linux_dsm_epyc7002/arch/x86/kvm/vmx.c
Xiao Guangrong 885032b910 KVM: MMU: retain more available bits on mmio spte
Let mmio spte only use bit62 and bit63 on upper 32 bits, then bit 52 ~ bit 61
can be used for other purposes

Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Reviewed-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-06-20 23:33:20 +02:00

8354 lines
236 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "irq.h"
#include "mmu.h"
#include "cpuid.h"
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/ftrace_event.h>
#include <linux/slab.h>
#include <linux/tboot.h>
#include "kvm_cache_regs.h"
#include "x86.h"
#include <asm/io.h>
#include <asm/desc.h>
#include <asm/vmx.h>
#include <asm/virtext.h>
#include <asm/mce.h>
#include <asm/i387.h>
#include <asm/xcr.h>
#include <asm/perf_event.h>
#include <asm/kexec.h>
#include "trace.h"
#define __ex(x) __kvm_handle_fault_on_reboot(x)
#define __ex_clear(x, reg) \
____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static const struct x86_cpu_id vmx_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_VMX),
{}
};
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
static bool __read_mostly enable_vpid = 1;
module_param_named(vpid, enable_vpid, bool, 0444);
static bool __read_mostly flexpriority_enabled = 1;
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
static bool __read_mostly enable_ept = 1;
module_param_named(ept, enable_ept, bool, S_IRUGO);
static bool __read_mostly enable_unrestricted_guest = 1;
module_param_named(unrestricted_guest,
enable_unrestricted_guest, bool, S_IRUGO);
static bool __read_mostly enable_ept_ad_bits = 1;
module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
static bool __read_mostly emulate_invalid_guest_state = true;
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
static bool __read_mostly vmm_exclusive = 1;
module_param(vmm_exclusive, bool, S_IRUGO);
static bool __read_mostly fasteoi = 1;
module_param(fasteoi, bool, S_IRUGO);
static bool __read_mostly enable_apicv = 1;
module_param(enable_apicv, bool, S_IRUGO);
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
/*
* If nested=1, nested virtualization is supported, i.e., guests may use
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
* use VMX instructions.
*/
static bool __read_mostly nested = 0;
module_param(nested, bool, S_IRUGO);
#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
#define KVM_VM_CR0_ALWAYS_ON \
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
#define KVM_CR4_GUEST_OWNED_BITS \
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT)
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* ple_gap: upper bound on the amount of time between two successive
* executions of PAUSE in a loop. Also indicate if ple enabled.
* According to test, this time is usually smaller than 128 cycles.
* ple_window: upper bound on the amount of time a guest is allowed to execute
* in a PAUSE loop. Tests indicate that most spinlocks are held for
* less than 2^12 cycles
* Time is measured based on a counter that runs at the same rate as the TSC,
* refer SDM volume 3b section 21.6.13 & 22.1.3.
*/
#define KVM_VMX_DEFAULT_PLE_GAP 128
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
module_param(ple_gap, int, S_IRUGO);
static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);
extern const ulong vmx_return;
#define NR_AUTOLOAD_MSRS 8
#define VMCS02_POOL_SIZE 1
struct vmcs {
u32 revision_id;
u32 abort;
char data[0];
};
/*
* Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
* remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
* loaded on this CPU (so we can clear them if the CPU goes down).
*/
struct loaded_vmcs {
struct vmcs *vmcs;
int cpu;
int launched;
struct list_head loaded_vmcss_on_cpu_link;
};
struct shared_msr_entry {
unsigned index;
u64 data;
u64 mask;
};
/*
* struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
* single nested guest (L2), hence the name vmcs12. Any VMX implementation has
* a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
* stored in guest memory specified by VMPTRLD, but is opaque to the guest,
* which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
* More than one of these structures may exist, if L1 runs multiple L2 guests.
* nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
* underlying hardware which will be used to run L2.
* This structure is packed to ensure that its layout is identical across
* machines (necessary for live migration).
* If there are changes in this struct, VMCS12_REVISION must be changed.
*/
typedef u64 natural_width;
struct __packed vmcs12 {
/* According to the Intel spec, a VMCS region must start with the
* following two fields. Then follow implementation-specific data.
*/
u32 revision_id;
u32 abort;
u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
u32 padding[7]; /* room for future expansion */
u64 io_bitmap_a;
u64 io_bitmap_b;
u64 msr_bitmap;
u64 vm_exit_msr_store_addr;
u64 vm_exit_msr_load_addr;
u64 vm_entry_msr_load_addr;
u64 tsc_offset;
u64 virtual_apic_page_addr;
u64 apic_access_addr;
u64 ept_pointer;
u64 guest_physical_address;
u64 vmcs_link_pointer;
u64 guest_ia32_debugctl;
u64 guest_ia32_pat;
u64 guest_ia32_efer;
u64 guest_ia32_perf_global_ctrl;
u64 guest_pdptr0;
u64 guest_pdptr1;
u64 guest_pdptr2;
u64 guest_pdptr3;
u64 host_ia32_pat;
u64 host_ia32_efer;
u64 host_ia32_perf_global_ctrl;
u64 padding64[8]; /* room for future expansion */
/*
* To allow migration of L1 (complete with its L2 guests) between
* machines of different natural widths (32 or 64 bit), we cannot have
* unsigned long fields with no explict size. We use u64 (aliased
* natural_width) instead. Luckily, x86 is little-endian.
*/
natural_width cr0_guest_host_mask;
natural_width cr4_guest_host_mask;
natural_width cr0_read_shadow;
natural_width cr4_read_shadow;
natural_width cr3_target_value0;
natural_width cr3_target_value1;
natural_width cr3_target_value2;
natural_width cr3_target_value3;
natural_width exit_qualification;
natural_width guest_linear_address;
natural_width guest_cr0;
natural_width guest_cr3;
natural_width guest_cr4;
natural_width guest_es_base;
natural_width guest_cs_base;
natural_width guest_ss_base;
natural_width guest_ds_base;
natural_width guest_fs_base;
natural_width guest_gs_base;
natural_width guest_ldtr_base;
natural_width guest_tr_base;
natural_width guest_gdtr_base;
natural_width guest_idtr_base;
natural_width guest_dr7;
natural_width guest_rsp;
natural_width guest_rip;
natural_width guest_rflags;
natural_width guest_pending_dbg_exceptions;
natural_width guest_sysenter_esp;
natural_width guest_sysenter_eip;
natural_width host_cr0;
natural_width host_cr3;
natural_width host_cr4;
natural_width host_fs_base;
natural_width host_gs_base;
natural_width host_tr_base;
natural_width host_gdtr_base;
natural_width host_idtr_base;
natural_width host_ia32_sysenter_esp;
natural_width host_ia32_sysenter_eip;
natural_width host_rsp;
natural_width host_rip;
natural_width paddingl[8]; /* room for future expansion */
u32 pin_based_vm_exec_control;
u32 cpu_based_vm_exec_control;
u32 exception_bitmap;
u32 page_fault_error_code_mask;
u32 page_fault_error_code_match;
u32 cr3_target_count;
u32 vm_exit_controls;
u32 vm_exit_msr_store_count;
u32 vm_exit_msr_load_count;
u32 vm_entry_controls;
u32 vm_entry_msr_load_count;
u32 vm_entry_intr_info_field;
u32 vm_entry_exception_error_code;
u32 vm_entry_instruction_len;
u32 tpr_threshold;
u32 secondary_vm_exec_control;
u32 vm_instruction_error;
u32 vm_exit_reason;
u32 vm_exit_intr_info;
u32 vm_exit_intr_error_code;
u32 idt_vectoring_info_field;
u32 idt_vectoring_error_code;
u32 vm_exit_instruction_len;
u32 vmx_instruction_info;
u32 guest_es_limit;
u32 guest_cs_limit;
u32 guest_ss_limit;
u32 guest_ds_limit;
u32 guest_fs_limit;
u32 guest_gs_limit;
u32 guest_ldtr_limit;
u32 guest_tr_limit;
u32 guest_gdtr_limit;
u32 guest_idtr_limit;
u32 guest_es_ar_bytes;
u32 guest_cs_ar_bytes;
u32 guest_ss_ar_bytes;
u32 guest_ds_ar_bytes;
u32 guest_fs_ar_bytes;
u32 guest_gs_ar_bytes;
u32 guest_ldtr_ar_bytes;
u32 guest_tr_ar_bytes;
u32 guest_interruptibility_info;
u32 guest_activity_state;
u32 guest_sysenter_cs;
u32 host_ia32_sysenter_cs;
u32 vmx_preemption_timer_value;
u32 padding32[7]; /* room for future expansion */
u16 virtual_processor_id;
u16 guest_es_selector;
u16 guest_cs_selector;
u16 guest_ss_selector;
u16 guest_ds_selector;
u16 guest_fs_selector;
u16 guest_gs_selector;
u16 guest_ldtr_selector;
u16 guest_tr_selector;
u16 host_es_selector;
u16 host_cs_selector;
u16 host_ss_selector;
u16 host_ds_selector;
u16 host_fs_selector;
u16 host_gs_selector;
u16 host_tr_selector;
};
/*
* VMCS12_REVISION is an arbitrary id that should be changed if the content or
* layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
* VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
*/
#define VMCS12_REVISION 0x11e57ed0
/*
* VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
* and any VMCS region. Although only sizeof(struct vmcs12) are used by the
* current implementation, 4K are reserved to avoid future complications.
*/
#define VMCS12_SIZE 0x1000
/* Used to remember the last vmcs02 used for some recently used vmcs12s */
struct vmcs02_list {
struct list_head list;
gpa_t vmptr;
struct loaded_vmcs vmcs02;
};
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
*/
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
/* The host-usable pointer to the above */
struct page *current_vmcs12_page;
struct vmcs12 *current_vmcs12;
struct vmcs *current_shadow_vmcs;
/*
* Indicates if the shadow vmcs must be updated with the
* data hold by vmcs12
*/
bool sync_shadow_vmcs;
/* vmcs02_list cache of VMCSs recently used to run L2 guests */
struct list_head vmcs02_pool;
int vmcs02_num;
u64 vmcs01_tsc_offset;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
/*
* Guest pages referred to in vmcs02 with host-physical pointers, so
* we must keep them pinned while L2 runs.
*/
struct page *apic_access_page;
};
#define POSTED_INTR_ON 0
/* Posted-Interrupt Descriptor */
struct pi_desc {
u32 pir[8]; /* Posted interrupt requested */
u32 control; /* bit 0 of control is outstanding notification bit */
u32 rsvd[7];
} __aligned(64);
static bool pi_test_and_set_on(struct pi_desc *pi_desc)
{
return test_and_set_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
{
return test_and_clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
{
return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
}
struct vcpu_vmx {
struct kvm_vcpu vcpu;
unsigned long host_rsp;
u8 fail;
u8 cpl;
bool nmi_known_unmasked;
u32 exit_intr_info;
u32 idt_vectoring_info;
ulong rflags;
struct shared_msr_entry *guest_msrs;
int nmsrs;
int save_nmsrs;
unsigned long host_idt_base;
#ifdef CONFIG_X86_64
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
/*
* loaded_vmcs points to the VMCS currently used in this vcpu. For a
* non-nested (L1) guest, it always points to vmcs01. For a nested
* guest (L2), it points to a different VMCS.
*/
struct loaded_vmcs vmcs01;
struct loaded_vmcs *loaded_vmcs;
bool __launched; /* temporary, used in vmx_vcpu_run */
struct msr_autoload {
unsigned nr;
struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
} msr_autoload;
struct {
int loaded;
u16 fs_sel, gs_sel, ldt_sel;
#ifdef CONFIG_X86_64
u16 ds_sel, es_sel;
#endif
int gs_ldt_reload_needed;
int fs_reload_needed;
} host_state;
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
/* Support for vnmi-less CPUs */
int soft_vnmi_blocked;
ktime_t entry_time;
s64 vnmi_blocked_time;
u32 exit_reason;
bool rdtscp_enabled;
/* Posted interrupt descriptor */
struct pi_desc pi_desc;
/* Support for a guest hypervisor (nested VMX) */
struct nested_vmx nested;
};
enum segment_cache_field {
SEG_FIELD_SEL = 0,
SEG_FIELD_BASE = 1,
SEG_FIELD_LIMIT = 2,
SEG_FIELD_AR = 3,
SEG_FIELD_NR = 4
};
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
[number##_HIGH] = VMCS12_OFFSET(name)+4
static const unsigned long shadow_read_only_fields[] = {
/*
* We do NOT shadow fields that are modified when L0
* traps and emulates any vmx instruction (e.g. VMPTRLD,
* VMXON...) executed by L1.
* For example, VM_INSTRUCTION_ERROR is read
* by L1 if a vmx instruction fails (part of the error path).
* Note the code assumes this logic. If for some reason
* we start shadowing these fields then we need to
* force a shadow sync when L0 emulates vmx instructions
* (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
* by nested_vmx_failValid)
*/
VM_EXIT_REASON,
VM_EXIT_INTR_INFO,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_INFO_FIELD,
IDT_VECTORING_ERROR_CODE,
VM_EXIT_INTR_ERROR_CODE,
EXIT_QUALIFICATION,
GUEST_LINEAR_ADDRESS,
GUEST_PHYSICAL_ADDRESS
};
static const int max_shadow_read_only_fields =
ARRAY_SIZE(shadow_read_only_fields);
static const unsigned long shadow_read_write_fields[] = {
GUEST_RIP,
GUEST_RSP,
GUEST_CR0,
GUEST_CR3,
GUEST_CR4,
GUEST_INTERRUPTIBILITY_INFO,
GUEST_RFLAGS,
GUEST_CS_SELECTOR,
GUEST_CS_AR_BYTES,
GUEST_CS_LIMIT,
GUEST_CS_BASE,
GUEST_ES_BASE,
CR0_GUEST_HOST_MASK,
CR0_READ_SHADOW,
CR4_READ_SHADOW,
TSC_OFFSET,
EXCEPTION_BITMAP,
CPU_BASED_VM_EXEC_CONTROL,
VM_ENTRY_EXCEPTION_ERROR_CODE,
VM_ENTRY_INTR_INFO_FIELD,
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE,
HOST_FS_BASE,
HOST_GS_BASE,
HOST_FS_SELECTOR,
HOST_GS_SELECTOR
};
static const int max_shadow_read_write_fields =
ARRAY_SIZE(shadow_read_write_fields);
static const unsigned short vmcs_field_to_offset_table[] = {
FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
FIELD(GUEST_ES_SELECTOR, guest_es_selector),
FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
FIELD(HOST_ES_SELECTOR, host_es_selector),
FIELD(HOST_CS_SELECTOR, host_cs_selector),
FIELD(HOST_SS_SELECTOR, host_ss_selector),
FIELD(HOST_DS_SELECTOR, host_ds_selector),
FIELD(HOST_FS_SELECTOR, host_fs_selector),
FIELD(HOST_GS_SELECTOR, host_gs_selector),
FIELD(HOST_TR_SELECTOR, host_tr_selector),
FIELD64(IO_BITMAP_A, io_bitmap_a),
FIELD64(IO_BITMAP_B, io_bitmap_b),
FIELD64(MSR_BITMAP, msr_bitmap),
FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
FIELD64(TSC_OFFSET, tsc_offset),
FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
FIELD64(EPT_POINTER, ept_pointer),
FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
FIELD64(GUEST_PDPTR0, guest_pdptr0),
FIELD64(GUEST_PDPTR1, guest_pdptr1),
FIELD64(GUEST_PDPTR2, guest_pdptr2),
FIELD64(GUEST_PDPTR3, guest_pdptr3),
FIELD64(HOST_IA32_PAT, host_ia32_pat),
FIELD64(HOST_IA32_EFER, host_ia32_efer),
FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
FIELD(EXCEPTION_BITMAP, exception_bitmap),
FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
FIELD(CR3_TARGET_COUNT, cr3_target_count),
FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
FIELD(TPR_THRESHOLD, tpr_threshold),
FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
FIELD(VM_EXIT_REASON, vm_exit_reason),
FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
FIELD(GUEST_ES_LIMIT, guest_es_limit),
FIELD(GUEST_CS_LIMIT, guest_cs_limit),
FIELD(GUEST_SS_LIMIT, guest_ss_limit),
FIELD(GUEST_DS_LIMIT, guest_ds_limit),
FIELD(GUEST_FS_LIMIT, guest_fs_limit),
FIELD(GUEST_GS_LIMIT, guest_gs_limit),
FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
FIELD(GUEST_TR_LIMIT, guest_tr_limit),
FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
FIELD(CR0_READ_SHADOW, cr0_read_shadow),
FIELD(CR4_READ_SHADOW, cr4_read_shadow),
FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
FIELD(EXIT_QUALIFICATION, exit_qualification),
FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
FIELD(GUEST_CR0, guest_cr0),
FIELD(GUEST_CR3, guest_cr3),
FIELD(GUEST_CR4, guest_cr4),
FIELD(GUEST_ES_BASE, guest_es_base),
FIELD(GUEST_CS_BASE, guest_cs_base),
FIELD(GUEST_SS_BASE, guest_ss_base),
FIELD(GUEST_DS_BASE, guest_ds_base),
FIELD(GUEST_FS_BASE, guest_fs_base),
FIELD(GUEST_GS_BASE, guest_gs_base),
FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
FIELD(GUEST_TR_BASE, guest_tr_base),
FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
FIELD(GUEST_IDTR_BASE, guest_idtr_base),
FIELD(GUEST_DR7, guest_dr7),
FIELD(GUEST_RSP, guest_rsp),
FIELD(GUEST_RIP, guest_rip),
FIELD(GUEST_RFLAGS, guest_rflags),
FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
FIELD(HOST_CR0, host_cr0),
FIELD(HOST_CR3, host_cr3),
FIELD(HOST_CR4, host_cr4),
FIELD(HOST_FS_BASE, host_fs_base),
FIELD(HOST_GS_BASE, host_gs_base),
FIELD(HOST_TR_BASE, host_tr_base),
FIELD(HOST_GDTR_BASE, host_gdtr_base),
FIELD(HOST_IDTR_BASE, host_idtr_base),
FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
FIELD(HOST_RSP, host_rsp),
FIELD(HOST_RIP, host_rip),
};
static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
static inline short vmcs_field_to_offset(unsigned long field)
{
if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
return -1;
return vmcs_field_to_offset_table[field];
}
static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
{
return to_vmx(vcpu)->nested.current_vmcs12;
}
static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
{
struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
if (is_error_page(page))
return NULL;
return page;
}
static void nested_release_page(struct page *page)
{
kvm_release_page_dirty(page);
}
static void nested_release_page_clean(struct page *page)
{
kvm_release_page_clean(page);
}
static u64 construct_eptp(unsigned long root_hpa);
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static bool guest_state_valid(struct kvm_vcpu *vcpu);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
/*
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
*/
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
static unsigned long *vmx_io_bitmap_a;
static unsigned long *vmx_io_bitmap_b;
static unsigned long *vmx_msr_bitmap_legacy;
static unsigned long *vmx_msr_bitmap_longmode;
static unsigned long *vmx_msr_bitmap_legacy_x2apic;
static unsigned long *vmx_msr_bitmap_longmode_x2apic;
static unsigned long *vmx_vmread_bitmap;
static unsigned long *vmx_vmwrite_bitmap;
static bool cpu_has_load_ia32_efer;
static bool cpu_has_load_perf_global_ctrl;
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
static struct vmcs_config {
int size;
int order;
u32 revision_id;
u32 pin_based_exec_ctrl;
u32 cpu_based_exec_ctrl;
u32 cpu_based_2nd_exec_ctrl;
u32 vmexit_ctrl;
u32 vmentry_ctrl;
} vmcs_config;
static struct vmx_capability {
u32 ept;
u32 vpid;
} vmx_capability;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static const struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
static u64 host_efer;
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
/*
* Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
* away by decrementing the array size.
*/
static const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
#endif
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
};
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
static inline bool is_page_fault(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool is_no_device(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool is_invalid_opcode(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool is_external_interrupt(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static inline bool is_machine_check(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool cpu_has_vmx_msr_bitmap(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
}
static inline bool cpu_has_vmx_tpr_shadow(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
}
static inline bool vm_need_tpr_shadow(struct kvm *kvm)
{
return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
}
static inline bool cpu_has_secondary_exec_ctrls(void)
{
return vmcs_config.cpu_based_exec_ctrl &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
}
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}
static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
}
static inline bool cpu_has_vmx_apic_register_virt(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_APIC_REGISTER_VIRT;
}
static inline bool cpu_has_vmx_virtual_intr_delivery(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
}
static inline bool cpu_has_vmx_posted_intr(void)
{
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
}
static inline bool cpu_has_vmx_apicv(void)
{
return cpu_has_vmx_apic_register_virt() &&
cpu_has_vmx_virtual_intr_delivery() &&
cpu_has_vmx_posted_intr();
}
static inline bool cpu_has_vmx_flexpriority(void)
{
return cpu_has_vmx_tpr_shadow() &&
cpu_has_vmx_virtualize_apic_accesses();
}
static inline bool cpu_has_vmx_ept_execute_only(void)
{
return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
}
static inline bool cpu_has_vmx_eptp_uncacheable(void)
{
return vmx_capability.ept & VMX_EPTP_UC_BIT;
}
static inline bool cpu_has_vmx_eptp_writeback(void)
{
return vmx_capability.ept & VMX_EPTP_WB_BIT;
}
static inline bool cpu_has_vmx_ept_2m_page(void)
{
return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_1g_page(void)
{
return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_4levels(void)
{
return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
}
static inline bool cpu_has_vmx_ept_ad_bits(void)
{
return vmx_capability.ept & VMX_EPT_AD_BIT;
}
static inline bool cpu_has_vmx_invept_context(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invept_global(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
}
static inline bool cpu_has_vmx_invvpid_single(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invvpid_global(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_ept(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_EPT;
}
static inline bool cpu_has_vmx_unrestricted_guest(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_UNRESTRICTED_GUEST;
}
static inline bool cpu_has_vmx_ple(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_PAUSE_LOOP_EXITING;
}
static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
{
return flexpriority_enabled && irqchip_in_kernel(kvm);
}
static inline bool cpu_has_vmx_vpid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_VPID;
}
static inline bool cpu_has_vmx_rdtscp(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_RDTSCP;
}
static inline bool cpu_has_vmx_invpcid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_INVPCID;
}
static inline bool cpu_has_virtual_nmis(void)
{
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool cpu_has_vmx_wbinvd_exit(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_WBINVD_EXITING;
}
static inline bool cpu_has_vmx_shadow_vmcs(void)
{
u64 vmx_msr;
rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
/* check if the cpu supports writing r/o exit information fields */
if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
return false;
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_SHADOW_VMCS;
}
static inline bool report_flexpriority(void)
{
return flexpriority_enabled;
}
static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
{
return vmcs12->cpu_based_vm_exec_control & bit;
}
static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
{
return (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
(vmcs12->secondary_vm_exec_control & bit);
}
static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
struct kvm_vcpu *vcpu)
{
return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool is_exception(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
}
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 reason, unsigned long qualification);
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
for (i = 0; i < vmx->nmsrs; ++i)
if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
return i;
return -1;
}
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
{
struct {
u64 vpid : 16;
u64 rsvd : 48;
u64 gva;
} operand = { vpid, 0, gva };
asm volatile (__ex(ASM_VMX_INVVPID)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:"
: : "a"(&operand), "c"(ext) : "cc", "memory");
}
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
{
struct {
u64 eptp, gpa;
} operand = {eptp, gpa};
asm volatile (__ex(ASM_VMX_INVEPT)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:\n"
: : "a" (&operand), "c" (ext) : "cc", "memory");
}
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
{
int i;
i = __find_msr_index(vmx, msr);
if (i >= 0)
return &vmx->guest_msrs[i];
return NULL;
}
static void vmcs_clear(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
vmcs_clear(loaded_vmcs->vmcs);
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
}
static void vmcs_load(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
vmcs, phys_addr);
}
#ifdef CONFIG_KEXEC
/*
* This bitmap is used to indicate whether the vmclear
* operation is enabled on all cpus. All disabled by
* default.
*/
static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
static inline void crash_enable_local_vmclear(int cpu)
{
cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline void crash_disable_local_vmclear(int cpu)
{
cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline int crash_local_vmclear_enabled(int cpu)
{
return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static void crash_vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v;
if (!crash_local_vmclear_enabled(cpu))
return;
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
vmcs_clear(v->vmcs);
}
#else
static inline void crash_enable_local_vmclear(int cpu) { }
static inline void crash_disable_local_vmclear(int cpu) { }
#endif /* CONFIG_KEXEC */
static void __loaded_vmcs_clear(void *arg)
{
struct loaded_vmcs *loaded_vmcs = arg;
int cpu = raw_smp_processor_id();
if (loaded_vmcs->cpu != cpu)
return; /* vcpu migration can race with cpu offline */
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
crash_disable_local_vmclear(cpu);
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
/*
* we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
* is before setting loaded_vmcs->vcpu to -1 which is done in
* loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
* then adds the vmcs into percpu list before it is deleted.
*/
smp_wmb();
loaded_vmcs_init(loaded_vmcs);
crash_enable_local_vmclear(cpu);
}
static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
{
int cpu = loaded_vmcs->cpu;
if (cpu != -1)
smp_call_function_single(cpu,
__loaded_vmcs_clear, loaded_vmcs, 1);
}
static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
{
if (vmx->vpid == 0)
return;
if (cpu_has_vmx_invvpid_single())
__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
}
static inline void vpid_sync_vcpu_global(void)
{
if (cpu_has_vmx_invvpid_global())
__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
}
static inline void vpid_sync_context(struct vcpu_vmx *vmx)
{
if (cpu_has_vmx_invvpid_single())
vpid_sync_vcpu_single(vmx);
else
vpid_sync_vcpu_global();
}
static inline void ept_sync_global(void)
{
if (cpu_has_vmx_invept_global())
__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
}
static inline void ept_sync_context(u64 eptp)
{
if (enable_ept) {
if (cpu_has_vmx_invept_context())
__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
else
ept_sync_global();
}
}
static __always_inline unsigned long vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
: "=a"(value) : "d"(field) : "cc");
return value;
}
static __always_inline u16 vmcs_read16(unsigned long field)
{
return vmcs_readl(field);
}
static __always_inline u32 vmcs_read32(unsigned long field)
{
return vmcs_readl(field);
}
static __always_inline u64 vmcs_read64(unsigned long field)
{
#ifdef CONFIG_X86_64
return vmcs_readl(field);
#else
return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
#endif
}
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
dump_stack();
}
static void vmcs_writel(unsigned long field, unsigned long value)
{
u8 error;
asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc");
if (unlikely(error))
vmwrite_error(field, value);
}
static void vmcs_write16(unsigned long field, u16 value)
{
vmcs_writel(field, value);
}
static void vmcs_write32(unsigned long field, u32 value)
{
vmcs_writel(field, value);
}
static void vmcs_write64(unsigned long field, u64 value)
{
vmcs_writel(field, value);
#ifndef CONFIG_X86_64
asm volatile ("");
vmcs_writel(field+1, value >> 32);
#endif
}
static void vmcs_clear_bits(unsigned long field, u32 mask)
{
vmcs_writel(field, vmcs_readl(field) & ~mask);
}
static void vmcs_set_bits(unsigned long field, u32 mask)
{
vmcs_writel(field, vmcs_readl(field) | mask);
}
static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
vmx->segment_cache.bitmask = 0;
}
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
unsigned field)
{
bool ret;
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
vmx->segment_cache.bitmask = 0;
}
ret = vmx->segment_cache.bitmask & mask;
vmx->segment_cache.bitmask |= mask;
return ret;
}
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
u16 *p = &vmx->segment_cache.seg[seg].selector;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
return *p;
}
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
ulong *p = &vmx->segment_cache.seg[seg].base;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
return *p;
}
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].limit;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
return *p;
}
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].ar;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
return *p;
}
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
(1u << NM_VECTOR) | (1u << DB_VECTOR);
if ((vcpu->guest_debug &
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
eb |= 1u << BP_VECTOR;
if (to_vmx(vcpu)->rmode.vm86_active)
eb = ~0;
if (enable_ept)
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
if (vcpu->fpu_active)
eb &= ~(1u << NM_VECTOR);
/* When we are running a nested L2 guest and L1 specified for it a
* certain exception bitmap, we must trap the same exceptions and pass
* them to L1. When running L2, we will only handle the exceptions
* specified above if L1 did not want them.
*/
if (is_guest_mode(vcpu))
eb |= get_vmcs12(vcpu)->exception_bitmap;
vmcs_write32(EXCEPTION_BITMAP, eb);
}
static void clear_atomic_switch_msr_special(unsigned long entry,
unsigned long exit)
{
vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
}
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
clear_atomic_switch_msr_special(
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
return;
}
break;
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == m->nr)
return;
--m->nr;
m->guest[i] = m->guest[m->nr];
m->host[i] = m->host[m->nr];
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
static void add_atomic_switch_msr_special(unsigned long entry,
unsigned long exit, unsigned long guest_val_vmcs,
unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
{
vmcs_write64(guest_val_vmcs, guest_val);
vmcs_write64(host_val_vmcs, host_val);
vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
vmcs_set_bits(VM_EXIT_CONTROLS, exit);
}
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
u64 guest_val, u64 host_val)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER,
GUEST_IA32_EFER,
HOST_IA32_EFER,
guest_val, host_val);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
add_atomic_switch_msr_special(
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
GUEST_IA32_PERF_GLOBAL_CTRL,
HOST_IA32_PERF_GLOBAL_CTRL,
guest_val, host_val);
return;
}
break;
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == NR_AUTOLOAD_MSRS) {
printk_once(KERN_WARNING"Not enough mst switch entries. "
"Can't add msr %x\n", msr);
return;
} else if (i == m->nr) {
++m->nr;
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
m->guest[i].index = msr;
m->guest[i].value = guest_val;
m->host[i].index = msr;
m->host[i].value = host_val;
}
static void reload_tss(void)
{
/*
* VT restores TR but not its size. Useless.
*/
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
struct desc_struct *descs;
descs = (void *)gdt->address;
descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
load_TR_desc();
}
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
{
u64 guest_efer;
u64 ignore_bits;
guest_efer = vmx->vcpu.arch.efer;
/*
* NX is emulated; LMA and LME handled by hardware; SCE meaningless
* outside long mode
*/
ignore_bits = EFER_NX | EFER_SCE;
#ifdef CONFIG_X86_64
ignore_bits |= EFER_LMA | EFER_LME;
/* SCE is meaningful only in long mode on Intel */
if (guest_efer & EFER_LMA)
ignore_bits &= ~(u64)EFER_SCE;
#endif
guest_efer &= ~ignore_bits;
guest_efer |= host_efer & ignore_bits;
vmx->guest_msrs[efer_offset].data = guest_efer;
vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
clear_atomic_switch_msr(vmx, MSR_EFER);
/* On ept, can't emulate nx, and must switch nx atomically */
if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
guest_efer = vmx->vcpu.arch.efer;
if (!(guest_efer & EFER_LMA))
guest_efer &= ~EFER_LME;
add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
return false;
}
return true;
}
static unsigned long segment_base(u16 selector)
{
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
struct desc_struct *d;
unsigned long table_base;
unsigned long v;
if (!(selector & ~3))
return 0;
table_base = gdt->address;
if (selector & 4) { /* from ldt */
u16 ldt_selector = kvm_read_ldt();
if (!(ldt_selector & ~3))
return 0;
table_base = segment_base(ldt_selector);
}
d = (struct desc_struct *)(table_base + (selector & ~7));
v = get_desc_base(d);
#ifdef CONFIG_X86_64
if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
#endif
return v;
}
static inline unsigned long kvm_read_tr_base(void)
{
u16 tr;
asm("str %0" : "=g"(tr));
return segment_base(tr);
}
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int i;
if (vmx->host_state.loaded)
return;
vmx->host_state.loaded = 1;
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
vmx->host_state.ldt_sel = kvm_read_ldt();
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
savesegment(fs, vmx->host_state.fs_sel);
if (!(vmx->host_state.fs_sel & 7)) {
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
vmx->host_state.fs_reload_needed = 0;
} else {
vmcs_write16(HOST_FS_SELECTOR, 0);
vmx->host_state.fs_reload_needed = 1;
}
savesegment(gs, vmx->host_state.gs_sel);
if (!(vmx->host_state.gs_sel & 7))
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
else {
vmcs_write16(HOST_GS_SELECTOR, 0);
vmx->host_state.gs_ldt_reload_needed = 1;
}
#ifdef CONFIG_X86_64
savesegment(ds, vmx->host_state.ds_sel);
savesegment(es, vmx->host_state.es_sel);
#endif
#ifdef CONFIG_X86_64
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
#endif
#ifdef CONFIG_X86_64
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
if (is_long_mode(&vmx->vcpu))
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
for (i = 0; i < vmx->save_nmsrs; ++i)
kvm_set_shared_msr(vmx->guest_msrs[i].index,
vmx->guest_msrs[i].data,
vmx->guest_msrs[i].mask);
}
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
{
if (!vmx->host_state.loaded)
return;
++vmx->vcpu.stat.host_state_reload;
vmx->host_state.loaded = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu))
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (vmx->host_state.gs_ldt_reload_needed) {
kvm_load_ldt(vmx->host_state.ldt_sel);
#ifdef CONFIG_X86_64
load_gs_index(vmx->host_state.gs_sel);
#else
loadsegment(gs, vmx->host_state.gs_sel);
#endif
}
if (vmx->host_state.fs_reload_needed)
loadsegment(fs, vmx->host_state.fs_sel);
#ifdef CONFIG_X86_64
if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
loadsegment(ds, vmx->host_state.ds_sel);
loadsegment(es, vmx->host_state.es_sel);
}
#endif
reload_tss();
#ifdef CONFIG_X86_64
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
#endif
/*
* If the FPU is not active (through the host task or
* the guest vcpu), then restore the cr0.TS bit.
*/
if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
stts();
load_gdt(&__get_cpu_var(host_gdt));
}
static void vmx_load_host_state(struct vcpu_vmx *vmx)
{
preempt_disable();
__vmx_load_host_state(vmx);
preempt_enable();
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
if (!vmm_exclusive)
kvm_cpu_vmxon(phys_addr);
else if (vmx->loaded_vmcs->cpu != cpu)
loaded_vmcs_clear(vmx->loaded_vmcs);
if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
vmcs_load(vmx->loaded_vmcs->vmcs);
}
if (vmx->loaded_vmcs->cpu != cpu) {
struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
unsigned long sysenter_esp;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
local_irq_disable();
crash_disable_local_vmclear(cpu);
/*
* Read loaded_vmcs->cpu should be before fetching
* loaded_vmcs->loaded_vmcss_on_cpu_link.
* See the comments in __loaded_vmcs_clear().
*/
smp_rmb();
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
&per_cpu(loaded_vmcss_on_cpu, cpu));
crash_enable_local_vmclear(cpu);
local_irq_enable();
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors.
*/
vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
vmx->loaded_vmcs->cpu = cpu;
}
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
__vmx_load_host_state(to_vmx(vcpu));
if (!vmm_exclusive) {
__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
vcpu->cpu = -1;
kvm_cpu_vmxoff();
}
}
static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
{
ulong cr0;
if (vcpu->fpu_active)
return;
vcpu->fpu_active = 1;
cr0 = vmcs_readl(GUEST_CR0);
cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
vmcs_writel(GUEST_CR0, cr0);
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
if (is_guest_mode(vcpu))
vcpu->arch.cr0_guest_owned_bits &=
~get_vmcs12(vcpu)->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
/*
* Return the cr0 value that a nested guest would read. This is a combination
* of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
* its hypervisor (cr0_read_shadow).
*/
static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
{
return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
}
static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
{
return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
}
static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
{
/* Note that there is no vcpu->fpu_active = 0 here. The caller must
* set this *before* calling this function.
*/
vmx_decache_cr0_guest_bits(vcpu);
vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits = 0;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
if (is_guest_mode(vcpu)) {
/*
* L1's specified read shadow might not contain the TS bit,
* so now that we turned on shadowing of this bit, we need to
* set this bit of the shadow. Like in nested_vmx_run we need
* nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
* up-to-date here because we just decached cr0.TS (and we'll
* only update vmcs12->guest_cr0 on nested exit).
*/
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
(vcpu->arch.cr0 & X86_CR0_TS);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
} else
vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags, save_rflags;
if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
rflags = vmcs_readl(GUEST_RFLAGS);
if (to_vmx(vcpu)->rmode.vm86_active) {
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
save_rflags = to_vmx(vcpu)->rmode.save_rflags;
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
}
to_vmx(vcpu)->rflags = rflags;
}
return to_vmx(vcpu)->rflags;
}
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
to_vmx(vcpu)->rflags = rflags;
if (to_vmx(vcpu)->rmode.vm86_active) {
to_vmx(vcpu)->rmode.save_rflags = rflags;
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
}
vmcs_writel(GUEST_RFLAGS, rflags);
}
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
int ret = 0;
if (interruptibility & GUEST_INTR_STATE_STI)
ret |= KVM_X86_SHADOW_INT_STI;
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
ret |= KVM_X86_SHADOW_INT_MOV_SS;
return ret & mask;
}
static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
u32 interruptibility = interruptibility_old;
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
interruptibility |= GUEST_INTR_STATE_MOV_SS;
else if (mask & KVM_X86_SHADOW_INT_STI)
interruptibility |= GUEST_INTR_STATE_STI;
if ((interruptibility != interruptibility_old))
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
rip = kvm_rip_read(vcpu);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_rip_write(vcpu, rip);
/* skipping an emulated instruction also counts */
vmx_set_interrupt_shadow(vcpu, 0);
}
/*
* KVM wants to inject page-faults which it got to the guest. This function
* checks whether in a nested guest, we need to inject them to L1 or L2.
* This function assumes it is called with the exit reason in vmcs02 being
* a #PF exception (this is the only case in which KVM injects a #PF when L2
* is running).
*/
static int nested_pf_handled(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
/* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
return 0;
nested_vmx_vmexit(vcpu);
return 1;
}
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code,
bool reinject)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info = nr | INTR_INFO_VALID_MASK;
if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
!vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
return;
if (has_error_code) {
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (kvm_exception_is_soft(nr))
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
if (kvm_exception_is_soft(nr)) {
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
} else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
}
static bool vmx_rdtscp_supported(void)
{
return cpu_has_vmx_rdtscp();
}
static bool vmx_invpcid_supported(void)
{
return cpu_has_vmx_invpcid() && enable_ept;
}
/*
* Swap MSR entry in host/guest MSR entry array.
*/
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
{
struct shared_msr_entry tmp;
tmp = vmx->guest_msrs[to];
vmx->guest_msrs[to] = vmx->guest_msrs[from];
vmx->guest_msrs[from] = tmp;
}
static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
{
unsigned long *msr_bitmap;
if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
else
msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
} else {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode;
else
msr_bitmap = vmx_msr_bitmap_legacy;
}
vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
}
/*
* Set up the vmcs to automatically save and restore system
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
* mode, as fiddling with msrs is very expensive.
*/
static void setup_msrs(struct vcpu_vmx *vmx)
{
int save_nmsrs, index;
save_nmsrs = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu)) {
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_LSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_CSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_TSC_AUX);
if (index >= 0 && vmx->rdtscp_enabled)
move_msr_up(vmx, index, save_nmsrs++);
/*
* MSR_STAR is only needed on long mode guests, and only
* if efer.sce is enabled.
*/
index = __find_msr_index(vmx, MSR_STAR);
if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
move_msr_up(vmx, index, save_nmsrs++);
}
#endif
index = __find_msr_index(vmx, MSR_EFER);
if (index >= 0 && update_transition_efer(vmx, index))
move_msr_up(vmx, index, save_nmsrs++);
vmx->save_nmsrs = save_nmsrs;
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(&vmx->vcpu);
}
/*
* reads and returns guest's timestamp counter "register"
* guest_tsc = host_tsc + tsc_offset -- 21.3
*/
static u64 guest_read_tsc(void)
{
u64 host_tsc, tsc_offset;
rdtscll(host_tsc);
tsc_offset = vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* Like guest_read_tsc, but always returns L1's notion of the timestamp
* counter, even if a nested guest (L2) is currently running.
*/
u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
{
u64 tsc_offset;
tsc_offset = is_guest_mode(vcpu) ?
to_vmx(vcpu)->nested.vmcs01_tsc_offset :
vmcs_read64(TSC_OFFSET);
return host_tsc + tsc_offset;
}
/*
* Engage any workarounds for mis-matched TSC rates. Currently limited to
* software catchup for faster rates on slower CPUs.
*/
static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
{
if (!scale)
return;
if (user_tsc_khz > tsc_khz) {
vcpu->arch.tsc_catchup = 1;
vcpu->arch.tsc_always_catchup = 1;
} else
WARN(1, "user requested TSC rate below hardware speed\n");
}
static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
{
return vmcs_read64(TSC_OFFSET);
}
/*
* writes 'offset' into guest's timestamp counter offset register
*/
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
if (is_guest_mode(vcpu)) {
/*
* We're here if L1 chose not to trap WRMSR to TSC. According
* to the spec, this should set L1's TSC; The offset that L1
* set for L2 remains unchanged, and still needs to be added
* to the newly set TSC to get L2's TSC.
*/
struct vmcs12 *vmcs12;
to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
/* recalculate vmcs02.TSC_OFFSET: */
vmcs12 = get_vmcs12(vcpu);
vmcs_write64(TSC_OFFSET, offset +
(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
vmcs12->tsc_offset : 0));
} else {
vmcs_write64(TSC_OFFSET, offset);
}
}
static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
{
u64 offset = vmcs_read64(TSC_OFFSET);
vmcs_write64(TSC_OFFSET, offset + adjustment);
if (is_guest_mode(vcpu)) {
/* Even when running L2, the adjustment needs to apply to L1 */
to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
}
}
static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
{
return target_tsc - native_read_tsc();
}
static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
}
/*
* nested_vmx_allowed() checks whether a guest should be allowed to use VMX
* instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
* all guests if the "nested" module option is off, and can also be disabled
* for a single guest by disabling its VMX cpuid bit.
*/
static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
{
return nested && guest_cpuid_has_vmx(vcpu);
}
/*
* nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
* returned for the various VMX controls MSRs when nested VMX is enabled.
* The same values should also be used to verify that vmcs12 control fields are
* valid during nested entry from L1 to L2.
* Each of these control msrs has a low and high 32-bit half: A low bit is on
* if the corresponding bit in the (32-bit) control field *must* be on, and a
* bit in the high half is on if the corresponding bit in the control field
* may be on. See also vmx_control_verify().
* TODO: allow these variables to be modified (downgraded) by module options
* or other means.
*/
static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
static u32 nested_vmx_misc_low, nested_vmx_misc_high;
static __init void nested_vmx_setup_ctls_msrs(void)
{
/*
* Note that as a general rule, the high half of the MSRs (bits in
* the control fields which may be 1) should be initialized by the
* intersection of the underlying hardware's MSR (i.e., features which
* can be supported) and the list of features we want to expose -
* because they are known to be properly supported in our code.
* Also, usually, the low half of the MSRs (bits which must be 1) can
* be set to 0, meaning that L1 may turn off any of these bits. The
* reason is that if one of these bits is necessary, it will appear
* in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
* fields of vmcs01 and vmcs02, will turn these bits off - and
* nested_vmx_exit_handled() will not pass related exits to L1.
* These rules have exceptions below.
*/
/* pin-based controls */
rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
/*
* According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
* in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
*/
nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
PIN_BASED_VMX_PREEMPTION_TIMER;
nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
/*
* Exit controls
* If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
* 17 must be 1.
*/
nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
/* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
#ifdef CONFIG_X86_64
nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
#else
nested_vmx_exit_ctls_high = 0;
#endif
nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
/* entry controls */
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
/* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
nested_vmx_entry_ctls_high &=
VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
/* cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
nested_vmx_procbased_ctls_low = 0;
nested_vmx_procbased_ctls_high &=
CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
CPU_BASED_PAUSE_EXITING |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
/*
* We can allow some features even when not supported by the
* hardware. For example, L1 can specify an MSR bitmap - and we
* can use it to avoid exits to L1 - even when L0 runs L2
* without MSR bitmaps.
*/
nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
/* secondary cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
nested_vmx_secondary_ctls_low = 0;
nested_vmx_secondary_ctls_high &=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_WBINVD_EXITING;
/* miscellaneous data */
rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
VMX_MISC_SAVE_EFER_LMA;
nested_vmx_misc_high = 0;
}
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
/*
* Bits 0 in high must be 0, and bits 1 in low must be 1.
*/
return ((control & high) | low) == control;
}
static inline u64 vmx_control_msr(u32 low, u32 high)
{
return low | ((u64)high << 32);
}
/*
* If we allow our guest to use VMX instructions (i.e., nested VMX), we should
* also let it use VMX-specific MSRs.
* vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
* VMX-specific MSR, or 0 when we haven't (and the caller should handle it
* like all other MSRs).
*/
static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
/*
* According to the spec, processors which do not support VMX
* should throw a #GP(0) when VMX capability MSRs are read.
*/
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
switch (msr_index) {
case MSR_IA32_FEATURE_CONTROL:
*pdata = 0;
break;
case MSR_IA32_VMX_BASIC:
/*
* This MSR reports some information about VMX support. We
* should return information about the VMX we emulate for the
* guest, and the VMCS structure we give it - not about the
* VMX support of the underlying hardware.
*/
*pdata = VMCS12_REVISION |
((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
break;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_PINBASED_CTLS:
*pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
nested_vmx_pinbased_ctls_high);
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
*pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
nested_vmx_procbased_ctls_high);
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
*pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
nested_vmx_exit_ctls_high);
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
*pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
nested_vmx_entry_ctls_high);
break;
case MSR_IA32_VMX_MISC:
*pdata = vmx_control_msr(nested_vmx_misc_low,
nested_vmx_misc_high);
break;
/*
* These MSRs specify bits which the guest must keep fixed (on or off)
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
* We picked the standard core2 setting.
*/
#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
case MSR_IA32_VMX_CR0_FIXED0:
*pdata = VMXON_CR0_ALWAYSON;
break;
case MSR_IA32_VMX_CR0_FIXED1:
*pdata = -1ULL;
break;
case MSR_IA32_VMX_CR4_FIXED0:
*pdata = VMXON_CR4_ALWAYSON;
break;
case MSR_IA32_VMX_CR4_FIXED1:
*pdata = -1ULL;
break;
case MSR_IA32_VMX_VMCS_ENUM:
*pdata = 0x1f;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
*pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
nested_vmx_secondary_ctls_high);
break;
case MSR_IA32_VMX_EPT_VPID_CAP:
/* Currently, no nested ept or nested vpid */
*pdata = 0;
break;
default:
return 0;
}
return 1;
}
static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
if (!nested_vmx_allowed(vcpu))
return 0;
if (msr_index == MSR_IA32_FEATURE_CONTROL)
/* TODO: the right thing. */
return 1;
/*
* No need to treat VMX capability MSRs specially: If we don't handle
* them, handle_wrmsr will #GP(0), which is correct (they are readonly)
*/
return 0;
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
u64 data;
struct shared_msr_entry *msr;
if (!pdata) {
printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
return -EINVAL;
}
switch (msr_index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(to_vmx(vcpu));
data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
break;
#endif
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_index, pdata);
case MSR_IA32_TSC:
data = guest_read_tsc();
break;
case MSR_IA32_SYSENTER_CS:
data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
data = vmcs_readl(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
data = vmcs_readl(GUEST_SYSENTER_ESP);
break;
case MSR_TSC_AUX:
if (!to_vmx(vcpu)->rdtscp_enabled)
return 1;
/* Otherwise falls through */
default:
if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
return 0;
msr = find_msr_entry(to_vmx(vcpu), msr_index);
if (msr) {
data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_index, pdata);
}
*pdata = data;
return 0;
}
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr;
int ret = 0;
u32 msr_index = msr_info->index;
u64 data = msr_info->data;
switch (msr_index) {
case MSR_EFER:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_GS_BASE, data);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(vmx);
vmx->msr_guest_kernel_gs_base = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_writel(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_writel(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_TSC:
kvm_write_tsc(vcpu, msr_info);
break;
case MSR_IA32_CR_PAT:
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, data);
vcpu->arch.pat = data;
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_TSC_ADJUST:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_TSC_AUX:
if (!vmx->rdtscp_enabled)
return 1;
/* Check reserved bit, higher 32 bits should be zero */
if ((data >> 32) != 0)
return 1;
/* Otherwise falls through */
default:
if (vmx_set_vmx_msr(vcpu, msr_index, data))
break;
msr = find_msr_entry(vmx, msr_index);
if (msr) {
msr->data = data;
if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
preempt_disable();
kvm_set_shared_msr(msr->index, msr->data,
msr->mask);
preempt_enable();
}
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
}
return ret;
}
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
switch (reg) {
case VCPU_REGS_RSP:
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
break;
case VCPU_REGS_RIP:
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
break;
case VCPU_EXREG_PDPTR:
if (enable_ept)
ept_save_pdptrs(vcpu);
break;
default:
break;
}
}
static __init int cpu_has_kvm_support(void)
{
return cpu_has_vmx();
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
if (msr & FEATURE_CONTROL_LOCKED) {
/* launched w/ TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& tboot_enabled())
return 1;
/* launched w/o TXT and VMX only enabled w/ TXT */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& !tboot_enabled()) {
printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
"activate TXT before enabling KVM\n");
return 1;
}
/* launched w/o TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& !tboot_enabled())
return 1;
}
return 0;
}
static void kvm_cpu_vmxon(u64 addr)
{
asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&addr), "m"(addr)
: "memory", "cc");
}
static int hardware_enable(void *garbage)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old, test_bits;
if (read_cr4() & X86_CR4_VMXE)
return -EBUSY;
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
/*
* Now we can enable the vmclear operation in kdump
* since the loaded_vmcss_on_cpu list on this cpu
* has been initialized.
*
* Though the cpu is not in VMX operation now, there
* is no problem to enable the vmclear operation
* for the loaded_vmcss_on_cpu list is empty!
*/
crash_enable_local_vmclear(cpu);
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
test_bits = FEATURE_CONTROL_LOCKED;
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (tboot_enabled())
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
if ((old & test_bits) != test_bits) {
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
}
write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
if (vmm_exclusive) {
kvm_cpu_vmxon(phys_addr);
ept_sync_global();
}
native_store_gdt(&__get_cpu_var(host_gdt));
return 0;
}
static void vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v, *n;
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
__loaded_vmcs_clear(v);
}
/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
* tricks.
*/
static void kvm_cpu_vmxoff(void)
{
asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
}
static void hardware_disable(void *garbage)
{
if (vmm_exclusive) {
vmclear_local_loaded_vmcss();
kvm_cpu_vmxoff();
}
write_cr4(read_cr4() & ~X86_CR4_VMXE);
}
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
u32 msr, u32 *result)
{
u32 vmx_msr_low, vmx_msr_high;
u32 ctl = ctl_min | ctl_opt;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
/* Ensure minimum (required) set of control bits are supported. */
if (ctl_min & ~ctl)
return -EIO;
*result = ctl;
return 0;
}
static __init bool allow_1_setting(u32 msr, u32 ctl)
{
u32 vmx_msr_low, vmx_msr_high;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
return vmx_msr_high & ctl;
}
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
{
u32 vmx_msr_low, vmx_msr_high;
u32 min, opt, min2, opt2;
u32 _pin_based_exec_control = 0;
u32 _cpu_based_exec_control = 0;
u32 _cpu_based_2nd_exec_control = 0;
u32 _vmexit_control = 0;
u32 _vmentry_control = 0;
min = CPU_BASED_HLT_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_USE_IO_BITMAPS |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_MWAIT_EXITING |
CPU_BASED_MONITOR_EXITING |
CPU_BASED_INVLPG_EXITING |
CPU_BASED_RDPMC_EXITING;
opt = CPU_BASED_TPR_SHADOW |
CPU_BASED_USE_MSR_BITMAPS |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
&_cpu_based_exec_control) < 0)
return -EIO;
#ifdef CONFIG_X86_64
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
~CPU_BASED_CR8_STORE_EXITING;
#endif
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
min2 = 0;
opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_ENABLE_VPID |
SECONDARY_EXEC_ENABLE_EPT |
SECONDARY_EXEC_UNRESTRICTED_GUEST |
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_SHADOW_VMCS;
if (adjust_vmx_controls(min2, opt2,
MSR_IA32_VMX_PROCBASED_CTLS2,
&_cpu_based_2nd_exec_control) < 0)
return -EIO;
}
#ifndef CONFIG_X86_64
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_2nd_exec_control &= ~(
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
enabled */
_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_INVLPG_EXITING);
rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
vmx_capability.ept, vmx_capability.vpid);
}
min = 0;
#ifdef CONFIG_X86_64
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
VM_EXIT_ACK_INTR_ON_EXIT;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
&_vmexit_control) < 0)
return -EIO;
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
&_pin_based_exec_control) < 0)
return -EIO;
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
!(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
min = 0;
opt = VM_ENTRY_LOAD_IA32_PAT;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
&_vmentry_control) < 0)
return -EIO;
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
return -EIO;
#ifdef CONFIG_X86_64
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr_high & (1u<<16))
return -EIO;
#endif
/* Require Write-Back (WB) memory type for VMCS accesses. */
if (((vmx_msr_high >> 18) & 15) != 6)
return -EIO;
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->order = get_order(vmcs_config.size);
vmcs_conf->revision_id = vmx_msr_low;
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
vmcs_conf->vmexit_ctrl = _vmexit_control;
vmcs_conf->vmentry_ctrl = _vmentry_control;
cpu_has_load_ia32_efer =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_EFER)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_EFER);
cpu_has_load_perf_global_ctrl =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
/*
* Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
* but due to arrata below it can't be used. Workaround is to use
* msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
*
* VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
*
* AAK155 (model 26)
* AAP115 (model 30)
* AAT100 (model 37)
* BC86,AAY89,BD102 (model 44)
* BA97 (model 46)
*
*/
if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
switch (boot_cpu_data.x86_model) {
case 26:
case 30:
case 37:
case 44:
case 46:
cpu_has_load_perf_global_ctrl = false;
printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
"does not work properly. Using workaround\n");
break;
default:
break;
}
}
return 0;
}
static struct vmcs *alloc_vmcs_cpu(int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_config.size);
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
return vmcs;
}
static struct vmcs *alloc_vmcs(void)
{
return alloc_vmcs_cpu(raw_smp_processor_id());
}
static void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_config.order);
}
/*
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
*/
static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
if (!loaded_vmcs->vmcs)
return;
loaded_vmcs_clear(loaded_vmcs);
free_vmcs(loaded_vmcs->vmcs);
loaded_vmcs->vmcs = NULL;
}
static void free_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
free_vmcs(per_cpu(vmxarea, cpu));
per_cpu(vmxarea, cpu) = NULL;
}
}
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static __init int hardware_setup(void)
{
if (setup_vmcs_config(&vmcs_config) < 0)
return -EIO;
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (!cpu_has_vmx_vpid())
enable_vpid = 0;
if (!cpu_has_vmx_shadow_vmcs())
enable_shadow_vmcs = 0;
if (!cpu_has_vmx_ept() ||
!cpu_has_vmx_ept_4levels()) {
enable_ept = 0;
enable_unrestricted_guest = 0;
enable_ept_ad_bits = 0;
}
if (!cpu_has_vmx_ept_ad_bits())
enable_ept_ad_bits = 0;
if (!cpu_has_vmx_unrestricted_guest())
enable_unrestricted_guest = 0;
if (!cpu_has_vmx_flexpriority())
flexpriority_enabled = 0;
if (!cpu_has_vmx_tpr_shadow())
kvm_x86_ops->update_cr8_intercept = NULL;
if (enable_ept && !cpu_has_vmx_ept_2m_page())
kvm_disable_largepages();
if (!cpu_has_vmx_ple())
ple_gap = 0;
if (!cpu_has_vmx_apicv())
enable_apicv = 0;
if (enable_apicv)
kvm_x86_ops->update_cr8_intercept = NULL;
else {
kvm_x86_ops->hwapic_irr_update = NULL;
kvm_x86_ops->deliver_posted_interrupt = NULL;
kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
}
if (nested)
nested_vmx_setup_ctls_msrs();
return alloc_kvm_area();
}
static __exit void hardware_unsetup(void)
{
free_kvm_area();
}
static bool emulation_required(struct kvm_vcpu *vcpu)
{
return emulate_invalid_guest_state && !guest_state_valid(vcpu);
}
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
struct kvm_segment *save)
{
if (!emulate_invalid_guest_state) {
/*
* CS and SS RPL should be equal during guest entry according
* to VMX spec, but in reality it is not always so. Since vcpu
* is in the middle of the transition from real mode to
* protected mode it is safe to assume that RPL 0 is a good
* default value.
*/
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
save->selector &= ~SELECTOR_RPL_MASK;
save->dpl = save->selector & SELECTOR_RPL_MASK;
save->s = 1;
}
vmx_set_segment(vcpu, save, seg);
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Update real mode segment cache. It may be not up-to-date if sement
* register was written while vcpu was in a guest mode.
*/
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 0;
vmx_segment_cache_clear(vmx);
vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
update_exception_bitmap(vcpu);
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
/* CPL is always 0 when CPU enters protected mode */
__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
vmx->cpl = 0;
}
static void fix_rmode_seg(int seg, struct kvm_segment *save)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
struct kvm_segment var = *save;
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
if (!emulate_invalid_guest_state) {
var.selector = var.base >> 4;
var.base = var.base & 0xffff0;
var.limit = 0xffff;
var.g = 0;
var.db = 0;
var.present = 1;
var.s = 1;
var.l = 0;
var.unusable = 0;
var.type = 0x3;
var.avl = 0;
if (save->base & 0xf)
printk_once(KERN_WARNING "kvm: segment base is not "
"paragraph aligned when entering "
"protected mode (seg=%d)", seg);
}
vmcs_write16(sf->selector, var.selector);
vmcs_write32(sf->base, var.base);
vmcs_write32(sf->limit, var.limit);
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 1;
/*
* Very old userspace does not call KVM_SET_TSS_ADDR before entering
* vcpu. Warn the user that an update is overdue.
*/
if (!vcpu->kvm->arch.tss_addr)
printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
"called before entering vcpu\n");
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vmx->rmode.save_rflags = flags;
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
update_exception_bitmap(vcpu);
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
kvm_mmu_reset_context(vcpu);
}
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
if (!msr)
return;
/*
* Force kernel_gs_base reloading before EFER changes, as control
* of this msr depends on is_long_mode().
*/
vmx_load_host_state(to_vmx(vcpu));
vcpu->arch.efer = efer;
if (efer & EFER_LMA) {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) |
VM_ENTRY_IA32E_MODE);
msr->data = efer;
} else {
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS) &
~VM_ENTRY_IA32E_MODE);
msr->data = efer & ~EFER_LME;
}
setup_msrs(vmx);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
vmx_segment_cache_clear(to_vmx(vcpu));
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
__func__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~AR_TYPE_MASK)
| AR_TYPE_BUSY_64_TSS);
}
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vmcs_write32(VM_ENTRY_CONTROLS,
vmcs_read32(VM_ENTRY_CONTROLS)
& ~VM_ENTRY_IA32E_MODE);
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
}
#endif
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
vpid_sync_context(to_vmx(vcpu));
if (enable_ept) {
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
}
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
}
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
{
if (enable_ept && is_paging(vcpu))
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
}
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
{
if (!test_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty))
return;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
}
}
static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
{
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
}
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail);
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty);
}
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
unsigned long cr0,
struct kvm_vcpu *vcpu)
{
if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
vmx_decache_cr3(vcpu);
if (!(cr0 & X86_CR0_PG)) {
/* From paging/starting to nonpaging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
} else if (!is_paging(vcpu)) {
/* From nonpaging to paging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
}
if (!(cr0 & X86_CR0_WP))
*hw_cr0 &= ~X86_CR0_WP;
}
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long hw_cr0;
hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
if (enable_unrestricted_guest)
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
else {
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
enter_pmode(vcpu);
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
enter_rmode(vcpu);
}
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
enter_lmode(vcpu);
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
exit_lmode(vcpu);
}
#endif
if (enable_ept)
ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
if (!vcpu->fpu_active)
hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0, hw_cr0);
vcpu->arch.cr0 = cr0;
/* depends on vcpu->arch.cr0 to be set to a new value */
vmx->emulation_required = emulation_required(vcpu);
}
static u64 construct_eptp(unsigned long root_hpa)
{
u64 eptp;
/* TODO write the value reading from MSR */
eptp = VMX_EPT_DEFAULT_MT |
VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
if (enable_ept_ad_bits)
eptp |= VMX_EPT_AD_ENABLE_BIT;
eptp |= (root_hpa & PAGE_MASK);
return eptp;
}
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
unsigned long guest_cr3;
u64 eptp;
guest_cr3 = cr3;
if (enable_ept) {
eptp = construct_eptp(cr3);
vmcs_write64(EPT_POINTER, eptp);
guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
vcpu->kvm->arch.ept_identity_map_addr;
ept_load_pdptrs(vcpu);
}
vmx_flush_tlb(vcpu);
vmcs_writel(GUEST_CR3, guest_cr3);
}
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
if (cr4 & X86_CR4_VMXE) {
/*
* To use VMXON (and later other VMX instructions), a guest
* must first be able to turn on cr4.VMXE (see handle_vmon()).
* So basically the check on whether to allow nested VMX
* is here.
*/
if (!nested_vmx_allowed(vcpu))
return 1;
}
if (to_vmx(vcpu)->nested.vmxon &&
((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
return 1;
vcpu->arch.cr4 = cr4;
if (enable_ept) {
if (!is_paging(vcpu)) {
hw_cr4 &= ~X86_CR4_PAE;
hw_cr4 |= X86_CR4_PSE;
/*
* SMEP is disabled if CPU is in non-paging mode in
* hardware. However KVM always uses paging mode to
* emulate guest non-paging mode with TDP.
* To emulate this behavior, SMEP needs to be manually
* disabled when guest switches to non-paging mode.
*/
hw_cr4 &= ~X86_CR4_SMEP;
} else if (!(cr4 & X86_CR4_PAE)) {
hw_cr4 &= ~X86_CR4_PAE;
}
}
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, hw_cr4);
return 0;
}
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 ar;
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
*var = vmx->rmode.segs[seg];
if (seg == VCPU_SREG_TR
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
return;
var->base = vmx_read_guest_seg_base(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
return;
}
var->base = vmx_read_guest_seg_base(vmx, seg);
var->limit = vmx_read_guest_seg_limit(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
ar = vmx_read_guest_seg_ar(vmx, seg);
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
var->present = (ar >> 7) & 1;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
var->unusable = (ar >> 16) & 1;
}
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment s;
if (to_vmx(vcpu)->rmode.vm86_active) {
vmx_get_segment(vcpu, &s, seg);
return s.base;
}
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
}
static int vmx_get_cpl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!is_protmode(vcpu))
return 0;
if (!is_long_mode(vcpu)
&& (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
return 3;
if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
}
return vmx->cpl;
}
static u32 vmx_segment_access_rights(struct kvm_segment *var)
{
u32 ar;
if (var->unusable || !var->present)
ar = 1 << 16;
else {
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
}
return ar;
}
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmx_segment_cache_clear(vmx);
if (seg == VCPU_SREG_CS)
__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
vmx->rmode.segs[seg] = *var;
if (seg == VCPU_SREG_TR)
vmcs_write16(sf->selector, var->selector);
else if (var->s)
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
goto out;
}
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
/*
* Fix the "Accessed" bit in AR field of segment registers for older
* qemu binaries.
* IA32 arch specifies that at the time of processor reset the
* "Accessed" bit in the AR field of segment registers is 1. And qemu
* is setting it to 0 in the userland code. This causes invalid guest
* state vmexit when "unrestricted guest" mode is turned on.
* Fix for this setup issue in cpu_reset is being pushed in the qemu
* tree. Newer qemu binaries with that qemu fix would not need this
* kvm hack.
*/
if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
var->type |= 0x1; /* Accessed */
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
out:
vmx->emulation_required |= emulation_required(vcpu);
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
dt->address = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
vmcs_writel(GUEST_IDTR_BASE, dt->address);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
dt->address = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
vmcs_writel(GUEST_GDTR_BASE, dt->address);
}
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
u32 ar;
vmx_get_segment(vcpu, &var, seg);
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
ar = vmx_segment_access_rights(&var);
if (var.base != (var.selector << 4))
return false;
if (var.limit != 0xffff)
return false;
if (ar != 0xf3)
return false;
return true;
}
static bool code_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
unsigned int cs_rpl;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
cs_rpl = cs.selector & SELECTOR_RPL_MASK;
if (cs.unusable)
return false;
if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
return false;
if (!cs.s)
return false;
if (cs.type & AR_TYPE_WRITEABLE_MASK) {
if (cs.dpl > cs_rpl)
return false;
} else {
if (cs.dpl != cs_rpl)
return false;
}
if (!cs.present)
return false;
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
return true;
}
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ss;
unsigned int ss_rpl;
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
ss_rpl = ss.selector & SELECTOR_RPL_MASK;
if (ss.unusable)
return true;
if (ss.type != 3 && ss.type != 7)
return false;
if (!ss.s)
return false;
if (ss.dpl != ss_rpl) /* DPL != RPL */
return false;
if (!ss.present)
return false;
return true;
}
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
unsigned int rpl;
vmx_get_segment(vcpu, &var, seg);
rpl = var.selector & SELECTOR_RPL_MASK;
if (var.unusable)
return true;
if (!var.s)
return false;
if (!var.present)
return false;
if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
if (var.dpl < rpl) /* DPL < RPL */
return false;
}
/* TODO: Add other members to kvm_segment_field to allow checking for other access
* rights flags
*/
return true;
}
static bool tr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment tr;
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
if (tr.unusable)
return false;
if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
return false;
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
return false;
if (!tr.present)
return false;
return true;
}
static bool ldtr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ldtr;
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
if (ldtr.unusable)
return true;
if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
return false;
if (ldtr.type != 2)
return false;
if (!ldtr.present)
return false;
return true;
}
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs, ss;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
return ((cs.selector & SELECTOR_RPL_MASK) ==
(ss.selector & SELECTOR_RPL_MASK));
}
/*
* Check if guest state is valid. Returns true if valid, false if
* not.
* We assume that registers are always usable
*/
static bool guest_state_valid(struct kvm_vcpu *vcpu)
{
if (enable_unrestricted_guest)
return true;
/* real mode guest state checks */
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
return false;
} else {
/* protected mode guest state checks */
if (!cs_ss_rpl_check(vcpu))
return false;
if (!code_segment_valid(vcpu))
return false;
if (!stack_segment_valid(vcpu))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
return false;
if (!tr_valid(vcpu))
return false;
if (!ldtr_valid(vcpu))
return false;
}
/* TODO:
* - Add checks on RIP
* - Add checks on RFLAGS
*/
return true;
}
static int init_rmode_tss(struct kvm *kvm)
{
gfn_t fn;
u16 data = 0;
int r, idx, ret = 0;
idx = srcu_read_lock(&kvm->srcu);
fn = kvm->arch.tss_addr >> PAGE_SHIFT;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
r = kvm_write_guest_page(kvm, fn++, &data,
TSS_IOPB_BASE_OFFSET, sizeof(u16));
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = ~0;
r = kvm_write_guest_page(kvm, fn, &data,
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
sizeof(u8));
if (r < 0)
goto out;
ret = 1;
out:
srcu_read_unlock(&kvm->srcu, idx);
return ret;
}
static int init_rmode_identity_map(struct kvm *kvm)
{
int i, idx, r, ret;
pfn_t identity_map_pfn;
u32 tmp;
if (!enable_ept)
return 1;
if (unlikely(!kvm->arch.ept_identity_pagetable)) {
printk(KERN_ERR "EPT: identity-mapping pagetable "
"haven't been allocated!\n");
return 0;
}
if (likely(kvm->arch.ept_identity_pagetable_done))
return 1;
ret = 0;
identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
idx = srcu_read_lock(&kvm->srcu);
r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
if (r < 0)
goto out;
/* Set up identity-mapping pagetable for EPT in real mode */
for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
r = kvm_write_guest_page(kvm, identity_map_pfn,
&tmp, i * sizeof(tmp), sizeof(tmp));
if (r < 0)
goto out;
}
kvm->arch.ept_identity_pagetable_done = true;
ret = 1;
out:
srcu_read_unlock(&kvm->srcu, idx);
return ret;
}
static void seg_setup(int seg)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
unsigned int ar;
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
ar = 0x93;
if (seg == VCPU_SREG_CS)
ar |= 0x08; /* code segment */
vmcs_write32(sf->ar_bytes, ar);
}
static int alloc_apic_access_page(struct kvm *kvm)
{
struct page *page;
struct kvm_userspace_memory_region kvm_userspace_mem;
int r = 0;
mutex_lock(&kvm->slots_lock);
if (kvm->arch.apic_access_page)
goto out;
kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
kvm_userspace_mem.flags = 0;
kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
kvm_userspace_mem.memory_size = PAGE_SIZE;
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
if (r)
goto out;
page = gfn_to_page(kvm, 0xfee00);
if (is_error_page(page)) {
r = -EFAULT;
goto out;
}
kvm->arch.apic_access_page = page;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static int alloc_identity_pagetable(struct kvm *kvm)
{
struct page *page;
struct kvm_userspace_memory_region kvm_userspace_mem;
int r = 0;
mutex_lock(&kvm->slots_lock);
if (kvm->arch.ept_identity_pagetable)
goto out;
kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
kvm_userspace_mem.flags = 0;
kvm_userspace_mem.guest_phys_addr =
kvm->arch.ept_identity_map_addr;
kvm_userspace_mem.memory_size = PAGE_SIZE;
r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
if (r)
goto out;
page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
if (is_error_page(page)) {
r = -EFAULT;
goto out;
}
kvm->arch.ept_identity_pagetable = page;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void allocate_vpid(struct vcpu_vmx *vmx)
{
int vpid;
vmx->vpid = 0;
if (!enable_vpid)
return;
spin_lock(&vmx_vpid_lock);
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
if (vpid < VMX_NR_VPIDS) {
vmx->vpid = vpid;
__set_bit(vpid, vmx_vpid_bitmap);
}
spin_unlock(&vmx_vpid_lock);
}
static void free_vpid(struct vcpu_vmx *vmx)
{
if (!enable_vpid)
return;
spin_lock(&vmx_vpid_lock);
if (vmx->vpid != 0)
__clear_bit(vmx->vpid, vmx_vpid_bitmap);
spin_unlock(&vmx_vpid_lock);
}
#define MSR_TYPE_R 1
#define MSR_TYPE_W 2
static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return;
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R)
/* read-low */
__clear_bit(msr, msr_bitmap + 0x000 / f);
if (type & MSR_TYPE_W)
/* write-low */
__clear_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R)
/* read-high */
__clear_bit(msr, msr_bitmap + 0x400 / f);
if (type & MSR_TYPE_W)
/* write-high */
__clear_bit(msr, msr_bitmap + 0xc00 / f);
}
}
static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return;
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R)
/* read-low */
__set_bit(msr, msr_bitmap + 0x000 / f);
if (type & MSR_TYPE_W)
/* write-low */
__set_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R)
/* read-high */
__set_bit(msr, msr_bitmap + 0x400 / f);
if (type & MSR_TYPE_W)
/* write-high */
__set_bit(msr, msr_bitmap + 0xc00 / f);
}
}
static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
{
if (!longmode_only)
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
msr, MSR_TYPE_R | MSR_TYPE_W);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
msr, MSR_TYPE_R | MSR_TYPE_W);
}
static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
{
__vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
msr, MSR_TYPE_R);
__vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
msr, MSR_TYPE_R);
}
static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
{
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
msr, MSR_TYPE_R);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
msr, MSR_TYPE_R);
}
static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
{
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
msr, MSR_TYPE_W);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
msr, MSR_TYPE_W);
}
static int vmx_vm_has_apicv(struct kvm *kvm)
{
return enable_apicv && irqchip_in_kernel(kvm);
}
/*
* Send interrupt to vcpu via posted interrupt way.
* 1. If target vcpu is running(non-root mode), send posted interrupt
* notification to vcpu and hardware will sync PIR to vIRR atomically.
* 2. If target vcpu isn't running(root mode), kick it to pick up the
* interrupt from PIR in next vmentry.
*/
static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
if (pi_test_and_set_pir(vector, &vmx->pi_desc))
return;
r = pi_test_and_set_on(&vmx->pi_desc);
kvm_make_request(KVM_REQ_EVENT, vcpu);
#ifdef CONFIG_SMP
if (!r && (vcpu->mode == IN_GUEST_MODE))
apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
POSTED_INTR_VECTOR);
else
#endif
kvm_vcpu_kick(vcpu);
}
static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!pi_test_and_clear_on(&vmx->pi_desc))
return;
kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
}
static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
{
return;
}
/*
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
* will not change in the lifetime of the guest.
* Note that host-state that does change is set elsewhere. E.g., host-state
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
*/
static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
{
u32 low32, high32;
unsigned long tmpl;
struct desc_ptr dt;
vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
#ifdef CONFIG_X86_64
/*
* Load null selectors, so we can avoid reloading them in
* __vmx_load_host_state(), in case userspace uses the null selectors
* too (the expected case).
*/
vmcs_write16(HOST_DS_SELECTOR, 0);
vmcs_write16(HOST_ES_SELECTOR, 0);
#else
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#endif
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
native_store_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
vmx->host_idt_base = dt.address;
vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
rdmsr(MSR_IA32_CR_PAT, low32, high32);
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
}
}
static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
{
vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
if (enable_ept)
vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
if (is_guest_mode(&vmx->vcpu))
vmx->vcpu.arch.cr4_guest_owned_bits &=
~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
}
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
{
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
return pin_based_exec_ctrl;
}
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
exec_control |= CPU_BASED_CR8_STORE_EXITING |
CPU_BASED_CR8_LOAD_EXITING;
#endif
}
if (!enable_ept)
exec_control |= CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_INVLPG_EXITING;
return exec_control;
}
static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
if (vmx->vpid == 0)
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
if (!enable_ept) {
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
enable_unrestricted_guest = 0;
/* Enable INVPCID for non-ept guests may cause performance regression. */
exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
}
if (!enable_unrestricted_guest)
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
if (!ple_gap)
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
(handle_vmptrld).
We can NOT enable shadow_vmcs here because we don't have yet
a current VMCS12
*/
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
return exec_control;
}
static void ept_set_mmio_spte_mask(void)
{
/*
* EPT Misconfigurations can be generated if the value of bits 2:0
* of an EPT paging-structure entry is 110b (write/execute).
* Also, magic bits (0x3ull << 62) is set to quickly identify mmio
* spte.
*/
kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
}
/*
* Sets up the vmcs for emulated real mode.
*/
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
{
#ifdef CONFIG_X86_64
unsigned long a;
#endif
int i;
/* I/O */
vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
if (enable_shadow_vmcs) {
vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
}
if (cpu_has_vmx_msr_bitmap())
vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Control */
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
if (cpu_has_secondary_exec_ctrls()) {
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
vmx_secondary_exec_control(vmx));
}
if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
vmcs_write64(EOI_EXIT_BITMAP0, 0);
vmcs_write64(EOI_EXIT_BITMAP1, 0);
vmcs_write64(EOI_EXIT_BITMAP2, 0);
vmcs_write64(EOI_EXIT_BITMAP3, 0);
vmcs_write16(GUEST_INTR_STATUS, 0);
vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
}
if (ple_gap) {
vmcs_write32(PLE_GAP, ple_gap);
vmcs_write32(PLE_WINDOW, ple_window);
}
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
vmx_set_constant_host_state(vmx);
#ifdef CONFIG_X86_64
rdmsrl(MSR_FS_BASE, a);
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, a);
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
u32 msr_low, msr_high;
u64 host_pat;
rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
host_pat = msr_low | ((u64) msr_high << 32);
/* Write the default value follow host pat */
vmcs_write64(GUEST_IA32_PAT, host_pat);
/* Keep arch.pat sync with GUEST_IA32_PAT */
vmx->vcpu.arch.pat = host_pat;
}
for (i = 0; i < NR_VMX_MSR; ++i) {
u32 index = vmx_msr_index[i];
u32 data_low, data_high;
int j = vmx->nmsrs;
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
if (wrmsr_safe(index, data_low, data_high) < 0)
continue;
vmx->guest_msrs[j].index = i;
vmx->guest_msrs[j].data = 0;
vmx->guest_msrs[j].mask = -1ull;
++vmx->nmsrs;
}
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
/* 22.2.1, 20.8.1 */
vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
set_cr4_guest_host_mask(vmx);
return 0;
}
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 msr;
vmx->rmode.vm86_active = 0;
vmx->soft_vnmi_blocked = 0;
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
kvm_set_cr8(&vmx->vcpu, 0);
msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
if (kvm_vcpu_is_bsp(&vmx->vcpu))
msr |= MSR_IA32_APICBASE_BSP;
kvm_set_apic_base(&vmx->vcpu, msr);
vmx_segment_cache_clear(vmx);
seg_setup(VCPU_SREG_CS);
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_write32(GUEST_CS_BASE, 0xffff0000);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_writel(GUEST_RFLAGS, 0x02);
kvm_rip_write(vcpu, 0xfff0);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
/* Special registers */
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
setup_msrs(vmx);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
if (cpu_has_vmx_tpr_shadow()) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
if (vm_need_tpr_shadow(vmx->vcpu.kvm))
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
__pa(vmx->vcpu.arch.apic->regs));
vmcs_write32(TPR_THRESHOLD, 0);
}
if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
vmcs_write64(APIC_ACCESS_ADDR,
page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
if (vmx_vm_has_apicv(vcpu->kvm))
memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
if (vmx->vpid != 0)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
vmx_set_cr4(&vmx->vcpu, 0);
vmx_set_efer(&vmx->vcpu, 0);
vmx_fpu_activate(&vmx->vcpu);
update_exception_bitmap(&vmx->vcpu);
vpid_sync_context(vmx);
}
/*
* In nested virtualization, check if L1 asked to exit on external interrupts.
* For most existing hypervisors, this will always return true.
*/
static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->pin_based_vm_exec_control &
PIN_BASED_EXT_INTR_MASK;
}
static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->pin_based_vm_exec_control &
PIN_BASED_NMI_EXITING;
}
static int enable_irq_window(struct kvm_vcpu *vcpu)
{
u32 cpu_based_vm_exec_control;
if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
/*
* We get here if vmx_interrupt_allowed() said we can't
* inject to L1 now because L2 must run. The caller will have
* to make L2 exit right after entry, so we can inject to L1
* more promptly.
*/
return -EBUSY;
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
return 0;
}
static int enable_nmi_window(struct kvm_vcpu *vcpu)
{
u32 cpu_based_vm_exec_control;
if (!cpu_has_virtual_nmis())
return enable_irq_window(vcpu);
if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
return enable_irq_window(vcpu);
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
return 0;
}
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
uint32_t intr;
int irq = vcpu->arch.interrupt.nr;
trace_kvm_inj_virq(irq);
++vcpu->stat.irq_injections;
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (vcpu->arch.interrupt.soft)
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
intr = irq | INTR_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
intr |= INTR_TYPE_SOFT_INTR;
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
} else
intr |= INTR_TYPE_EXT_INTR;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
}
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (is_guest_mode(vcpu))
return;
if (!cpu_has_virtual_nmis()) {
/*
* Tracking the NMI-blocked state in software is built upon
* finding the next open IRQ window. This, in turn, depends on
* well-behaving guests: They have to keep IRQs disabled at
* least as long as the NMI handler runs. Otherwise we may
* cause NMI nesting, maybe breaking the guest. But as this is
* highly unlikely, we can live with the residual risk.
*/
vmx->soft_vnmi_blocked = 1;
vmx->vnmi_blocked_time = 0;
}
++vcpu->stat.nmi_injections;
vmx->nmi_known_unmasked = false;
if (vmx->rmode.vm86_active) {
if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
}
static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
{
if (!cpu_has_virtual_nmis())
return to_vmx(vcpu)->soft_vnmi_blocked;
if (to_vmx(vcpu)->nmi_known_unmasked)
return false;
return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
}
static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!cpu_has_virtual_nmis()) {
if (vmx->soft_vnmi_blocked != masked) {
vmx->soft_vnmi_blocked = masked;
vmx->vnmi_blocked_time = 0;
}
} else {
vmx->nmi_known_unmasked = !masked;
if (masked)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
}
}
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (to_vmx(vcpu)->nested.nested_run_pending)
return 0;
if (nested_exit_on_nmi(vcpu)) {
nested_vmx_vmexit(vcpu);
vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
vmcs12->vm_exit_intr_info = NMI_VECTOR |
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
/*
* The NMI-triggered VM exit counts as injection:
* clear this one and block further NMIs.
*/
vcpu->arch.nmi_pending = 0;
vmx_set_nmi_mask(vcpu, true);
return 0;
}
}
if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
return 0;
return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_NMI));
}
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (to_vmx(vcpu)->nested.nested_run_pending)
return 0;
if (nested_exit_on_intr(vcpu)) {
nested_vmx_vmexit(vcpu);
vmcs12->vm_exit_reason =
EXIT_REASON_EXTERNAL_INTERRUPT;
vmcs12->vm_exit_intr_info = 0;
/*
* fall through to normal code, but now in L1, not L2
*/
}
}
return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
}
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
int ret;
struct kvm_userspace_memory_region tss_mem = {
.slot = TSS_PRIVATE_MEMSLOT,
.guest_phys_addr = addr,
.memory_size = PAGE_SIZE * 3,
.flags = 0,
};
ret = kvm_set_memory_region(kvm, &tss_mem);
if (ret)
return ret;
kvm->arch.tss_addr = addr;
if (!init_rmode_tss(kvm))
return -ENOMEM;
return 0;
}
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
{
switch (vec) {
case BP_VECTOR:
/*
* Update instruction length as we may reinject the exception
* from user space while in guest debugging mode.
*/
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
/* fall through */
case DB_VECTOR:
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return false;
/* fall through */
case DE_VECTOR:
case OF_VECTOR:
case BR_VECTOR:
case UD_VECTOR:
case DF_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
case MF_VECTOR:
return true;
break;
}
return false;
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
/*
* Instruction with address size override prefix opcode 0x67
* Cause the #SS fault with 0 error code in VM86 mode.
*/
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
return kvm_emulate_halt(vcpu);
}
return 1;
}
return 0;
}
/*
* Forward all other exceptions that are valid in real mode.
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
* the required debugging infrastructure rework.
*/
kvm_queue_exception(vcpu, vec);
return 1;
}
/*
* Trigger machine check on the host. We assume all the MSRs are already set up
* by the CPU and that we still run on the same CPU as the MCE occurred on.
* We pass a fake environment to the machine check handler because we want
* the guest to be always treated like user space, no matter what context
* it used internally.
*/
static void kvm_machine_check(void)
{
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
struct pt_regs regs = {
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
.flags = X86_EFLAGS_IF,
};
do_machine_check(&regs, 0);
#endif
}
static int handle_machine_check(struct kvm_vcpu *vcpu)
{
/* already handled by vcpu_run */
return 1;
}
static int handle_exception(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 intr_info, ex_no, error_code;
unsigned long cr2, rip, dr6;
u32 vect_info;
enum emulation_result er;
vect_info = vmx->idt_vectoring_info;
intr_info = vmx->exit_intr_info;
if (is_machine_check(intr_info))
return handle_machine_check(vcpu);
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
return 1; /* already handled by vmx_vcpu_run() */
if (is_no_device(intr_info)) {
vmx_fpu_activate(vcpu);
return 1;
}
if (is_invalid_opcode(intr_info)) {
er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
if (er != EMULATE_DONE)
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
error_code = 0;
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
/*
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
* MMIO, it is better to report an internal error.
* See the comments in vmx_handle_exit.
*/
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
vcpu->run->internal.ndata = 2;
vcpu->run->internal.data[0] = vect_info;
vcpu->run->internal.data[1] = intr_info;
return 0;
}
if (is_page_fault(intr_info)) {
/* EPT won't cause page fault directly */
BUG_ON(enable_ept);
cr2 = vmcs_readl(EXIT_QUALIFICATION);
trace_kvm_page_fault(cr2, error_code);
if (kvm_event_needs_reinjection(vcpu))
kvm_mmu_unprotect_page_virt(vcpu, cr2);
return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
}
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
return handle_rmode_exception(vcpu, ex_no, error_code);
switch (ex_no) {
case DB_VECTOR:
dr6 = vmcs_readl(EXIT_QUALIFICATION);
if (!(vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
/* fall through */
case BP_VECTOR:
/*
* Update instruction length as we may reinject #BP from
* user space while in guest debugging mode. Reading it for
* #DB as well causes no harm, it is not used in that case.
*/
vmx->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_run->exit_reason = KVM_EXIT_DEBUG;
rip = kvm_rip_read(vcpu);
kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
kvm_run->debug.arch.exception = ex_no;
break;
default:
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = ex_no;
kvm_run->ex.error_code = error_code;
break;
}
return 0;
}
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.irq_exits;
return 1;
}
static int handle_triple_fault(struct kvm_vcpu *vcpu)
{
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int handle_io(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int size, in, string;
unsigned port;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
string = (exit_qualification & 16) != 0;
in = (exit_qualification & 8) != 0;
++vcpu->stat.io_exits;
if (string || in)
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
skip_emulated_instruction(vcpu);
return kvm_fast_pio_out(vcpu, size, port);
}
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xc1;
}
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/*
* We get here when L2 changed cr0 in a way that did not change
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
* but did change L0 shadowed bits. So we first calculate the
* effective cr0 value that L1 would like to write into the
* hardware. It consists of the L2-owned bits from the new
* value combined with the L1-owned bits from L1's guest_cr0.
*/
val = (val & ~vmcs12->cr0_guest_host_mask) |
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
/* TODO: will have to take unrestricted guest mode into
* account */
if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
return 1;
if (kvm_set_cr0(vcpu, val))
return 1;
vmcs_writel(CR0_READ_SHADOW, orig_val);
return 0;
} else {
if (to_vmx(vcpu)->nested.vmxon &&
((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
return 1;
return kvm_set_cr0(vcpu, val);
}
}
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/* analogously to handle_set_cr0 */
val = (val & ~vmcs12->cr4_guest_host_mask) |
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
if (kvm_set_cr4(vcpu, val))
return 1;
vmcs_writel(CR4_READ_SHADOW, orig_val);
return 0;
} else
return kvm_set_cr4(vcpu, val);
}
/* called to set cr0 as approriate for clts instruction exit. */
static void handle_clts(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
/*
* We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
* but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
* just pretend it's off (also in arch.cr0 for fpu_activate).
*/
vmcs_writel(CR0_READ_SHADOW,
vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
vcpu->arch.cr0 &= ~X86_CR0_TS;
} else
vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
}
static int handle_cr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification, val;
int cr;
int reg;
int err;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
val = kvm_register_read(vcpu, reg);
trace_kvm_cr_write(cr, val);
switch (cr) {
case 0:
err = handle_set_cr0(vcpu, val);
kvm_complete_insn_gp(vcpu, err);
return 1;
case 3:
err = kvm_set_cr3(vcpu, val);
kvm_complete_insn_gp(vcpu, err);
return 1;
case 4:
err = handle_set_cr4(vcpu, val);
kvm_complete_insn_gp(vcpu, err);
return 1;
case 8: {
u8 cr8_prev = kvm_get_cr8(vcpu);
u8 cr8 = kvm_register_read(vcpu, reg);
err = kvm_set_cr8(vcpu, cr8);
kvm_complete_insn_gp(vcpu, err);
if (irqchip_in_kernel(vcpu->kvm))
return 1;
if (cr8_prev <= cr8)
return 1;
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
}
break;
case 2: /* clts */
handle_clts(vcpu);
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
skip_emulated_instruction(vcpu);
vmx_fpu_activate(vcpu);
return 1;
case 1: /*mov from cr*/
switch (cr) {
case 3:
val = kvm_read_cr3(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
skip_emulated_instruction(vcpu);
return 1;
case 8:
val = kvm_get_cr8(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
skip_emulated_instruction(vcpu);
return 1;
}
break;
case 3: /* lmsw */
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
kvm_lmsw(vcpu, val);
skip_emulated_instruction(vcpu);
return 1;
default:
break;
}
vcpu->run->exit_reason = 0;
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int dr, reg;
/* Do not handle if the CPL > 0, will trigger GP on re-entry */
if (!kvm_require_cpl(vcpu, 0))
return 1;
dr = vmcs_readl(GUEST_DR7);
if (dr & DR7_GD) {
/*
* As the vm-exit takes precedence over the debug trap, we
* need to emulate the latter, either for the host or the
* guest debugging itself.
*/
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
vcpu->run->debug.arch.dr7 = dr;
vcpu->run->debug.arch.pc =
vmcs_readl(GUEST_CS_BASE) +
vmcs_readl(GUEST_RIP);
vcpu->run->debug.arch.exception = DB_VECTOR;
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
return 0;
} else {
vcpu->arch.dr7 &= ~DR7_GD;
vcpu->arch.dr6 |= DR6_BD;
vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
}
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
if (exit_qualification & TYPE_MOV_FROM_DR) {
unsigned long val;
if (!kvm_get_dr(vcpu, dr, &val))
kvm_register_write(vcpu, reg, val);
} else
kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
skip_emulated_instruction(vcpu);
return 1;
}
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
vmcs_writel(GUEST_DR7, val);
}
static int handle_cpuid(struct kvm_vcpu *vcpu)
{
kvm_emulate_cpuid(vcpu);
return 1;
}
static int handle_rdmsr(struct kvm_vcpu *vcpu)
{
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
u64 data;
if (vmx_get_msr(vcpu, ecx, &data)) {
trace_kvm_msr_read_ex(ecx);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_read(ecx, data);
/* FIXME: handling of bits 32:63 of rax, rdx */
vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_wrmsr(struct kvm_vcpu *vcpu)
{
struct msr_data msr;
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
msr.data = data;
msr.index = ecx;
msr.host_initiated = false;
if (vmx_set_msr(vcpu, &msr) != 0) {
trace_kvm_msr_write_ex(ecx, data);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_write(ecx, data);
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
{
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
{
u32 cpu_based_vm_exec_control;
/* clear pending irq */
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
kvm_make_request(KVM_REQ_EVENT, vcpu);
++vcpu->stat.irq_window_exits;
/*
* If the user space waits to inject interrupts, exit as soon as
* possible
*/
if (!irqchip_in_kernel(vcpu->kvm) &&
vcpu->run->request_interrupt_window &&
!kvm_cpu_has_interrupt(vcpu)) {
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
return 0;
}
return 1;
}
static int handle_halt(struct kvm_vcpu *vcpu)
{
skip_emulated_instruction(vcpu);
return kvm_emulate_halt(vcpu);
}
static int handle_vmcall(struct kvm_vcpu *vcpu)
{
skip_emulated_instruction(vcpu);
kvm_emulate_hypercall(vcpu);
return 1;
}
static int handle_invd(struct kvm_vcpu *vcpu)
{
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_invlpg(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
kvm_mmu_invlpg(vcpu, exit_qualification);
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_rdpmc(struct kvm_vcpu *vcpu)
{
int err;
err = kvm_rdpmc(vcpu);
kvm_complete_insn_gp(vcpu, err);
return 1;
}
static int handle_wbinvd(struct kvm_vcpu *vcpu)
{
skip_emulated_instruction(vcpu);
kvm_emulate_wbinvd(vcpu);
return 1;
}
static int handle_xsetbv(struct kvm_vcpu *vcpu)
{
u64 new_bv = kvm_read_edx_eax(vcpu);
u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
if (kvm_set_xcr(vcpu, index, new_bv) == 0)
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_apic_access(struct kvm_vcpu *vcpu)
{
if (likely(fasteoi)) {
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int access_type, offset;
access_type = exit_qualification & APIC_ACCESS_TYPE;
offset = exit_qualification & APIC_ACCESS_OFFSET;
/*
* Sane guest uses MOV to write EOI, with written value
* not cared. So make a short-circuit here by avoiding
* heavy instruction emulation.
*/
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
(offset == APIC_EOI)) {
kvm_lapic_set_eoi(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
}
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int vector = exit_qualification & 0xff;
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
kvm_apic_set_eoi_accelerated(vcpu, vector);
return 1;
}
static int handle_apic_write(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 offset = exit_qualification & 0xfff;
/* APIC-write VM exit is trap-like and thus no need to adjust IP */
kvm_apic_write_nodecode(vcpu, offset);
return 1;
}
static int handle_task_switch(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long exit_qualification;
bool has_error_code = false;
u32 error_code = 0;
u16 tss_selector;
int reason, type, idt_v, idt_index;
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
reason = (u32)exit_qualification >> 30;
if (reason == TASK_SWITCH_GATE && idt_v) {
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = false;
vmx_set_nmi_mask(vcpu, true);
break;
case INTR_TYPE_EXT_INTR:
case INTR_TYPE_SOFT_INTR:
kvm_clear_interrupt_queue(vcpu);
break;
case INTR_TYPE_HARD_EXCEPTION:
if (vmx->idt_vectoring_info &
VECTORING_INFO_DELIVER_CODE_MASK) {
has_error_code = true;
error_code =
vmcs_read32(IDT_VECTORING_ERROR_CODE);
}
/* fall through */
case INTR_TYPE_SOFT_EXCEPTION:
kvm_clear_exception_queue(vcpu);
break;
default:
break;
}
}
tss_selector = exit_qualification;
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
type != INTR_TYPE_EXT_INTR &&
type != INTR_TYPE_NMI_INTR))
skip_emulated_instruction(vcpu);
if (kvm_task_switch(vcpu, tss_selector,
type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
has_error_code, error_code) == EMULATE_FAIL) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
/* clear all local breakpoint enable flags */
vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
/*
* TODO: What about debug traps on tss switch?
* Are we supposed to inject them and update dr6?
*/
return 1;
}
static int handle_ept_violation(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
gpa_t gpa;
u32 error_code;
int gla_validity;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
gla_validity = (exit_qualification >> 7) & 0x3;
if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
vmcs_readl(GUEST_LINEAR_ADDRESS));
printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
(long unsigned int)exit_qualification);
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
return 0;
}
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
trace_kvm_page_fault(gpa, exit_qualification);
/* It is a write fault? */
error_code = exit_qualification & (1U << 1);
/* ept page table is present? */
error_code |= (exit_qualification >> 3) & 0x1;
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
}
static u64 ept_rsvd_mask(u64 spte, int level)
{
int i;
u64 mask = 0;
for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
mask |= (1ULL << i);
if (level > 2)
/* bits 7:3 reserved */
mask |= 0xf8;
else if (level == 2) {
if (spte & (1ULL << 7))
/* 2MB ref, bits 20:12 reserved */
mask |= 0x1ff000;
else
/* bits 6:3 reserved */
mask |= 0x78;
}
return mask;
}
static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
int level)
{
printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
/* 010b (write-only) */
WARN_ON((spte & 0x7) == 0x2);
/* 110b (write/execute) */
WARN_ON((spte & 0x7) == 0x6);
/* 100b (execute-only) and value not supported by logical processor */
if (!cpu_has_vmx_ept_execute_only())
WARN_ON((spte & 0x7) == 0x4);
/* not 000b */
if ((spte & 0x7)) {
u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
if (rsvd_bits != 0) {
printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
__func__, rsvd_bits);
WARN_ON(1);
}
if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
u64 ept_mem_type = (spte & 0x38) >> 3;
if (ept_mem_type == 2 || ept_mem_type == 3 ||
ept_mem_type == 7) {
printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
__func__, ept_mem_type);
WARN_ON(1);
}
}
}
}
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
{
u64 sptes[4];
int nr_sptes, i, ret;
gpa_t gpa;
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
ret = handle_mmio_page_fault_common(vcpu, gpa, true);
if (likely(ret == 1))
return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
EMULATE_DONE;
if (unlikely(!ret))
return 1;
/* It is the real ept misconfig */
printk(KERN_ERR "EPT: Misconfiguration.\n");
printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
return 0;
}
static int handle_nmi_window(struct kvm_vcpu *vcpu)
{
u32 cpu_based_vm_exec_control;
/* clear pending NMI */
cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
++vcpu->stat.nmi_window_exits;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 1;
}
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
enum emulation_result err = EMULATE_DONE;
int ret = 1;
u32 cpu_exec_ctrl;
bool intr_window_requested;
unsigned count = 130;
cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
while (!guest_state_valid(vcpu) && count-- != 0) {
if (intr_window_requested && vmx_interrupt_allowed(vcpu))
return handle_interrupt_window(&vmx->vcpu);
if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
return 1;
err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
if (err == EMULATE_DO_MMIO) {
ret = 0;
goto out;
}
if (err != EMULATE_DONE) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
ret = kvm_emulate_halt(vcpu);
goto out;
}
if (signal_pending(current))
goto out;
if (need_resched())
schedule();
}
vmx->emulation_required = emulation_required(vcpu);
out:
return ret;
}
/*
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
*/
static int handle_pause(struct kvm_vcpu *vcpu)
{
skip_emulated_instruction(vcpu);
kvm_vcpu_on_spin(vcpu);
return 1;
}
static int handle_invalid_op(struct kvm_vcpu *vcpu)
{
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/*
* To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
* We could reuse a single VMCS for all the L2 guests, but we also want the
* option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
* allows keeping them loaded on the processor, and in the future will allow
* optimizations where prepare_vmcs02 doesn't need to set all the fields on
* every entry if they never change.
* So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
* (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
*
* The following functions allocate and free a vmcs02 in this pool.
*/
/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
{
struct vmcs02_list *item;
list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
if (item->vmptr == vmx->nested.current_vmptr) {
list_move(&item->list, &vmx->nested.vmcs02_pool);
return &item->vmcs02;
}
if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
/* Recycle the least recently used VMCS. */
item = list_entry(vmx->nested.vmcs02_pool.prev,
struct vmcs02_list, list);
item->vmptr = vmx->nested.current_vmptr;
list_move(&item->list, &vmx->nested.vmcs02_pool);
return &item->vmcs02;
}
/* Create a new VMCS */
item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
if (!item)
return NULL;
item->vmcs02.vmcs = alloc_vmcs();
if (!item->vmcs02.vmcs) {
kfree(item);
return NULL;
}
loaded_vmcs_init(&item->vmcs02);
item->vmptr = vmx->nested.current_vmptr;
list_add(&(item->list), &(vmx->nested.vmcs02_pool));
vmx->nested.vmcs02_num++;
return &item->vmcs02;
}
/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
{
struct vmcs02_list *item;
list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
if (item->vmptr == vmptr) {
free_loaded_vmcs(&item->vmcs02);
list_del(&item->list);
kfree(item);
vmx->nested.vmcs02_num--;
return;
}
}
/*
* Free all VMCSs saved for this vcpu, except the one pointed by
* vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
* currently used, if running L2), and vmcs01 when running L2.
*/
static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
{
struct vmcs02_list *item, *n;
list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
if (vmx->loaded_vmcs != &item->vmcs02)
free_loaded_vmcs(&item->vmcs02);
list_del(&item->list);
kfree(item);
}
vmx->nested.vmcs02_num = 0;
if (vmx->loaded_vmcs != &vmx->vmcs01)
free_loaded_vmcs(&vmx->vmcs01);
}
static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
u32 vm_instruction_error);
/*
* Emulate the VMXON instruction.
* Currently, we just remember that VMX is active, and do not save or even
* inspect the argument to VMXON (the so-called "VMXON pointer") because we
* do not currently need to store anything in that guest-allocated memory
* region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
* argument is different from the VMXON pointer (which the spec says they do).
*/
static int handle_vmon(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs *shadow_vmcs;
/* The Intel VMX Instruction Reference lists a bunch of bits that
* are prerequisite to running VMXON, most notably cr4.VMXE must be
* set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
* Otherwise, we should fail with #UD. We test these now:
*/
if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
!kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
(vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
if (is_long_mode(vcpu) && !cs.l) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (vmx->nested.vmxon) {
nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
skip_emulated_instruction(vcpu);
return 1;
}
if (enable_shadow_vmcs) {
shadow_vmcs = alloc_vmcs();
if (!shadow_vmcs)
return -ENOMEM;
/* mark vmcs as shadow */
shadow_vmcs->revision_id |= (1u << 31);
/* init shadow vmcs */
vmcs_clear(shadow_vmcs);
vmx->nested.current_shadow_vmcs = shadow_vmcs;
}
INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
vmx->nested.vmcs02_num = 0;
vmx->nested.vmxon = true;
skip_emulated_instruction(vcpu);
return 1;
}
/*
* Intel's VMX Instruction Reference specifies a common set of prerequisites
* for running VMX instructions (except VMXON, whose prerequisites are
* slightly different). It also specifies what exception to inject otherwise.
*/
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->nested.vmxon) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
(is_long_mode(vcpu) && !cs.l)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 0;
}
return 1;
}
static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
{
u32 exec_control;
if (enable_shadow_vmcs) {
if (vmx->nested.current_vmcs12 != NULL) {
/* copy to memory all shadowed fields in case
they were modified */
copy_shadow_to_vmcs12(vmx);
vmx->nested.sync_shadow_vmcs = false;
exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
}
}
kunmap(vmx->nested.current_vmcs12_page);
nested_release_page(vmx->nested.current_vmcs12_page);
}
/*
* Free whatever needs to be freed from vmx->nested when L1 goes down, or
* just stops using VMX.
*/
static void free_nested(struct vcpu_vmx *vmx)
{
if (!vmx->nested.vmxon)
return;
vmx->nested.vmxon = false;
if (vmx->nested.current_vmptr != -1ull) {
nested_release_vmcs12(vmx);
vmx->nested.current_vmptr = -1ull;
vmx->nested.current_vmcs12 = NULL;
}
if (enable_shadow_vmcs)
free_vmcs(vmx->nested.current_shadow_vmcs);
/* Unpin physical memory we referred to in current vmcs02 */
if (vmx->nested.apic_access_page) {
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = 0;
}
nested_free_all_saved_vmcss(vmx);
}
/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
if (!nested_vmx_check_permission(vcpu))
return 1;
free_nested(to_vmx(vcpu));
skip_emulated_instruction(vcpu);
return 1;
}
/*
* Decode the memory-address operand of a vmx instruction, as recorded on an
* exit caused by such an instruction (run by a guest hypervisor).
* On success, returns 0. When the operand is invalid, returns 1 and throws
* #UD or #GP.
*/
static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
unsigned long exit_qualification,
u32 vmx_instruction_info, gva_t *ret)
{
/*
* According to Vol. 3B, "Information for VM Exits Due to Instruction
* Execution", on an exit, vmx_instruction_info holds most of the
* addressing components of the operand. Only the displacement part
* is put in exit_qualification (see 3B, "Basic VM-Exit Information").
* For how an actual address is calculated from all these components,
* refer to Vol. 1, "Operand Addressing".
*/
int scaling = vmx_instruction_info & 3;
int addr_size = (vmx_instruction_info >> 7) & 7;
bool is_reg = vmx_instruction_info & (1u << 10);
int seg_reg = (vmx_instruction_info >> 15) & 7;
int index_reg = (vmx_instruction_info >> 18) & 0xf;
bool index_is_valid = !(vmx_instruction_info & (1u << 22));
int base_reg = (vmx_instruction_info >> 23) & 0xf;
bool base_is_valid = !(vmx_instruction_info & (1u << 27));
if (is_reg) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/* Addr = segment_base + offset */
/* offset = base + [index * scale] + displacement */
*ret = vmx_get_segment_base(vcpu, seg_reg);
if (base_is_valid)
*ret += kvm_register_read(vcpu, base_reg);
if (index_is_valid)
*ret += kvm_register_read(vcpu, index_reg)<<scaling;
*ret += exit_qualification; /* holds the displacement */
if (addr_size == 1) /* 32 bit */
*ret &= 0xffffffff;
/*
* TODO: throw #GP (and return 1) in various cases that the VM*
* instructions require it - e.g., offset beyond segment limit,
* unusable or unreadable/unwritable segment, non-canonical 64-bit
* address, and so on. Currently these are not checked.
*/
return 0;
}
/*
* The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
* set the success or error code of an emulated VMX instruction, as specified
* by Vol 2B, VMX Instruction Reference, "Conventions".
*/
static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
}
static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_CF);
}
static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
u32 vm_instruction_error)
{
if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
/*
* failValid writes the error number to the current VMCS, which
* can't be done there isn't a current VMCS.
*/
nested_vmx_failInvalid(vcpu);
return;
}
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_ZF);
get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
/*
* We don't need to force a shadow sync because
* VM_INSTRUCTION_ERROR is not shadowed
*/
}
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
gva_t gva;
gpa_t vmptr;
struct vmcs12 *vmcs12;
struct page *page;
struct x86_exception e;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
sizeof(vmptr), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
skip_emulated_instruction(vcpu);
return 1;
}
if (vmptr == vmx->nested.current_vmptr) {
nested_release_vmcs12(vmx);
vmx->nested.current_vmptr = -1ull;
vmx->nested.current_vmcs12 = NULL;
}
page = nested_get_page(vcpu, vmptr);
if (page == NULL) {
/*
* For accurate processor emulation, VMCLEAR beyond available
* physical memory should do nothing at all. However, it is
* possible that a nested vmx bug, not a guest hypervisor bug,
* resulted in this case, so let's shut down before doing any
* more damage:
*/
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return 1;
}
vmcs12 = kmap(page);
vmcs12->launch_state = 0;
kunmap(page);
nested_release_page(page);
nested_free_vmcs02(vmx, vmptr);
skip_emulated_instruction(vcpu);
nested_vmx_succeed(vcpu);
return 1;
}
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, true);
}
/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, false);
}
enum vmcs_field_type {
VMCS_FIELD_TYPE_U16 = 0,
VMCS_FIELD_TYPE_U64 = 1,
VMCS_FIELD_TYPE_U32 = 2,
VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
};
static inline int vmcs_field_type(unsigned long field)
{
if (0x1 & field) /* the *_HIGH fields are all 32 bit */
return VMCS_FIELD_TYPE_U32;
return (field >> 13) & 0x3 ;
}
static inline int vmcs_field_readonly(unsigned long field)
{
return (((field >> 10) & 0x3) == 1);
}
/*
* Read a vmcs12 field. Since these can have varying lengths and we return
* one type, we chose the biggest type (u64) and zero-extend the return value
* to that size. Note that the caller, handle_vmread, might need to use only
* some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
* 64-bit fields are to be returned).
*/
static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
unsigned long field, u64 *ret)
{
short offset = vmcs_field_to_offset(field);
char *p;
if (offset < 0)
return 0;
p = ((char *)(get_vmcs12(vcpu))) + offset;
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
*ret = *((natural_width *)p);
return 1;
case VMCS_FIELD_TYPE_U16:
*ret = *((u16 *)p);
return 1;
case VMCS_FIELD_TYPE_U32:
*ret = *((u32 *)p);
return 1;
case VMCS_FIELD_TYPE_U64:
*ret = *((u64 *)p);
return 1;
default:
return 0; /* can never happen. */
}
}
static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
unsigned long field, u64 field_value){
short offset = vmcs_field_to_offset(field);
char *p = ((char *) get_vmcs12(vcpu)) + offset;
if (offset < 0)
return false;
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
*(u16 *)p = field_value;
return true;
case VMCS_FIELD_TYPE_U32:
*(u32 *)p = field_value;
return true;
case VMCS_FIELD_TYPE_U64:
*(u64 *)p = field_value;
return true;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
*(natural_width *)p = field_value;
return true;
default:
return false; /* can never happen. */
}
}
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
int i;
unsigned long field;
u64 field_value;
struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
unsigned long *fields = (unsigned long *)shadow_read_write_fields;
int num_fields = max_shadow_read_write_fields;
vmcs_load(shadow_vmcs);
for (i = 0; i < num_fields; i++) {
field = fields[i];
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
field_value = vmcs_read16(field);
break;
case VMCS_FIELD_TYPE_U32:
field_value = vmcs_read32(field);
break;
case VMCS_FIELD_TYPE_U64:
field_value = vmcs_read64(field);
break;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
field_value = vmcs_readl(field);
break;
}
vmcs12_write_any(&vmx->vcpu, field, field_value);
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
}
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
unsigned long *fields[] = {
(unsigned long *)shadow_read_write_fields,
(unsigned long *)shadow_read_only_fields
};
int num_lists = ARRAY_SIZE(fields);
int max_fields[] = {
max_shadow_read_write_fields,
max_shadow_read_only_fields
};
int i, q;
unsigned long field;
u64 field_value = 0;
struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
vmcs_load(shadow_vmcs);
for (q = 0; q < num_lists; q++) {
for (i = 0; i < max_fields[q]; i++) {
field = fields[q][i];
vmcs12_read_any(&vmx->vcpu, field, &field_value);
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
vmcs_write16(field, (u16)field_value);
break;
case VMCS_FIELD_TYPE_U32:
vmcs_write32(field, (u32)field_value);
break;
case VMCS_FIELD_TYPE_U64:
vmcs_write64(field, (u64)field_value);
break;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
vmcs_writel(field, (long)field_value);
break;
}
}
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
}
/*
* VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
* used before) all generate the same failure when it is missing.
*/
static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.current_vmptr == -1ull) {
nested_vmx_failInvalid(vcpu);
skip_emulated_instruction(vcpu);
return 0;
}
return 1;
}
static int handle_vmread(struct kvm_vcpu *vcpu)
{
unsigned long field;
u64 field_value;
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gva_t gva = 0;
if (!nested_vmx_check_permission(vcpu) ||
!nested_vmx_check_vmcs12(vcpu))
return 1;
/* Decode instruction info and find the field to read */
field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
/* Read the field, zero-extended to a u64 field_value */
if (!vmcs12_read_any(vcpu, field, &field_value)) {
nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
skip_emulated_instruction(vcpu);
return 1;
}
/*
* Now copy part of this value to register or memory, as requested.
* Note that the number of bits actually copied is 32 or 64 depending
* on the guest's mode (32 or 64 bit), not on the given field's length.
*/
if (vmx_instruction_info & (1u << 10)) {
kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
field_value);
} else {
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, &gva))
return 1;
/* _system ok, as nested_vmx_check_permission verified cpl=0 */
kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
&field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
}
nested_vmx_succeed(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
unsigned long field;
gva_t gva;
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
/* The value to write might be 32 or 64 bits, depending on L1's long
* mode, and eventually we need to write that into a field of several
* possible lengths. The code below first zero-extends the value to 64
* bit (field_value), and then copies only the approriate number of
* bits into the vmcs12 field.
*/
u64 field_value = 0;
struct x86_exception e;
if (!nested_vmx_check_permission(vcpu) ||
!nested_vmx_check_vmcs12(vcpu))
return 1;
if (vmx_instruction_info & (1u << 10))
field_value = kvm_register_read(vcpu,
(((vmx_instruction_info) >> 3) & 0xf));
else {
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
&field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
}
field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
if (vmcs_field_readonly(field)) {
nested_vmx_failValid(vcpu,
VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
skip_emulated_instruction(vcpu);
return 1;
}
if (!vmcs12_write_any(vcpu, field, field_value)) {
nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
skip_emulated_instruction(vcpu);
return 1;
}
nested_vmx_succeed(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
gva_t gva;
gpa_t vmptr;
struct x86_exception e;
u32 exec_control;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
sizeof(vmptr), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
skip_emulated_instruction(vcpu);
return 1;
}
if (vmx->nested.current_vmptr != vmptr) {
struct vmcs12 *new_vmcs12;
struct page *page;
page = nested_get_page(vcpu, vmptr);
if (page == NULL) {
nested_vmx_failInvalid(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
new_vmcs12 = kmap(page);
if (new_vmcs12->revision_id != VMCS12_REVISION) {
kunmap(page);
nested_release_page_clean(page);
nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
skip_emulated_instruction(vcpu);
return 1;
}
if (vmx->nested.current_vmptr != -1ull)
nested_release_vmcs12(vmx);
vmx->nested.current_vmptr = vmptr;
vmx->nested.current_vmcs12 = new_vmcs12;
vmx->nested.current_vmcs12_page = page;
if (enable_shadow_vmcs) {
exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
vmcs_write64(VMCS_LINK_POINTER,
__pa(vmx->nested.current_shadow_vmcs));
vmx->nested.sync_shadow_vmcs = true;
}
}
nested_vmx_succeed(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gva_t vmcs_gva;
struct x86_exception e;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, &vmcs_gva))
return 1;
/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
(void *)&to_vmx(vcpu)->nested.current_vmptr,
sizeof(u64), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
nested_vmx_succeed(vcpu);
skip_emulated_instruction(vcpu);
return 1;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = handle_cpuid,
[EXIT_REASON_MSR_READ] = handle_rdmsr,
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
[EXIT_REASON_HLT] = handle_halt,
[EXIT_REASON_INVD] = handle_invd,
[EXIT_REASON_INVLPG] = handle_invlpg,
[EXIT_REASON_RDPMC] = handle_rdpmc,
[EXIT_REASON_VMCALL] = handle_vmcall,
[EXIT_REASON_VMCLEAR] = handle_vmclear,
[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
[EXIT_REASON_VMPTRLD] = handle_vmptrld,
[EXIT_REASON_VMPTRST] = handle_vmptrst,
[EXIT_REASON_VMREAD] = handle_vmread,
[EXIT_REASON_VMRESUME] = handle_vmresume,
[EXIT_REASON_VMWRITE] = handle_vmwrite,
[EXIT_REASON_VMOFF] = handle_vmoff,
[EXIT_REASON_VMON] = handle_vmon,
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
[EXIT_REASON_WBINVD] = handle_wbinvd,
[EXIT_REASON_XSETBV] = handle_xsetbv,
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
[EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
[EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
};
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification;
gpa_t bitmap, last_bitmap;
unsigned int port;
int size;
u8 b;
if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
return 1;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
return 0;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
last_bitmap = (gpa_t)-1;
b = -1;
while (size > 0) {
if (port < 0x8000)
bitmap = vmcs12->io_bitmap_a;
else if (port < 0x10000)
bitmap = vmcs12->io_bitmap_b;
else
return 1;
bitmap += (port & 0x7fff) / 8;
if (last_bitmap != bitmap)
if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
return 1;
if (b & (1 << (port & 7)))
return 1;
port++;
size--;
last_bitmap = bitmap;
}
return 0;
}
/*
* Return 1 if we should exit from L2 to L1 to handle an MSR access access,
* rather than handle it ourselves in L0. I.e., check whether L1 expressed
* disinterest in the current event (read or write a specific MSR) by using an
* MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
*/
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12, u32 exit_reason)
{
u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
gpa_t bitmap;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return 1;
/*
* The MSR_BITMAP page is divided into four 1024-byte bitmaps,
* for the four combinations of read/write and low/high MSR numbers.
* First we need to figure out which of the four to use:
*/
bitmap = vmcs12->msr_bitmap;
if (exit_reason == EXIT_REASON_MSR_WRITE)
bitmap += 2048;
if (msr_index >= 0xc0000000) {
msr_index -= 0xc0000000;
bitmap += 1024;
}
/* Then read the msr_index'th bit from this bitmap: */
if (msr_index < 1024*8) {
unsigned char b;
if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
return 1;
return 1 & (b >> (msr_index & 7));
} else
return 1; /* let L1 handle the wrong parameter */
}
/*
* Return 1 if we should exit from L2 to L1 to handle a CR access exit,
* rather than handle it ourselves in L0. I.e., check if L1 wanted to
* intercept (via guest_host_mask etc.) the current event.
*/
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int cr = exit_qualification & 15;
int reg = (exit_qualification >> 8) & 15;
unsigned long val = kvm_register_read(vcpu, reg);
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
switch (cr) {
case 0:
if (vmcs12->cr0_guest_host_mask &
(val ^ vmcs12->cr0_read_shadow))
return 1;
break;
case 3:
if ((vmcs12->cr3_target_count >= 1 &&
vmcs12->cr3_target_value0 == val) ||
(vmcs12->cr3_target_count >= 2 &&
vmcs12->cr3_target_value1 == val) ||
(vmcs12->cr3_target_count >= 3 &&
vmcs12->cr3_target_value2 == val) ||
(vmcs12->cr3_target_count >= 4 &&
vmcs12->cr3_target_value3 == val))
return 0;
if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
return 1;
break;
case 4:
if (vmcs12->cr4_guest_host_mask &
(vmcs12->cr4_read_shadow ^ val))
return 1;
break;
case 8:
if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
return 1;
break;
}
break;
case 2: /* clts */
if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
(vmcs12->cr0_read_shadow & X86_CR0_TS))
return 1;
break;
case 1: /* mov from cr */
switch (cr) {
case 3:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR3_STORE_EXITING)
return 1;
break;
case 8:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR8_STORE_EXITING)
return 1;
break;
}
break;
case 3: /* lmsw */
/*
* lmsw can change bits 1..3 of cr0, and only set bit 0 of
* cr0. Other attempted changes are ignored, with no exit.
*/
if (vmcs12->cr0_guest_host_mask & 0xe &
(val ^ vmcs12->cr0_read_shadow))
return 1;
if ((vmcs12->cr0_guest_host_mask & 0x1) &&
!(vmcs12->cr0_read_shadow & 0x1) &&
(val & 0x1))
return 1;
break;
}
return 0;
}
/*
* Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
* should handle it ourselves in L0 (and then continue L2). Only call this
* when in is_guest_mode (L2).
*/
static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
{
u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 exit_reason = vmx->exit_reason;
if (vmx->nested.nested_run_pending)
return 0;
if (unlikely(vmx->fail)) {
pr_info_ratelimited("%s failed vm entry %x\n", __func__,
vmcs_read32(VM_INSTRUCTION_ERROR));
return 1;
}
switch (exit_reason) {
case EXIT_REASON_EXCEPTION_NMI:
if (!is_exception(intr_info))
return 0;
else if (is_page_fault(intr_info))
return enable_ept;
return vmcs12->exception_bitmap &
(1u << (intr_info & INTR_INFO_VECTOR_MASK));
case EXIT_REASON_EXTERNAL_INTERRUPT:
return 0;
case EXIT_REASON_TRIPLE_FAULT:
return 1;
case EXIT_REASON_PENDING_INTERRUPT:
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
case EXIT_REASON_NMI_WINDOW:
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
case EXIT_REASON_TASK_SWITCH:
return 1;
case EXIT_REASON_CPUID:
return 1;
case EXIT_REASON_HLT:
return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
case EXIT_REASON_INVD:
return 1;
case EXIT_REASON_INVLPG:
return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
case EXIT_REASON_RDPMC:
return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
case EXIT_REASON_RDTSC:
return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
/*
* VMX instructions trap unconditionally. This allows L1 to
* emulate them for its L2 guest, i.e., allows 3-level nesting!
*/
return 1;
case EXIT_REASON_CR_ACCESS:
return nested_vmx_exit_handled_cr(vcpu, vmcs12);
case EXIT_REASON_DR_ACCESS:
return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
case EXIT_REASON_IO_INSTRUCTION:
return nested_vmx_exit_handled_io(vcpu, vmcs12);
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
case EXIT_REASON_INVALID_STATE:
return 1;
case EXIT_REASON_MWAIT_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
case EXIT_REASON_MONITOR_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
case EXIT_REASON_PAUSE_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
nested_cpu_has2(vmcs12,
SECONDARY_EXEC_PAUSE_LOOP_EXITING);
case EXIT_REASON_MCE_DURING_VMENTRY:
return 0;
case EXIT_REASON_TPR_BELOW_THRESHOLD:
return 1;
case EXIT_REASON_APIC_ACCESS:
return nested_cpu_has2(vmcs12,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
case EXIT_REASON_EPT_VIOLATION:
case EXIT_REASON_EPT_MISCONFIG:
return 0;
case EXIT_REASON_PREEMPTION_TIMER:
return vmcs12->pin_based_vm_exec_control &
PIN_BASED_VMX_PREEMPTION_TIMER;
case EXIT_REASON_WBINVD:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
case EXIT_REASON_XSETBV:
return 1;
default:
return 1;
}
}
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
*info1 = vmcs_readl(EXIT_QUALIFICATION);
*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
}
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_reason = vmx->exit_reason;
u32 vectoring_info = vmx->idt_vectoring_info;
/* If guest state is invalid, start emulating */
if (vmx->emulation_required)
return handle_invalid_guest_state(vcpu);
/*
* the KVM_REQ_EVENT optimization bit is only on for one entry, and if
* we did not inject a still-pending event to L1 now because of
* nested_run_pending, we need to re-enable this bit.
*/
if (vmx->nested.nested_run_pending)
kvm_make_request(KVM_REQ_EVENT, vcpu);
if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
exit_reason == EXIT_REASON_VMRESUME))
vmx->nested.nested_run_pending = 1;
else
vmx->nested.nested_run_pending = 0;
if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
nested_vmx_vmexit(vcpu);
return 1;
}
if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= exit_reason;
return 0;
}
if (unlikely(vmx->fail)) {
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= vmcs_read32(VM_INSTRUCTION_ERROR);
return 0;
}
/*
* Note:
* Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
* delivery event since it indicates guest is accessing MMIO.
* The vm-exit can be triggered again after return to guest that
* will cause infinite loop.
*/
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
exit_reason != EXIT_REASON_EPT_VIOLATION &&
exit_reason != EXIT_REASON_TASK_SWITCH)) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
vcpu->run->internal.ndata = 2;
vcpu->run->internal.data[0] = vectoring_info;
vcpu->run->internal.data[1] = exit_reason;
return 0;
}
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
!(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
get_vmcs12(vcpu), vcpu)))) {
if (vmx_interrupt_allowed(vcpu)) {
vmx->soft_vnmi_blocked = 0;
} else if (vmx->vnmi_blocked_time > 1000000000LL &&
vcpu->arch.nmi_pending) {
/*
* This CPU don't support us in finding the end of an
* NMI-blocked window if the guest runs with IRQs
* disabled. So we pull the trigger after 1 s of
* futile waiting, but inform the user about this.
*/
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
"state on VCPU %d after 1 s timeout\n",
__func__, vcpu->vcpu_id);
vmx->soft_vnmi_blocked = 0;
}
}
if (exit_reason < kvm_vmx_max_exit_handlers
&& kvm_vmx_exit_handlers[exit_reason])
return kvm_vmx_exit_handlers[exit_reason](vcpu);
else {
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = exit_reason;
}
return 0;
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
if (irr == -1 || tpr < irr) {
vmcs_write32(TPR_THRESHOLD, 0);
return;
}
vmcs_write32(TPR_THRESHOLD, irr);
}
static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
{
u32 sec_exec_control;
/*
* There is not point to enable virtualize x2apic without enable
* apicv
*/
if (!cpu_has_vmx_virtualize_x2apic_mode() ||
!vmx_vm_has_apicv(vcpu->kvm))
return;
if (!vm_need_tpr_shadow(vcpu->kvm))
return;
sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
if (set) {
sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
} else {
sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
vmx_set_msr_bitmap(vcpu);
}
static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
{
u16 status;
u8 old;
if (!vmx_vm_has_apicv(kvm))
return;
if (isr == -1)
isr = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = status >> 8;
if (isr != old) {
status &= 0xff;
status |= isr << 8;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_set_rvi(int vector)
{
u16 status;
u8 old;
status = vmcs_read16(GUEST_INTR_STATUS);
old = (u8)status & 0xff;
if ((u8)vector != old) {
status &= ~0xff;
status |= (u8)vector;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
{
if (max_irr == -1)
return;
vmx_set_rvi(max_irr);
}
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (!vmx_vm_has_apicv(vcpu->kvm))
return;
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
}
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
|| vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
return;
vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
exit_intr_info = vmx->exit_intr_info;
/* Handle machine checks before interrupts are enabled */
if (is_machine_check(exit_intr_info))
kvm_machine_check();
/* We need to handle NMIs before interrupts are enabled */
if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
(exit_intr_info & INTR_INFO_VALID_MASK)) {
kvm_before_handle_nmi(&vmx->vcpu);
asm("int $2");
kvm_after_handle_nmi(&vmx->vcpu);
}
}
static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
{
u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
/*
* If external interrupt exists, IF bit is set in rflags/eflags on the
* interrupt stack frame, and interrupt will be enabled on a return
* from interrupt handler.
*/
if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
unsigned int vector;
unsigned long entry;
gate_desc *desc;
struct vcpu_vmx *vmx = to_vmx(vcpu);
#ifdef CONFIG_X86_64
unsigned long tmp;
#endif
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
desc = (gate_desc *)vmx->host_idt_base + vector;
entry = gate_offset(*desc);
asm volatile(
#ifdef CONFIG_X86_64
"mov %%" _ASM_SP ", %[sp]\n\t"
"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
"push $%c[ss]\n\t"
"push %[sp]\n\t"
#endif
"pushf\n\t"
"orl $0x200, (%%" _ASM_SP ")\n\t"
__ASM_SIZE(push) " $%c[cs]\n\t"
"call *%[entry]\n\t"
:
#ifdef CONFIG_X86_64
[sp]"=&r"(tmp)
#endif
:
[entry]"r"(entry),
[ss]"i"(__KERNEL_DS),
[cs]"i"(__KERNEL_CS)
);
} else
local_irq_enable();
}
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
bool unblock_nmi;
u8 vector;
bool idtv_info_valid;
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
if (cpu_has_virtual_nmis()) {
if (vmx->nmi_known_unmasked)
return;
/*
* Can't use vmx->exit_intr_info since we're not sure what
* the exit reason is.
*/
exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Re-set bit "block by NMI" before VM entry if vmexit caused by
* a guest IRET fault.
* SDM 3: 23.2.2 (September 2008)
* Bit 12 is undefined in any of the following cases:
* If the VM exit sets the valid bit in the IDT-vectoring
* information field.
* If the VM exit is due to a double fault.
*/
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
vector != DF_VECTOR && !idtv_info_valid)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmx->nmi_known_unmasked =
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
& GUEST_INTR_STATE_NMI);
} else if (unlikely(vmx->soft_vnmi_blocked))
vmx->vnmi_blocked_time +=
ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
}
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
u32 idt_vectoring_info,
int instr_len_field,
int error_code_field)
{
u8 vector;
int type;
bool idtv_info_valid;
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
if (!idtv_info_valid)
return;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = true;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Clear bit "block by NMI" before VM entry if a NMI
* delivery faulted.
*/
vmx_set_nmi_mask(vcpu, false);
break;
case INTR_TYPE_SOFT_EXCEPTION:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_HARD_EXCEPTION:
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
u32 err = vmcs_read32(error_code_field);
kvm_queue_exception_e(vcpu, vector, err);
} else
kvm_queue_exception(vcpu, vector);
break;
case INTR_TYPE_SOFT_INTR:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_EXT_INTR:
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
break;
default:
break;
}
}
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_ERROR_CODE);
}
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
__vmx_complete_interrupts(vcpu,
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
{
int i, nr_msrs;
struct perf_guest_switch_msr *msrs;
msrs = perf_guest_get_msrs(&nr_msrs);
if (!msrs)
return;
for (i = 0; i < nr_msrs; i++)
if (msrs[i].host == msrs[i].guest)
clear_atomic_switch_msr(vmx, msrs[i].msr);
else
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
msrs[i].host);
}
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long debugctlmsr;
/* Record the guest's net vcpu time for enforced NMI injections. */
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
vmx->entry_time = ktime_get();
/* Don't enter VMX if guest state is invalid, let the exit handler
start emulation until we arrive back to a valid state */
if (vmx->emulation_required)
return;
if (vmx->nested.sync_shadow_vmcs) {
copy_vmcs12_to_shadow(vmx);
vmx->nested.sync_shadow_vmcs = false;
}
if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
/* When single-stepping over STI and MOV SS, we must clear the
* corresponding interruptibility bits in the guest state. Otherwise
* vmentry fails as it then expects bit 14 (BS) in pending debug
* exceptions being set, but that's not correct for the guest debugging
* case. */
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vmx_set_interrupt_shadow(vcpu, 0);
atomic_switch_perf_msrs(vmx);
debugctlmsr = get_debugctlmsr();
vmx->__launched = vmx->loaded_vmcs->launched;
asm(
/* Store host registers */
"push %%" _ASM_DX "; push %%" _ASM_BP ";"
"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
"push %%" _ASM_CX " \n\t"
"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
"je 1f \n\t"
"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
"1: \n\t"
/* Reload cr2 if changed */
"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
"mov %%cr2, %%" _ASM_DX " \n\t"
"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
"je 2f \n\t"
"mov %%" _ASM_AX", %%cr2 \n\t"
"2: \n\t"
/* Check if vmlaunch of vmresume is needed */
"cmpl $0, %c[launched](%0) \n\t"
/* Load guest registers. Don't clobber flags. */
"mov %c[rax](%0), %%" _ASM_AX " \n\t"
"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%0), %%r8 \n\t"
"mov %c[r9](%0), %%r9 \n\t"
"mov %c[r10](%0), %%r10 \n\t"
"mov %c[r11](%0), %%r11 \n\t"
"mov %c[r12](%0), %%r12 \n\t"
"mov %c[r13](%0), %%r13 \n\t"
"mov %c[r14](%0), %%r14 \n\t"
"mov %c[r15](%0), %%r15 \n\t"
#endif
"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
/* Enter guest mode */
"jne 1f \n\t"
__ex(ASM_VMX_VMLAUNCH) "\n\t"
"jmp 2f \n\t"
"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
"2: "
/* Save guest registers, load host registers, keep flags */
"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
"pop %0 \n\t"
"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%0) \n\t"
"mov %%r9, %c[r9](%0) \n\t"
"mov %%r10, %c[r10](%0) \n\t"
"mov %%r11, %c[r11](%0) \n\t"
"mov %%r12, %c[r12](%0) \n\t"
"mov %%r13, %c[r13](%0) \n\t"
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
#endif
"mov %%cr2, %%" _ASM_AX " \n\t"
"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
"pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
"setbe %c[fail](%0) \n\t"
".pushsection .rodata \n\t"
".global vmx_return \n\t"
"vmx_return: " _ASM_PTR " 2b \n\t"
".popsection"
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
#ifdef CONFIG_X86_64
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
#endif
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
[wordsize]"i"(sizeof(ulong))
: "cc", "memory"
#ifdef CONFIG_X86_64
, "rax", "rbx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
#else
, "eax", "ebx", "edi", "esi"
#endif
);
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
if (debugctlmsr)
update_debugctlmsr(debugctlmsr);
#ifndef CONFIG_X86_64
/*
* The sysexit path does not restore ds/es, so we must set them to
* a reasonable value ourselves.
*
* We can't defer this to vmx_load_host_state() since that function
* may be executed in interrupt context, which saves and restore segments
* around it, nullifying its effect.
*/
loadsegment(ds, __USER_DS);
loadsegment(es, __USER_DS);
#endif
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
| (1 << VCPU_EXREG_RFLAGS)
| (1 << VCPU_EXREG_CPL)
| (1 << VCPU_EXREG_PDPTR)
| (1 << VCPU_EXREG_SEGMENTS)
| (1 << VCPU_EXREG_CR3));
vcpu->arch.regs_dirty = 0;
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
vmx->loaded_vmcs->launched = 1;
vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
vmx_complete_atomic_exit(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);
}
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
free_vpid(vmx);
free_nested(vmx);
free_loaded_vmcs(vmx->loaded_vmcs);
kfree(vmx->guest_msrs);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vmx);
}
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
{
int err;
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
int cpu;
if (!vmx)
return ERR_PTR(-ENOMEM);
allocate_vpid(vmx);
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
if (err)
goto free_vcpu;
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
err = -ENOMEM;
if (!vmx->guest_msrs) {
goto uninit_vcpu;
}
vmx->loaded_vmcs = &vmx->vmcs01;
vmx->loaded_vmcs->vmcs = alloc_vmcs();
if (!vmx->loaded_vmcs->vmcs)
goto free_msrs;
if (!vmm_exclusive)
kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
loaded_vmcs_init(vmx->loaded_vmcs);
if (!vmm_exclusive)
kvm_cpu_vmxoff();
cpu = get_cpu();
vmx_vcpu_load(&vmx->vcpu, cpu);
vmx->vcpu.cpu = cpu;
err = vmx_vcpu_setup(vmx);
vmx_vcpu_put(&vmx->vcpu);
put_cpu();
if (err)
goto free_vmcs;
if (vm_need_virtualize_apic_accesses(kvm)) {
err = alloc_apic_access_page(kvm);
if (err)
goto free_vmcs;
}
if (enable_ept) {
if (!kvm->arch.ept_identity_map_addr)
kvm->arch.ept_identity_map_addr =
VMX_EPT_IDENTITY_PAGETABLE_ADDR;
err = -ENOMEM;
if (alloc_identity_pagetable(kvm) != 0)
goto free_vmcs;
if (!init_rmode_identity_map(kvm))
goto free_vmcs;
}
vmx->nested.current_vmptr = -1ull;
vmx->nested.current_vmcs12 = NULL;
return &vmx->vcpu;
free_vmcs:
free_loaded_vmcs(vmx->loaded_vmcs);
free_msrs:
kfree(vmx->guest_msrs);
uninit_vcpu:
kvm_vcpu_uninit(&vmx->vcpu);
free_vcpu:
free_vpid(vmx);
kmem_cache_free(kvm_vcpu_cache, vmx);
return ERR_PTR(err);
}
static void __init vmx_check_processor_compat(void *rtn)
{
struct vmcs_config vmcs_conf;
*(int *)rtn = 0;
if (setup_vmcs_config(&vmcs_conf) < 0)
*(int *)rtn = -EIO;
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
smp_processor_id());
*(int *)rtn = -EIO;
}
}
static int get_ept_level(void)
{
return VMX_EPT_DEFAULT_GAW + 1;
}
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
u64 ret;
/* For VT-d and EPT combination
* 1. MMIO: always map as UC
* 2. EPT with VT-d:
* a. VT-d without snooping control feature: can't guarantee the
* result, try to trust guest.
* b. VT-d with snooping control feature: snooping control feature of
* VT-d engine can guarantee the cache correctness. Just set it
* to WB to keep consistent with host. So the same as item 3.
* 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
* consistent with host MTRR
*/
if (is_mmio)
ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
else if (vcpu->kvm->arch.iommu_domain &&
!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
ret = kvm_get_guest_memory_type(vcpu, gfn) <<
VMX_EPT_MT_EPTE_SHIFT;
else
ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
| VMX_EPT_IPAT_BIT;
return ret;
}
static int vmx_get_lpage_level(void)
{
if (enable_ept && !cpu_has_vmx_ept_1g_page())
return PT_DIRECTORY_LEVEL;
else
/* For shadow and EPT supported 1GB page */
return PT_PDPE_LEVEL;
}
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exec_control;
vmx->rdtscp_enabled = false;
if (vmx_rdtscp_supported()) {
exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
if (exec_control & SECONDARY_EXEC_RDTSCP) {
best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
vmx->rdtscp_enabled = true;
else {
exec_control &= ~SECONDARY_EXEC_RDTSCP;
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
exec_control);
}
}
}
/* Exposing INVPCID only when PCID is exposed */
best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
if (vmx_invpcid_supported() &&
best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
guest_cpuid_has_pcid(vcpu)) {
exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
exec_control);
} else {
if (cpu_has_secondary_exec_ctrls()) {
exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
exec_control);
}
if (best)
best->ebx &= ~bit(X86_FEATURE_INVPCID);
}
}
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
if (func == 1 && nested)
entry->ecx |= bit(X86_FEATURE_VMX);
}
/*
* prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
* L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
* with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
* guest in a way that will both be appropriate to L1's requests, and our
* needs. In addition to modifying the active vmcs (which is vmcs02), this
* function also has additional necessary side-effects, like setting various
* vcpu->arch fields.
*/
static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exec_control;
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
vmcs12->vm_entry_intr_info_field);
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
vmcs12->vm_entry_exception_error_code);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmcs12->vm_entry_instruction_len);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
vmcs12->guest_interruptibility_info);
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vmcs12->guest_pending_dbg_exceptions);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
(vmcs_config.pin_based_exec_ctrl |
vmcs12->pin_based_vm_exec_control));
if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
vmcs12->vmx_preemption_timer_value);
/*
* Whether page-faults are trapped is determined by a combination of
* 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
* If enable_ept, L0 doesn't care about page faults and we should
* set all of these to L1's desires. However, if !enable_ept, L0 does
* care about (at least some) page faults, and because it is not easy
* (if at all possible?) to merge L0 and L1's desires, we simply ask
* to exit on each and every L2 page fault. This is done by setting
* MASK=MATCH=0 and (see below) EB.PF=1.
* Note that below we don't need special code to set EB.PF beyond the
* "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
* vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
* !enable_ept, EB.PF is 1, so the "or" will always be 1.
*
* A problem with this approach (when !enable_ept) is that L1 may be
* injected with more page faults than it asked for. This could have
* caused problems, but in practice existing hypervisors don't care.
* To fix this, we will need to emulate the PFEC checking (on the L1
* page tables), using walk_addr(), when injecting PFs to L1.
*/
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
enable_ept ? vmcs12->page_fault_error_code_mask : 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
enable_ept ? vmcs12->page_fault_error_code_match : 0);
if (cpu_has_secondary_exec_ctrls()) {
u32 exec_control = vmx_secondary_exec_control(vmx);
if (!vmx->rdtscp_enabled)
exec_control &= ~SECONDARY_EXEC_RDTSCP;
/* Take the following fields only from vmcs12 */
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
if (nested_cpu_has(vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
exec_control |= vmcs12->secondary_vm_exec_control;
if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
/*
* Translate L1 physical address to host physical
* address for vmcs02. Keep the page pinned, so this
* physical address remains valid. We keep a reference
* to it so we can release it later.
*/
if (vmx->nested.apic_access_page) /* shouldn't happen */
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page =
nested_get_page(vcpu, vmcs12->apic_access_addr);
/*
* If translation failed, no matter: This feature asks
* to exit when accessing the given address, and if it
* can never be accessed, this feature won't do
* anything anyway.
*/
if (!vmx->nested.apic_access_page)
exec_control &=
~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
else
vmcs_write64(APIC_ACCESS_ADDR,
page_to_phys(vmx->nested.apic_access_page));
}
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
}
/*
* Set host-state according to L0's settings (vmcs12 is irrelevant here)
* Some constant fields are set here by vmx_set_constant_host_state().
* Other fields are different per CPU, and will be set later when
* vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
*/
vmx_set_constant_host_state(vmx);
/*
* HOST_RSP is normally set correctly in vmx_vcpu_run() just before
* entry, but only if the current (host) sp changed from the value
* we wrote last (vmx->host_rsp). This cache is no longer relevant
* if we switch vmcs, and rather than hold a separate cache per vmcs,
* here we just force the write to happen on entry.
*/
vmx->host_rsp = 0;
exec_control = vmx_exec_control(vmx); /* L0's desires */
exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
exec_control &= ~CPU_BASED_TPR_SHADOW;
exec_control |= vmcs12->cpu_based_vm_exec_control;
/*
* Merging of IO and MSR bitmaps not currently supported.
* Rather, exit every time.
*/
exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
exec_control |= CPU_BASED_UNCOND_IO_EXITING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
* bitwise-or of what L1 wants to trap for L2, and what we want to
* trap. Note that CR0.TS also needs updating - we do this later.
*/
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
/* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
vmcs_write32(VM_EXIT_CONTROLS,
vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
set_cr4_guest_host_mask(vmx);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
vmcs_write64(TSC_OFFSET,
vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
else
vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
if (enable_vpid) {
/*
* Trivially support vpid by letting L2s share their parent
* L1's vpid. TODO: move to a more elaborate solution, giving
* each L2 its own vpid and exposing the vpid feature to L1.
*/
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
vmx_flush_tlb(vcpu);
}
if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->guest_ia32_efer;
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
vmx_set_efer(vcpu, vcpu->arch.efer);
/*
* This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
* TS bit (for lazy fpu) and bits which we consider mandatory enabled.
* The CR0_READ_SHADOW is what L2 should have expected to read given
* the specifications by L1; It's not enough to take
* vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
* have more bits than L1 expected.
*/
vmx_set_cr0(vcpu, vmcs12->guest_cr0);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
vmx_set_cr4(vcpu, vmcs12->guest_cr4);
vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
/* shadow page tables on either EPT or shadow page tables */
kvm_set_cr3(vcpu, vmcs12->guest_cr3);
kvm_mmu_reset_context(vcpu);
kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
}
/*
* nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
* for running an L2 nested guest.
*/
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
struct vmcs12 *vmcs12;
struct vcpu_vmx *vmx = to_vmx(vcpu);
int cpu;
struct loaded_vmcs *vmcs02;
bool ia32e;
if (!nested_vmx_check_permission(vcpu) ||
!nested_vmx_check_vmcs12(vcpu))
return 1;
skip_emulated_instruction(vcpu);
vmcs12 = get_vmcs12(vcpu);
if (enable_shadow_vmcs)
copy_shadow_to_vmcs12(vmx);
/*
* The nested entry process starts with enforcing various prerequisites
* on vmcs12 as required by the Intel SDM, and act appropriately when
* they fail: As the SDM explains, some conditions should cause the
* instruction to fail, while others will cause the instruction to seem
* to succeed, but return an EXIT_REASON_INVALID_STATE.
* To speed up the normal (success) code path, we should avoid checking
* for misconfigurations which will anyway be caught by the processor
* when using the merged vmcs02.
*/
if (vmcs12->launch_state == launch) {
nested_vmx_failValid(vcpu,
launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
: VMXERR_VMRESUME_NONLAUNCHED_VMCS);
return 1;
}
if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
return 1;
}
if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
!IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
/*TODO: Also verify bits beyond physical address width are 0*/
nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
return 1;
}
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
!IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
/*TODO: Also verify bits beyond physical address width are 0*/
nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
return 1;
}
if (vmcs12->vm_entry_msr_load_count > 0 ||
vmcs12->vm_exit_msr_load_count > 0 ||
vmcs12->vm_exit_msr_store_count > 0) {
pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
__func__);
nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
return 1;
}
if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
!vmx_control_verify(vmcs12->secondary_vm_exec_control,
nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
!vmx_control_verify(vmcs12->vm_exit_controls,
nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
!vmx_control_verify(vmcs12->vm_entry_controls,
nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
{
nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
return 1;
}
if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
nested_vmx_failValid(vcpu,
VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
return 1;
}
if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
return 1;
}
if (vmcs12->vmcs_link_pointer != -1ull) {
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
return 1;
}
/*
* If the load IA32_EFER VM-entry control is 1, the following checks
* are performed on the field for the IA32_EFER MSR:
* - Bits reserved in the IA32_EFER MSR must be 0.
* - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
* the IA-32e mode guest VM-exit control. It must also be identical
* to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
* CR0.PG) is 1.
*/
if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
((vmcs12->guest_cr0 & X86_CR0_PG) &&
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
return 1;
}
}
/*
* If the load IA32_EFER VM-exit control is 1, bits reserved in the
* IA32_EFER MSR must be 0 in the field for that register. In addition,
* the values of the LMA and LME bits in the field must each be that of
* the host address-space size VM-exit control.
*/
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
ia32e = (vmcs12->vm_exit_controls &
VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
return 1;
}
}
/*
* We're finally done with prerequisite checking, and can start with
* the nested entry.
*/
vmcs02 = nested_get_current_vmcs02(vmx);
if (!vmcs02)
return -ENOMEM;
enter_guest_mode(vcpu);
vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
cpu = get_cpu();
vmx->loaded_vmcs = vmcs02;
vmx_vcpu_put(vcpu);
vmx_vcpu_load(vcpu, cpu);
vcpu->cpu = cpu;
put_cpu();
vmx_segment_cache_clear(vmx);
vmcs12->launch_state = 1;
prepare_vmcs02(vcpu, vmcs12);
/*
* Note no nested_vmx_succeed or nested_vmx_fail here. At this point
* we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
* returned as far as L1 is concerned. It will only return (and set
* the success flag) when L2 exits (see nested_vmx_vmexit()).
*/
return 1;
}
/*
* On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
* because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
* This function returns the new value we should put in vmcs12.guest_cr0.
* It's not enough to just return the vmcs02 GUEST_CR0. Rather,
* 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
* available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
* didn't trap the bit, because if L1 did, so would L0).
* 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
* been modified by L2, and L1 knows it. So just leave the old value of
* the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
* isn't relevant, because if L0 traps this bit it can set it to anything.
* 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
* changed these bits, and therefore they need to be updated, but L0
* didn't necessarily allow them to be changed in GUEST_CR0 - and rather
* put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
*/
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
/*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
vcpu->arch.cr0_guest_owned_bits));
}
static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
/*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
vcpu->arch.cr4_guest_owned_bits));
}
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u32 idt_vectoring;
unsigned int nr;
if (vcpu->arch.exception.pending) {
nr = vcpu->arch.exception.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (kvm_exception_is_soft(nr)) {
vmcs12->vm_exit_instruction_len =
vcpu->arch.event_exit_inst_len;
idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
} else
idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
if (vcpu->arch.exception.has_error_code) {
idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
vmcs12->idt_vectoring_error_code =
vcpu->arch.exception.error_code;
}
vmcs12->idt_vectoring_info_field = idt_vectoring;
} else if (vcpu->arch.nmi_pending) {
vmcs12->idt_vectoring_info_field =
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
} else if (vcpu->arch.interrupt.pending) {
nr = vcpu->arch.interrupt.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
idt_vectoring |= INTR_TYPE_SOFT_INTR;
vmcs12->vm_entry_instruction_len =
vcpu->arch.event_exit_inst_len;
} else
idt_vectoring |= INTR_TYPE_EXT_INTR;
vmcs12->idt_vectoring_info_field = idt_vectoring;
}
}
/*
* prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
* and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
* and this function updates it to reflect the changes to the guest state while
* L2 was running (and perhaps made some exits which were handled directly by L0
* without going back to L1), and to reflect the exit reason.
* Note that we do not have to copy here all VMCS fields, just those that
* could have changed by the L2 guest or the exit - i.e., the guest-state and
* exit-information fields only. Other fields are modified by L1 with VMWRITE,
* which already writes to vmcs12 directly.
*/
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
/* update guest state fields: */
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
vmcs12->guest_interruptibility_info =
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
vmcs12->guest_pending_dbg_exceptions =
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
vmcs12->vm_entry_controls =
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
(vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
/* TODO: These cannot have changed unless we have MSR bitmaps and
* the relevant bit asks not to trap the change */
vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
/* update exit information fields: */
vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
if ((vmcs12->vm_exit_intr_info &
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
vmcs12->vm_exit_intr_error_code =
vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
vmcs12->idt_vectoring_info_field = 0;
vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
/* vm_entry_intr_info_field is cleared on exit. Emulate this
* instead of reading the real value. */
vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
/*
* Transfer the event that L0 or L1 may wanted to inject into
* L2 to IDT_VECTORING_INFO_FIELD.
*/
vmcs12_save_pending_event(vcpu, vmcs12);
}
/*
* Drop what we picked up for L2 via vmx_complete_interrupts. It is
* preserved above and would only end up incorrectly in L1.
*/
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
}
/*
* A part of what we need to when the nested L2 guest exits and we want to
* run its L1 parent, is to reset L1's guest state to the host state specified
* in vmcs12.
* This function is to be called not only on normal nested exit, but also on
* a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
* Failures During or After Loading Guest State").
* This function should be called when the active VMCS is L1's (vmcs01).
*/
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->host_ia32_efer;
else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
vmx_set_efer(vcpu, vcpu->arch.efer);
kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
/*
* Note that calling vmx_set_cr0 is important, even if cr0 hasn't
* actually changed, because it depends on the current state of
* fpu_active (which may have changed).
* Note that vmx_set_cr0 refers to efer set above.
*/
kvm_set_cr0(vcpu, vmcs12->host_cr0);
/*
* If we did fpu_activate()/fpu_deactivate() during L2's run, we need
* to apply the same changes to L1's vmcs. We just set cr0 correctly,
* but we also need to update cr0_guest_host_mask and exception_bitmap.
*/
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
/*
* Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
* (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
*/
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
kvm_set_cr4(vcpu, vmcs12->host_cr4);
/* shadow page tables on either EPT or shadow page tables */
kvm_set_cr3(vcpu, vmcs12->host_cr3);
kvm_mmu_reset_context(vcpu);
if (enable_vpid) {
/*
* Trivially support vpid by letting L2s share their parent
* L1's vpid. TODO: move to a more elaborate solution, giving
* each L2 its own vpid and exposing the vpid feature to L1.
*/
vmx_flush_tlb(vcpu);
}
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
vmcs12->host_ia32_perf_global_ctrl);
kvm_set_dr(vcpu, 7, 0x400);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
}
/*
* Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
* and modify vmcs12 to make it see what it would expect to see there if
* L2 was its real guest. Must only be called when in L2 (is_guest_mode())
*/
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int cpu;
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
/* trying to cancel vmlaunch/vmresume is a bug */
WARN_ON_ONCE(vmx->nested.nested_run_pending);
leave_guest_mode(vcpu);
prepare_vmcs12(vcpu, vmcs12);
cpu = get_cpu();
vmx->loaded_vmcs = &vmx->vmcs01;
vmx_vcpu_put(vcpu);
vmx_vcpu_load(vcpu, cpu);
vcpu->cpu = cpu;
put_cpu();
vmx_segment_cache_clear(vmx);
/* if no vmcs02 cache requested, remove the one we used */
if (VMCS02_POOL_SIZE == 0)
nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
load_vmcs12_host_state(vcpu, vmcs12);
/* Update TSC_OFFSET if TSC was changed while L2 ran */
vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
/* This is needed for same reason as it was needed in prepare_vmcs02 */
vmx->host_rsp = 0;
/* Unpin physical memory we referred to in vmcs02 */
if (vmx->nested.apic_access_page) {
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = 0;
}
/*
* Exiting from L2 to L1, we're now back to L1 which thinks it just
* finished a VMLAUNCH or VMRESUME instruction, so we need to set the
* success or failure flag accordingly.
*/
if (unlikely(vmx->fail)) {
vmx->fail = 0;
nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
} else
nested_vmx_succeed(vcpu);
if (enable_shadow_vmcs)
vmx->nested.sync_shadow_vmcs = true;
}
/*
* L1's failure to enter L2 is a subset of a normal exit, as explained in
* 23.7 "VM-entry failures during or after loading guest state" (this also
* lists the acceptable exit-reason and exit-qualification parameters).
* It should only be called before L2 actually succeeded to run, and when
* vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
*/
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 reason, unsigned long qualification)
{
load_vmcs12_host_state(vcpu, vmcs12);
vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
vmcs12->exit_qualification = qualification;
nested_vmx_succeed(vcpu);
if (enable_shadow_vmcs)
to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
}
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage)
{
return X86EMUL_CONTINUE;
}
static struct kvm_x86_ops vmx_x86_ops = {
.cpu_has_kvm_support = cpu_has_kvm_support,
.disabled_by_bios = vmx_disabled_by_bios,
.hardware_setup = hardware_setup,
.hardware_unsetup = hardware_unsetup,
.check_processor_compatibility = vmx_check_processor_compat,
.hardware_enable = hardware_enable,
.hardware_disable = hardware_disable,
.cpu_has_accelerated_tpr = report_flexpriority,
.vcpu_create = vmx_create_vcpu,
.vcpu_free = vmx_free_vcpu,
.vcpu_reset = vmx_vcpu_reset,
.prepare_guest_switch = vmx_save_host_state,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.update_db_bp_intercept = update_exception_bitmap,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.get_cpl = vmx_get_cpl,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
.decache_cr3 = vmx_decache_cr3,
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
.set_cr0 = vmx_set_cr0,
.set_cr3 = vmx_set_cr3,
.set_cr4 = vmx_set_cr4,
.set_efer = vmx_set_efer,
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.set_dr7 = vmx_set_dr7,
.cache_reg = vmx_cache_reg,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.fpu_activate = vmx_fpu_activate,
.fpu_deactivate = vmx_fpu_deactivate,
.tlb_flush = vmx_flush_tlb,
.run = vmx_vcpu_run,
.handle_exit = vmx_handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.set_interrupt_shadow = vmx_set_interrupt_shadow,
.get_interrupt_shadow = vmx_get_interrupt_shadow,
.patch_hypercall = vmx_patch_hypercall,
.set_irq = vmx_inject_irq,
.set_nmi = vmx_inject_nmi,
.queue_exception = vmx_queue_exception,
.cancel_injection = vmx_cancel_injection,
.interrupt_allowed = vmx_interrupt_allowed,
.nmi_allowed = vmx_nmi_allowed,
.get_nmi_mask = vmx_get_nmi_mask,
.set_nmi_mask = vmx_set_nmi_mask,
.enable_nmi_window = enable_nmi_window,
.enable_irq_window = enable_irq_window,
.update_cr8_intercept = update_cr8_intercept,
.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
.vm_has_apicv = vmx_vm_has_apicv,
.load_eoi_exitmap = vmx_load_eoi_exitmap,
.hwapic_irr_update = vmx_hwapic_irr_update,
.hwapic_isr_update = vmx_hwapic_isr_update,
.sync_pir_to_irr = vmx_sync_pir_to_irr,
.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
.set_tss_addr = vmx_set_tss_addr,
.get_tdp_level = get_ept_level,
.get_mt_mask = vmx_get_mt_mask,
.get_exit_info = vmx_get_exit_info,
.get_lpage_level = vmx_get_lpage_level,
.cpuid_update = vmx_cpuid_update,
.rdtscp_supported = vmx_rdtscp_supported,
.invpcid_supported = vmx_invpcid_supported,
.set_supported_cpuid = vmx_set_supported_cpuid,
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
.set_tsc_khz = vmx_set_tsc_khz,
.read_tsc_offset = vmx_read_tsc_offset,
.write_tsc_offset = vmx_write_tsc_offset,
.adjust_tsc_offset = vmx_adjust_tsc_offset,
.compute_tsc_offset = vmx_compute_tsc_offset,
.read_l1_tsc = vmx_read_l1_tsc,
.set_tdp_cr3 = vmx_set_cr3,
.check_intercept = vmx_check_intercept,
.handle_external_intr = vmx_handle_external_intr,
};
static int __init vmx_init(void)
{
int r, i, msr;
rdmsrl_safe(MSR_EFER, &host_efer);
for (i = 0; i < NR_VMX_MSR; ++i)
kvm_define_shared_msr(i, vmx_msr_index[i]);
vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_io_bitmap_a)
return -ENOMEM;
r = -ENOMEM;
vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_io_bitmap_b)
goto out;
vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_msr_bitmap_legacy)
goto out1;
vmx_msr_bitmap_legacy_x2apic =
(unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_msr_bitmap_legacy_x2apic)
goto out2;
vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_msr_bitmap_longmode)
goto out3;
vmx_msr_bitmap_longmode_x2apic =
(unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_msr_bitmap_longmode_x2apic)
goto out4;
vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_vmread_bitmap)
goto out5;
vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_vmwrite_bitmap)
goto out6;
memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
/* shadowed read/write fields */
for (i = 0; i < max_shadow_read_write_fields; i++) {
clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
}
/* shadowed read only fields */
for (i = 0; i < max_shadow_read_only_fields; i++)
clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
/*
* Allow direct access to the PC debug port (it is often used for I/O
* delays, but the vmexits simply slow things down).
*/
memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
clear_bit(0x80, vmx_io_bitmap_a);
memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
__alignof__(struct vcpu_vmx), THIS_MODULE);
if (r)
goto out7;
#ifdef CONFIG_KEXEC
rcu_assign_pointer(crash_vmclear_loaded_vmcss,
crash_vmclear_local_loaded_vmcss);
#endif
vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
memcpy(vmx_msr_bitmap_legacy_x2apic,
vmx_msr_bitmap_legacy, PAGE_SIZE);
memcpy(vmx_msr_bitmap_longmode_x2apic,
vmx_msr_bitmap_longmode, PAGE_SIZE);
if (enable_apicv) {
for (msr = 0x800; msr <= 0x8ff; msr++)
vmx_disable_intercept_msr_read_x2apic(msr);
/* According SDM, in x2apic mode, the whole id reg is used.
* But in KVM, it only use the highest eight bits. Need to
* intercept it */
vmx_enable_intercept_msr_read_x2apic(0x802);
/* TMCCT */
vmx_enable_intercept_msr_read_x2apic(0x839);
/* TPR */
vmx_disable_intercept_msr_write_x2apic(0x808);
/* EOI */
vmx_disable_intercept_msr_write_x2apic(0x80b);
/* SELF-IPI */
vmx_disable_intercept_msr_write_x2apic(0x83f);
}
if (enable_ept) {
kvm_mmu_set_mask_ptes(0ull,
(enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
(enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
0ull, VMX_EPT_EXECUTABLE_MASK);
ept_set_mmio_spte_mask();
kvm_enable_tdp();
} else
kvm_disable_tdp();
return 0;
out7:
free_page((unsigned long)vmx_vmwrite_bitmap);
out6:
free_page((unsigned long)vmx_vmread_bitmap);
out5:
free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
out4:
free_page((unsigned long)vmx_msr_bitmap_longmode);
out3:
free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
out2:
free_page((unsigned long)vmx_msr_bitmap_legacy);
out1:
free_page((unsigned long)vmx_io_bitmap_b);
out:
free_page((unsigned long)vmx_io_bitmap_a);
return r;
}
static void __exit vmx_exit(void)
{
free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
free_page((unsigned long)vmx_msr_bitmap_legacy);
free_page((unsigned long)vmx_msr_bitmap_longmode);
free_page((unsigned long)vmx_io_bitmap_b);
free_page((unsigned long)vmx_io_bitmap_a);
free_page((unsigned long)vmx_vmwrite_bitmap);
free_page((unsigned long)vmx_vmread_bitmap);
#ifdef CONFIG_KEXEC
rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
synchronize_rcu();
#endif
kvm_exit();
}
module_init(vmx_init)
module_exit(vmx_exit)