mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 15:25:02 +07:00
cf482a49af
Here is the "big" set of driver core patches for 5.2-rc1 There are a number of ACPI patches in here as well, as Rafael said they should go through this tree due to the driver core changes they required. They have all been acked by the ACPI developers. There are also a number of small subsystem-specific changes in here, due to some changes to the kobject core code. Those too have all been acked by the various subsystem maintainers. As for content, it's pretty boring outside of the ACPI changes: - spdx cleanups - kobject documentation updates - default attribute groups for kobjects - other minor kobject/driver core fixes All have been in linux-next for a while with no reported issues. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXNHDbw8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ynDAgCfbb4LBR6I50wFXb8JM/R6cAS7qrsAn1unshKV 8XCYcif2RxjtdJWXbjdm =/rLh -----END PGP SIGNATURE----- Merge tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core/kobject updates from Greg KH: "Here is the "big" set of driver core patches for 5.2-rc1 There are a number of ACPI patches in here as well, as Rafael said they should go through this tree due to the driver core changes they required. They have all been acked by the ACPI developers. There are also a number of small subsystem-specific changes in here, due to some changes to the kobject core code. Those too have all been acked by the various subsystem maintainers. As for content, it's pretty boring outside of the ACPI changes: - spdx cleanups - kobject documentation updates - default attribute groups for kobjects - other minor kobject/driver core fixes All have been in linux-next for a while with no reported issues" * tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (47 commits) kobject: clean up the kobject add documentation a bit more kobject: Fix kernel-doc comment first line kobject: Remove docstring reference to kset firmware_loader: Fix a typo ("syfs" -> "sysfs") kobject: fix dereference before null check on kobj Revert "driver core: platform: Fix the usage of platform device name(pdev->name)" init/config: Do not select BUILD_BIN2C for IKCONFIG Provide in-kernel headers to make extending kernel easier kobject: Improve doc clarity kobject_init_and_add() kobject: Improve docs for kobject_add/del driver core: platform: Fix the usage of platform device name(pdev->name) livepatch: Replace klp_ktype_patch's default_attrs with groups cpufreq: schedutil: Replace default_attrs field with groups padata: Replace padata_attr_type default_attrs field with groups irqdesc: Replace irq_kobj_type's default_attrs field with groups net-sysfs: Replace ktype default_attrs field with groups block: Replace all ktype default_attrs with groups samples/kobject: Replace foo_ktype's default_attrs field with groups kobject: Add support for default attribute groups to kobj_type driver core: Postpone DMA tear-down until after devres release for probe failure ...
322 lines
9.0 KiB
C
322 lines
9.0 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* drivers/base/power/domain_governor.c - Governors for device PM domains.
|
|
*
|
|
* Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/pm_domain.h>
|
|
#include <linux/pm_qos.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/ktime.h>
|
|
|
|
static int dev_update_qos_constraint(struct device *dev, void *data)
|
|
{
|
|
s64 *constraint_ns_p = data;
|
|
s64 constraint_ns;
|
|
|
|
if (dev->power.subsys_data && dev->power.subsys_data->domain_data) {
|
|
/*
|
|
* Only take suspend-time QoS constraints of devices into
|
|
* account, because constraints updated after the device has
|
|
* been suspended are not guaranteed to be taken into account
|
|
* anyway. In order for them to take effect, the device has to
|
|
* be resumed and suspended again.
|
|
*/
|
|
constraint_ns = dev_gpd_data(dev)->td.effective_constraint_ns;
|
|
} else {
|
|
/*
|
|
* The child is not in a domain and there's no info on its
|
|
* suspend/resume latencies, so assume them to be negligible and
|
|
* take its current PM QoS constraint (that's the only thing
|
|
* known at this point anyway).
|
|
*/
|
|
constraint_ns = dev_pm_qos_read_value(dev);
|
|
constraint_ns *= NSEC_PER_USEC;
|
|
}
|
|
|
|
if (constraint_ns < *constraint_ns_p)
|
|
*constraint_ns_p = constraint_ns;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* default_suspend_ok - Default PM domain governor routine to suspend devices.
|
|
* @dev: Device to check.
|
|
*/
|
|
static bool default_suspend_ok(struct device *dev)
|
|
{
|
|
struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
|
|
unsigned long flags;
|
|
s64 constraint_ns;
|
|
|
|
dev_dbg(dev, "%s()\n", __func__);
|
|
|
|
spin_lock_irqsave(&dev->power.lock, flags);
|
|
|
|
if (!td->constraint_changed) {
|
|
bool ret = td->cached_suspend_ok;
|
|
|
|
spin_unlock_irqrestore(&dev->power.lock, flags);
|
|
return ret;
|
|
}
|
|
td->constraint_changed = false;
|
|
td->cached_suspend_ok = false;
|
|
td->effective_constraint_ns = 0;
|
|
constraint_ns = __dev_pm_qos_read_value(dev);
|
|
|
|
spin_unlock_irqrestore(&dev->power.lock, flags);
|
|
|
|
if (constraint_ns == 0)
|
|
return false;
|
|
|
|
constraint_ns *= NSEC_PER_USEC;
|
|
/*
|
|
* We can walk the children without any additional locking, because
|
|
* they all have been suspended at this point and their
|
|
* effective_constraint_ns fields won't be modified in parallel with us.
|
|
*/
|
|
if (!dev->power.ignore_children)
|
|
device_for_each_child(dev, &constraint_ns,
|
|
dev_update_qos_constraint);
|
|
|
|
if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) {
|
|
/* "No restriction", so the device is allowed to suspend. */
|
|
td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS;
|
|
td->cached_suspend_ok = true;
|
|
} else if (constraint_ns == 0) {
|
|
/*
|
|
* This triggers if one of the children that don't belong to a
|
|
* domain has a zero PM QoS constraint and it's better not to
|
|
* suspend then. effective_constraint_ns is zero already and
|
|
* cached_suspend_ok is false, so bail out.
|
|
*/
|
|
return false;
|
|
} else {
|
|
constraint_ns -= td->suspend_latency_ns +
|
|
td->resume_latency_ns;
|
|
/*
|
|
* effective_constraint_ns is zero already and cached_suspend_ok
|
|
* is false, so if the computed value is not positive, return
|
|
* right away.
|
|
*/
|
|
if (constraint_ns <= 0)
|
|
return false;
|
|
|
|
td->effective_constraint_ns = constraint_ns;
|
|
td->cached_suspend_ok = true;
|
|
}
|
|
|
|
/*
|
|
* The children have been suspended already, so we don't need to take
|
|
* their suspend latencies into account here.
|
|
*/
|
|
return td->cached_suspend_ok;
|
|
}
|
|
|
|
static bool __default_power_down_ok(struct dev_pm_domain *pd,
|
|
unsigned int state)
|
|
{
|
|
struct generic_pm_domain *genpd = pd_to_genpd(pd);
|
|
struct gpd_link *link;
|
|
struct pm_domain_data *pdd;
|
|
s64 min_off_time_ns;
|
|
s64 off_on_time_ns;
|
|
|
|
off_on_time_ns = genpd->states[state].power_off_latency_ns +
|
|
genpd->states[state].power_on_latency_ns;
|
|
|
|
min_off_time_ns = -1;
|
|
/*
|
|
* Check if subdomains can be off for enough time.
|
|
*
|
|
* All subdomains have been powered off already at this point.
|
|
*/
|
|
list_for_each_entry(link, &genpd->master_links, master_node) {
|
|
struct generic_pm_domain *sd = link->slave;
|
|
s64 sd_max_off_ns = sd->max_off_time_ns;
|
|
|
|
if (sd_max_off_ns < 0)
|
|
continue;
|
|
|
|
/*
|
|
* Check if the subdomain is allowed to be off long enough for
|
|
* the current domain to turn off and on (that's how much time
|
|
* it will have to wait worst case).
|
|
*/
|
|
if (sd_max_off_ns <= off_on_time_ns)
|
|
return false;
|
|
|
|
if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0)
|
|
min_off_time_ns = sd_max_off_ns;
|
|
}
|
|
|
|
/*
|
|
* Check if the devices in the domain can be off enough time.
|
|
*/
|
|
list_for_each_entry(pdd, &genpd->dev_list, list_node) {
|
|
struct gpd_timing_data *td;
|
|
s64 constraint_ns;
|
|
|
|
/*
|
|
* Check if the device is allowed to be off long enough for the
|
|
* domain to turn off and on (that's how much time it will
|
|
* have to wait worst case).
|
|
*/
|
|
td = &to_gpd_data(pdd)->td;
|
|
constraint_ns = td->effective_constraint_ns;
|
|
/*
|
|
* Zero means "no suspend at all" and this runs only when all
|
|
* devices in the domain are suspended, so it must be positive.
|
|
*/
|
|
if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS)
|
|
continue;
|
|
|
|
if (constraint_ns <= off_on_time_ns)
|
|
return false;
|
|
|
|
if (min_off_time_ns > constraint_ns || min_off_time_ns < 0)
|
|
min_off_time_ns = constraint_ns;
|
|
}
|
|
|
|
/*
|
|
* If the computed minimum device off time is negative, there are no
|
|
* latency constraints, so the domain can spend arbitrary time in the
|
|
* "off" state.
|
|
*/
|
|
if (min_off_time_ns < 0)
|
|
return true;
|
|
|
|
/*
|
|
* The difference between the computed minimum subdomain or device off
|
|
* time and the time needed to turn the domain on is the maximum
|
|
* theoretical time this domain can spend in the "off" state.
|
|
*/
|
|
genpd->max_off_time_ns = min_off_time_ns -
|
|
genpd->states[state].power_on_latency_ns;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* default_power_down_ok - Default generic PM domain power off governor routine.
|
|
* @pd: PM domain to check.
|
|
*
|
|
* This routine must be executed under the PM domain's lock.
|
|
*/
|
|
static bool default_power_down_ok(struct dev_pm_domain *pd)
|
|
{
|
|
struct generic_pm_domain *genpd = pd_to_genpd(pd);
|
|
struct gpd_link *link;
|
|
|
|
if (!genpd->max_off_time_changed) {
|
|
genpd->state_idx = genpd->cached_power_down_state_idx;
|
|
return genpd->cached_power_down_ok;
|
|
}
|
|
|
|
/*
|
|
* We have to invalidate the cached results for the masters, so
|
|
* use the observation that default_power_down_ok() is not
|
|
* going to be called for any master until this instance
|
|
* returns.
|
|
*/
|
|
list_for_each_entry(link, &genpd->slave_links, slave_node)
|
|
link->master->max_off_time_changed = true;
|
|
|
|
genpd->max_off_time_ns = -1;
|
|
genpd->max_off_time_changed = false;
|
|
genpd->cached_power_down_ok = true;
|
|
genpd->state_idx = genpd->state_count - 1;
|
|
|
|
/* Find a state to power down to, starting from the deepest. */
|
|
while (!__default_power_down_ok(pd, genpd->state_idx)) {
|
|
if (genpd->state_idx == 0) {
|
|
genpd->cached_power_down_ok = false;
|
|
break;
|
|
}
|
|
genpd->state_idx--;
|
|
}
|
|
|
|
genpd->cached_power_down_state_idx = genpd->state_idx;
|
|
return genpd->cached_power_down_ok;
|
|
}
|
|
|
|
static bool always_on_power_down_ok(struct dev_pm_domain *domain)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_IDLE
|
|
static bool cpu_power_down_ok(struct dev_pm_domain *pd)
|
|
{
|
|
struct generic_pm_domain *genpd = pd_to_genpd(pd);
|
|
struct cpuidle_device *dev;
|
|
ktime_t domain_wakeup, next_hrtimer;
|
|
s64 idle_duration_ns;
|
|
int cpu, i;
|
|
|
|
/* Validate dev PM QoS constraints. */
|
|
if (!default_power_down_ok(pd))
|
|
return false;
|
|
|
|
if (!(genpd->flags & GENPD_FLAG_CPU_DOMAIN))
|
|
return true;
|
|
|
|
/*
|
|
* Find the next wakeup for any of the online CPUs within the PM domain
|
|
* and its subdomains. Note, we only need the genpd->cpus, as it already
|
|
* contains a mask of all CPUs from subdomains.
|
|
*/
|
|
domain_wakeup = ktime_set(KTIME_SEC_MAX, 0);
|
|
for_each_cpu_and(cpu, genpd->cpus, cpu_online_mask) {
|
|
dev = per_cpu(cpuidle_devices, cpu);
|
|
if (dev) {
|
|
next_hrtimer = READ_ONCE(dev->next_hrtimer);
|
|
if (ktime_before(next_hrtimer, domain_wakeup))
|
|
domain_wakeup = next_hrtimer;
|
|
}
|
|
}
|
|
|
|
/* The minimum idle duration is from now - until the next wakeup. */
|
|
idle_duration_ns = ktime_to_ns(ktime_sub(domain_wakeup, ktime_get()));
|
|
if (idle_duration_ns <= 0)
|
|
return false;
|
|
|
|
/*
|
|
* Find the deepest idle state that has its residency value satisfied
|
|
* and by also taking into account the power off latency for the state.
|
|
* Start at the state picked by the dev PM QoS constraint validation.
|
|
*/
|
|
i = genpd->state_idx;
|
|
do {
|
|
if (idle_duration_ns >= (genpd->states[i].residency_ns +
|
|
genpd->states[i].power_off_latency_ns)) {
|
|
genpd->state_idx = i;
|
|
return true;
|
|
}
|
|
} while (--i >= 0);
|
|
|
|
return false;
|
|
}
|
|
|
|
struct dev_power_governor pm_domain_cpu_gov = {
|
|
.suspend_ok = default_suspend_ok,
|
|
.power_down_ok = cpu_power_down_ok,
|
|
};
|
|
#endif
|
|
|
|
struct dev_power_governor simple_qos_governor = {
|
|
.suspend_ok = default_suspend_ok,
|
|
.power_down_ok = default_power_down_ok,
|
|
};
|
|
|
|
/**
|
|
* pm_genpd_gov_always_on - A governor implementing an always-on policy
|
|
*/
|
|
struct dev_power_governor pm_domain_always_on_gov = {
|
|
.power_down_ok = always_on_power_down_ok,
|
|
.suspend_ok = default_suspend_ok,
|
|
};
|