file_sz;
|
|
}
|
|
|
|
if (initrd_total) {
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* Multiple initrd's need to be at consecutive
|
|
* addresses in memory, so allocate enough memory for
|
|
* all the initrd's.
|
|
*/
|
|
status = high_alloc(initrd_total, 0x1000,
|
|
&initrd_addr, hdr->initrd_addr_max);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc highmem for initrds\n");
|
|
goto close_handles;
|
|
}
|
|
|
|
/* We've run out of free low memory. */
|
|
if (initrd_addr > hdr->initrd_addr_max) {
|
|
efi_printk("We've run out of free low memory\n");
|
|
status = EFI_INVALID_PARAMETER;
|
|
goto free_initrd_total;
|
|
}
|
|
|
|
addr = initrd_addr;
|
|
for (j = 0; j < nr_initrds; j++) {
|
|
u64 size;
|
|
|
|
size = initrds[j].size;
|
|
while (size) {
|
|
u64 chunksize;
|
|
if (size > EFI_READ_CHUNK_SIZE)
|
|
chunksize = EFI_READ_CHUNK_SIZE;
|
|
else
|
|
chunksize = size;
|
|
status = efi_call_phys3(fh->read,
|
|
initrds[j].handle,
|
|
&chunksize, addr);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to read initrd\n");
|
|
goto free_initrd_total;
|
|
}
|
|
addr += chunksize;
|
|
size -= chunksize;
|
|
}
|
|
|
|
efi_call_phys1(fh->close, initrds[j].handle);
|
|
}
|
|
|
|
}
|
|
|
|
efi_call_phys1(sys_table->boottime->free_pool, initrds);
|
|
|
|
hdr->ramdisk_image = initrd_addr;
|
|
hdr->ramdisk_size = initrd_total;
|
|
|
|
return status;
|
|
|
|
free_initrd_total:
|
|
low_free(initrd_total, initrd_addr);
|
|
|
|
close_handles:
|
|
for (k = j; k < i; k++)
|
|
efi_call_phys1(fh->close, initrds[k].handle);
|
|
free_initrds:
|
|
efi_call_phys1(sys_table->boottime->free_pool, initrds);
|
|
fail:
|
|
hdr->ramdisk_image = 0;
|
|
hdr->ramdisk_size = 0;
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Because the x86 boot code expects to be passed a boot_params we
|
|
* need to create one ourselves (usually the bootloader would create
|
|
* one for us).
|
|
*/
|
|
struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table)
|
|
{
|
|
struct boot_params *boot_params;
|
|
struct sys_desc_table *sdt;
|
|
struct apm_bios_info *bi;
|
|
struct setup_header *hdr;
|
|
struct efi_info *efi;
|
|
efi_loaded_image_t *image;
|
|
void *options;
|
|
u32 load_options_size;
|
|
efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
|
|
int options_size = 0;
|
|
efi_status_t status;
|
|
unsigned long cmdline;
|
|
u16 *s2;
|
|
u8 *s1;
|
|
int i;
|
|
|
|
sys_table = _table;
|
|
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
return NULL;
|
|
|
|
status = efi_call_phys3(sys_table->boottime->handle_protocol,
|
|
handle, &proto, (void *)&image);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
|
|
return NULL;
|
|
}
|
|
|
|
status = low_alloc(0x4000, 1, (unsigned long *)&boot_params);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc lowmem for boot params\n");
|
|
return NULL;
|
|
}
|
|
|
|
memset(boot_params, 0x0, 0x4000);
|
|
|
|
hdr = &boot_params->hdr;
|
|
efi = &boot_params->efi_info;
|
|
bi = &boot_params->apm_bios_info;
|
|
sdt = &boot_params->sys_desc_table;
|
|
|
|
/* Copy the second sector to boot_params */
|
|
memcpy(&hdr->jump, image->image_base + 512, 512);
|
|
|
|
/*
|
|
* Fill out some of the header fields ourselves because the
|
|
* EFI firmware loader doesn't load the first sector.
|
|
*/
|
|
hdr->root_flags = 1;
|
|
hdr->vid_mode = 0xffff;
|
|
hdr->boot_flag = 0xAA55;
|
|
|
|
hdr->code32_start = (__u64)(unsigned long)image->image_base;
|
|
|
|
hdr->type_of_loader = 0x21;
|
|
|
|
/* Convert unicode cmdline to ascii */
|
|
options = image->load_options;
|
|
load_options_size = image->load_options_size / 2; /* ASCII */
|
|
cmdline = 0;
|
|
s2 = (u16 *)options;
|
|
|
|
if (s2) {
|
|
while (*s2 && *s2 != '\n' && options_size < load_options_size) {
|
|
s2++;
|
|
options_size++;
|
|
}
|
|
|
|
if (options_size) {
|
|
if (options_size > hdr->cmdline_size)
|
|
options_size = hdr->cmdline_size;
|
|
|
|
options_size++; /* NUL termination */
|
|
|
|
status = low_alloc(options_size, 1, &cmdline);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc mem for cmdline\n");
|
|
goto fail;
|
|
}
|
|
|
|
s1 = (u8 *)(unsigned long)cmdline;
|
|
s2 = (u16 *)options;
|
|
|
|
for (i = 0; i < options_size - 1; i++)
|
|
*s1++ = *s2++;
|
|
|
|
*s1 = '\0';
|
|
}
|
|
}
|
|
|
|
hdr->cmd_line_ptr = cmdline;
|
|
|
|
hdr->ramdisk_image = 0;
|
|
hdr->ramdisk_size = 0;
|
|
|
|
/* Clear APM BIOS info */
|
|
memset(bi, 0, sizeof(*bi));
|
|
|
|
memset(sdt, 0, sizeof(*sdt));
|
|
|
|
status = handle_ramdisks(image, hdr);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail2;
|
|
|
|
return boot_params;
|
|
fail2:
|
|
if (options_size)
|
|
low_free(options_size, hdr->cmd_line_ptr);
|
|
fail:
|
|
low_free(0x4000, (unsigned long)boot_params);
|
|
return NULL;
|
|
}
|
|
|
|
static efi_status_t exit_boot(struct boot_params *boot_params,
|
|
void *handle)
|
|
{
|
|
struct efi_info *efi = &boot_params->efi_info;
|
|
struct e820entry *e820_map = &boot_params->e820_map[0];
|
|
struct e820entry *prev = NULL;
|
|
unsigned long size, key, desc_size, _size;
|
|
efi_memory_desc_t *mem_map;
|
|
efi_status_t status;
|
|
__u32 desc_version;
|
|
u8 nr_entries;
|
|
int i;
|
|
|
|
size = sizeof(*mem_map) * 32;
|
|
|
|
again:
|
|
size += sizeof(*mem_map);
|
|
_size = size;
|
|
status = low_alloc(size, 1, (unsigned long *)&mem_map);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_phys5(sys_table->boottime->get_memory_map, &size,
|
|
mem_map, &key, &desc_size, &desc_version);
|
|
if (status == EFI_BUFFER_TOO_SMALL) {
|
|
low_free(_size, (unsigned long)mem_map);
|
|
goto again;
|
|
}
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto free_mem_map;
|
|
|
|
memcpy(&efi->efi_loader_signature, EFI_LOADER_SIGNATURE, sizeof(__u32));
|
|
efi->efi_systab = (unsigned long)sys_table;
|
|
efi->efi_memdesc_size = desc_size;
|
|
efi->efi_memdesc_version = desc_version;
|
|
efi->efi_memmap = (unsigned long)mem_map;
|
|
efi->efi_memmap_size = size;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
efi->efi_systab_hi = (unsigned long)sys_table >> 32;
|
|
efi->efi_memmap_hi = (unsigned long)mem_map >> 32;
|
|
#endif
|
|
|
|
/* Might as well exit boot services now */
|
|
status = efi_call_phys2(sys_table->boottime->exit_boot_services,
|
|
handle, key);
|
|
if (status != EFI_SUCCESS)
|
|
goto free_mem_map;
|
|
|
|
/* Historic? */
|
|
boot_params->alt_mem_k = 32 * 1024;
|
|
|
|
/*
|
|
* Convert the EFI memory map to E820.
|
|
*/
|
|
nr_entries = 0;
|
|
for (i = 0; i < size / desc_size; i++) {
|
|
efi_memory_desc_t *d;
|
|
unsigned int e820_type = 0;
|
|
unsigned long m = (unsigned long)mem_map;
|
|
|
|
d = (efi_memory_desc_t *)(m + (i * desc_size));
|
|
switch (d->type) {
|
|
case EFI_RESERVED_TYPE:
|
|
case EFI_RUNTIME_SERVICES_CODE:
|
|
case EFI_RUNTIME_SERVICES_DATA:
|
|
case EFI_MEMORY_MAPPED_IO:
|
|
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
|
|
case EFI_PAL_CODE:
|
|
e820_type = E820_RESERVED;
|
|
break;
|
|
|
|
case EFI_UNUSABLE_MEMORY:
|
|
e820_type = E820_UNUSABLE;
|
|
break;
|
|
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
e820_type = E820_ACPI;
|
|
break;
|
|
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
e820_type = E820_RAM;
|
|
break;
|
|
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
e820_type = E820_NVS;
|
|
break;
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
/* Merge adjacent mappings */
|
|
if (prev && prev->type == e820_type &&
|
|
(prev->addr + prev->size) == d->phys_addr)
|
|
prev->size += d->num_pages << 12;
|
|
else {
|
|
e820_map->addr = d->phys_addr;
|
|
e820_map->size = d->num_pages << 12;
|
|
e820_map->type = e820_type;
|
|
prev = e820_map++;
|
|
nr_entries++;
|
|
}
|
|
}
|
|
|
|
boot_params->e820_entries = nr_entries;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
free_mem_map:
|
|
low_free(_size, (unsigned long)mem_map);
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t relocate_kernel(struct setup_header *hdr)
|
|
{
|
|
unsigned long start, nr_pages;
|
|
efi_status_t status;
|
|
|
|
/*
|
|
* The EFI firmware loader could have placed the kernel image
|
|
* anywhere in memory, but the kernel has various restrictions
|
|
* on the max physical address it can run at. Attempt to move
|
|
* the kernel to boot_params.pref_address, or as low as
|
|
* possible.
|
|
*/
|
|
start = hdr->pref_address;
|
|
nr_pages = round_up(hdr->init_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
|
|
status = efi_call_phys4(sys_table->boottime->allocate_pages,
|
|
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
|
nr_pages, &start);
|
|
if (status != EFI_SUCCESS) {
|
|
status = low_alloc(hdr->init_size, hdr->kernel_alignment,
|
|
&start);
|
|
if (status != EFI_SUCCESS)
|
|
efi_printk("Failed to alloc mem for kernel\n");
|
|
}
|
|
|
|
if (status == EFI_SUCCESS)
|
|
memcpy((void *)start, (void *)(unsigned long)hdr->code32_start,
|
|
hdr->init_size);
|
|
|
|
hdr->pref_address = hdr->code32_start;
|
|
hdr->code32_start = (__u32)start;
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* On success we return a pointer to a boot_params structure, and NULL
|
|
* on failure.
|
|
*/
|
|
struct boot_params *efi_main(void *handle, efi_system_table_t *_table,
|
|
struct boot_params *boot_params)
|
|
{
|
|
struct desc_ptr *gdt, *idt;
|
|
efi_loaded_image_t *image;
|
|
struct setup_header *hdr = &boot_params->hdr;
|
|
efi_status_t status;
|
|
struct desc_struct *desc;
|
|
|
|
sys_table = _table;
|
|
|
|
/* Check if we were booted by the EFI firmware */
|
|
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
goto fail;
|
|
|
|
setup_graphics(boot_params);
|
|
|
|
setup_efi_pci(boot_params);
|
|
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, sizeof(*gdt),
|
|
(void **)&gdt);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc mem for gdt structure\n");
|
|
goto fail;
|
|
}
|
|
|
|
gdt->size = 0x800;
|
|
status = low_alloc(gdt->size, 8, (unsigned long *)&gdt->address);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc mem for gdt\n");
|
|
goto fail;
|
|
}
|
|
|
|
status = efi_call_phys3(sys_table->boottime->allocate_pool,
|
|
EFI_LOADER_DATA, sizeof(*idt),
|
|
(void **)&idt);
|
|
if (status != EFI_SUCCESS) {
|
|
efi_printk("Failed to alloc mem for idt structure\n");
|
|
goto fail;
|
|
}
|
|
|
|
idt->size = 0;
|
|
idt->address = 0;
|
|
|
|
/*
|
|
* If the kernel isn't already loaded at the preferred load
|
|
* address, relocate it.
|
|
*/
|
|
if (hdr->pref_address != hdr->code32_start) {
|
|
status = relocate_kernel(hdr);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
status = exit_boot(boot_params, handle);
|
|
if (status != EFI_SUCCESS)
|
|
goto fail;
|
|
|
|
memset((char *)gdt->address, 0x0, gdt->size);
|
|
desc = (struct desc_struct *)gdt->address;
|
|
|
|
/* The first GDT is a dummy and the second is unused. */
|
|
desc += 2;
|
|
|
|
desc->limit0 = 0xffff;
|
|
desc->base0 = 0x0000;
|
|
desc->base1 = 0x0000;
|
|
desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ;
|
|
desc->s = DESC_TYPE_CODE_DATA;
|
|
desc->dpl = 0;
|
|
desc->p = 1;
|
|
desc->limit = 0xf;
|
|
desc->avl = 0;
|
|
desc->l = 0;
|
|
desc->d = SEG_OP_SIZE_32BIT;
|
|
desc->g = SEG_GRANULARITY_4KB;
|
|
desc->base2 = 0x00;
|
|
|
|
desc++;
|
|
desc->limit0 = 0xffff;
|
|
desc->base0 = 0x0000;
|
|
desc->base1 = 0x0000;
|
|
desc->type = SEG_TYPE_DATA | SEG_TYPE_READ_WRITE;
|
|
desc->s = DESC_TYPE_CODE_DATA;
|
|
desc->dpl = 0;
|
|
desc->p = 1;
|
|
desc->limit = 0xf;
|
|
desc->avl = 0;
|
|
desc->l = 0;
|
|
desc->d = SEG_OP_SIZE_32BIT;
|
|
desc->g = SEG_GRANULARITY_4KB;
|
|
desc->base2 = 0x00;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/* Task segment value */
|
|
desc++;
|
|
desc->limit0 = 0x0000;
|
|
desc->base0 = 0x0000;
|
|
desc->base1 = 0x0000;
|
|
desc->type = SEG_TYPE_TSS;
|
|
desc->s = 0;
|
|
desc->dpl = 0;
|
|
desc->p = 1;
|
|
desc->limit = 0x0;
|
|
desc->avl = 0;
|
|
desc->l = 0;
|
|
desc->d = 0;
|
|
desc->g = SEG_GRANULARITY_4KB;
|
|
desc->base2 = 0x00;
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
asm volatile ("lidt %0" : : "m" (*idt));
|
|
asm volatile ("lgdt %0" : : "m" (*gdt));
|
|
|
|
asm volatile("cli");
|
|
|
|
return boot_params;
|
|
fail:
|
|
return NULL;
|
|
}
|