mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 14:29:38 +07:00
6c3f6e6c57
Add support for Toshiba Illumination. This is a set of LEDs installed on some Toshiba laptops. It is controlled through ACPI, the commands has been found through reverse engineering. It has been tested on a Toshiba Qosmio G50-122. Signed-off-by: Pierre Ducroquet <pinaraf@pinaraf.info> Signed-off-by: Matthew Garrett <mjg@redhat.com>
1132 lines
27 KiB
C
1132 lines
27 KiB
C
/*
|
||
* toshiba_acpi.c - Toshiba Laptop ACPI Extras
|
||
*
|
||
*
|
||
* Copyright (C) 2002-2004 John Belmonte
|
||
* Copyright (C) 2008 Philip Langdale
|
||
* Copyright (C) 2010 Pierre Ducroquet
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, write to the Free Software
|
||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
*
|
||
*
|
||
* The devolpment page for this driver is located at
|
||
* http://memebeam.org/toys/ToshibaAcpiDriver.
|
||
*
|
||
* Credits:
|
||
* Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
|
||
* engineering the Windows drivers
|
||
* Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
|
||
* Rob Miller - TV out and hotkeys help
|
||
*
|
||
*
|
||
* TODO
|
||
*
|
||
*/
|
||
|
||
#define TOSHIBA_ACPI_VERSION "0.19"
|
||
#define PROC_INTERFACE_VERSION 1
|
||
|
||
#include <linux/kernel.h>
|
||
#include <linux/module.h>
|
||
#include <linux/init.h>
|
||
#include <linux/types.h>
|
||
#include <linux/proc_fs.h>
|
||
#include <linux/seq_file.h>
|
||
#include <linux/backlight.h>
|
||
#include <linux/platform_device.h>
|
||
#include <linux/rfkill.h>
|
||
#include <linux/input.h>
|
||
#include <linux/leds.h>
|
||
#include <linux/slab.h>
|
||
|
||
#include <asm/uaccess.h>
|
||
|
||
#include <acpi/acpi_drivers.h>
|
||
|
||
MODULE_AUTHOR("John Belmonte");
|
||
MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
|
||
MODULE_LICENSE("GPL");
|
||
|
||
#define MY_LOGPREFIX "toshiba_acpi: "
|
||
#define MY_ERR KERN_ERR MY_LOGPREFIX
|
||
#define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
|
||
#define MY_INFO KERN_INFO MY_LOGPREFIX
|
||
|
||
/* Toshiba ACPI method paths */
|
||
#define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
|
||
#define TOSH_INTERFACE_1 "\\_SB_.VALD"
|
||
#define TOSH_INTERFACE_2 "\\_SB_.VALZ"
|
||
#define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
|
||
#define GHCI_METHOD ".GHCI"
|
||
|
||
/* Toshiba HCI interface definitions
|
||
*
|
||
* HCI is Toshiba's "Hardware Control Interface" which is supposed to
|
||
* be uniform across all their models. Ideally we would just call
|
||
* dedicated ACPI methods instead of using this primitive interface.
|
||
* However the ACPI methods seem to be incomplete in some areas (for
|
||
* example they allow setting, but not reading, the LCD brightness value),
|
||
* so this is still useful.
|
||
*/
|
||
|
||
#define HCI_WORDS 6
|
||
|
||
/* operations */
|
||
#define HCI_SET 0xff00
|
||
#define HCI_GET 0xfe00
|
||
|
||
/* return codes */
|
||
#define HCI_SUCCESS 0x0000
|
||
#define HCI_FAILURE 0x1000
|
||
#define HCI_NOT_SUPPORTED 0x8000
|
||
#define HCI_EMPTY 0x8c00
|
||
|
||
/* registers */
|
||
#define HCI_FAN 0x0004
|
||
#define HCI_SYSTEM_EVENT 0x0016
|
||
#define HCI_VIDEO_OUT 0x001c
|
||
#define HCI_HOTKEY_EVENT 0x001e
|
||
#define HCI_LCD_BRIGHTNESS 0x002a
|
||
#define HCI_WIRELESS 0x0056
|
||
|
||
/* field definitions */
|
||
#define HCI_LCD_BRIGHTNESS_BITS 3
|
||
#define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
|
||
#define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
|
||
#define HCI_VIDEO_OUT_LCD 0x1
|
||
#define HCI_VIDEO_OUT_CRT 0x2
|
||
#define HCI_VIDEO_OUT_TV 0x4
|
||
#define HCI_WIRELESS_KILL_SWITCH 0x01
|
||
#define HCI_WIRELESS_BT_PRESENT 0x0f
|
||
#define HCI_WIRELESS_BT_ATTACH 0x40
|
||
#define HCI_WIRELESS_BT_POWER 0x80
|
||
|
||
static const struct acpi_device_id toshiba_device_ids[] = {
|
||
{"TOS6200", 0},
|
||
{"TOS6208", 0},
|
||
{"TOS1900", 0},
|
||
{"", 0},
|
||
};
|
||
MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
|
||
|
||
struct key_entry {
|
||
char type;
|
||
u16 code;
|
||
u16 keycode;
|
||
};
|
||
|
||
enum {KE_KEY, KE_END};
|
||
|
||
static struct key_entry toshiba_acpi_keymap[] = {
|
||
{KE_KEY, 0x101, KEY_MUTE},
|
||
{KE_KEY, 0x102, KEY_ZOOMOUT},
|
||
{KE_KEY, 0x103, KEY_ZOOMIN},
|
||
{KE_KEY, 0x13b, KEY_COFFEE},
|
||
{KE_KEY, 0x13c, KEY_BATTERY},
|
||
{KE_KEY, 0x13d, KEY_SLEEP},
|
||
{KE_KEY, 0x13e, KEY_SUSPEND},
|
||
{KE_KEY, 0x13f, KEY_SWITCHVIDEOMODE},
|
||
{KE_KEY, 0x140, KEY_BRIGHTNESSDOWN},
|
||
{KE_KEY, 0x141, KEY_BRIGHTNESSUP},
|
||
{KE_KEY, 0x142, KEY_WLAN},
|
||
{KE_KEY, 0x143, KEY_PROG1},
|
||
{KE_KEY, 0xb05, KEY_PROG2},
|
||
{KE_KEY, 0xb06, KEY_WWW},
|
||
{KE_KEY, 0xb07, KEY_MAIL},
|
||
{KE_KEY, 0xb30, KEY_STOP},
|
||
{KE_KEY, 0xb31, KEY_PREVIOUSSONG},
|
||
{KE_KEY, 0xb32, KEY_NEXTSONG},
|
||
{KE_KEY, 0xb33, KEY_PLAYPAUSE},
|
||
{KE_KEY, 0xb5a, KEY_MEDIA},
|
||
{KE_END, 0, 0},
|
||
};
|
||
|
||
/* utility
|
||
*/
|
||
|
||
static __inline__ void _set_bit(u32 * word, u32 mask, int value)
|
||
{
|
||
*word = (*word & ~mask) | (mask * value);
|
||
}
|
||
|
||
/* acpi interface wrappers
|
||
*/
|
||
|
||
static int is_valid_acpi_path(const char *methodName)
|
||
{
|
||
acpi_handle handle;
|
||
acpi_status status;
|
||
|
||
status = acpi_get_handle(NULL, (char *)methodName, &handle);
|
||
return !ACPI_FAILURE(status);
|
||
}
|
||
|
||
static int write_acpi_int(const char *methodName, int val)
|
||
{
|
||
struct acpi_object_list params;
|
||
union acpi_object in_objs[1];
|
||
acpi_status status;
|
||
|
||
params.count = ARRAY_SIZE(in_objs);
|
||
params.pointer = in_objs;
|
||
in_objs[0].type = ACPI_TYPE_INTEGER;
|
||
in_objs[0].integer.value = val;
|
||
|
||
status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL);
|
||
return (status == AE_OK);
|
||
}
|
||
|
||
#if 0
|
||
static int read_acpi_int(const char *methodName, int *pVal)
|
||
{
|
||
struct acpi_buffer results;
|
||
union acpi_object out_objs[1];
|
||
acpi_status status;
|
||
|
||
results.length = sizeof(out_objs);
|
||
results.pointer = out_objs;
|
||
|
||
status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
|
||
*pVal = out_objs[0].integer.value;
|
||
|
||
return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
|
||
}
|
||
#endif
|
||
|
||
static const char *method_hci /*= 0*/ ;
|
||
|
||
/* Perform a raw HCI call. Here we don't care about input or output buffer
|
||
* format.
|
||
*/
|
||
static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
|
||
{
|
||
struct acpi_object_list params;
|
||
union acpi_object in_objs[HCI_WORDS];
|
||
struct acpi_buffer results;
|
||
union acpi_object out_objs[HCI_WORDS + 1];
|
||
acpi_status status;
|
||
int i;
|
||
|
||
params.count = HCI_WORDS;
|
||
params.pointer = in_objs;
|
||
for (i = 0; i < HCI_WORDS; ++i) {
|
||
in_objs[i].type = ACPI_TYPE_INTEGER;
|
||
in_objs[i].integer.value = in[i];
|
||
}
|
||
|
||
results.length = sizeof(out_objs);
|
||
results.pointer = out_objs;
|
||
|
||
status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms,
|
||
&results);
|
||
if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
|
||
for (i = 0; i < out_objs->package.count; ++i) {
|
||
out[i] = out_objs->package.elements[i].integer.value;
|
||
}
|
||
}
|
||
|
||
return status;
|
||
}
|
||
|
||
/* common hci tasks (get or set one or two value)
|
||
*
|
||
* In addition to the ACPI status, the HCI system returns a result which
|
||
* may be useful (such as "not supported").
|
||
*/
|
||
|
||
static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
|
||
{
|
||
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
|
||
u32 out[HCI_WORDS];
|
||
acpi_status status = hci_raw(in, out);
|
||
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
return status;
|
||
}
|
||
|
||
static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
|
||
{
|
||
u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
|
||
u32 out[HCI_WORDS];
|
||
acpi_status status = hci_raw(in, out);
|
||
*out1 = out[2];
|
||
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
return status;
|
||
}
|
||
|
||
static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
|
||
{
|
||
u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
|
||
u32 out[HCI_WORDS];
|
||
acpi_status status = hci_raw(in, out);
|
||
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
return status;
|
||
}
|
||
|
||
static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
|
||
{
|
||
u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
|
||
u32 out[HCI_WORDS];
|
||
acpi_status status = hci_raw(in, out);
|
||
*out1 = out[2];
|
||
*out2 = out[3];
|
||
*result = (status == AE_OK) ? out[0] : HCI_FAILURE;
|
||
return status;
|
||
}
|
||
|
||
struct toshiba_acpi_dev {
|
||
struct platform_device *p_dev;
|
||
struct rfkill *bt_rfk;
|
||
struct input_dev *hotkey_dev;
|
||
int illumination_installed;
|
||
acpi_handle handle;
|
||
|
||
const char *bt_name;
|
||
|
||
struct mutex mutex;
|
||
};
|
||
|
||
/* Illumination support */
|
||
static int toshiba_illumination_available(void)
|
||
{
|
||
u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
|
||
u32 out[HCI_WORDS];
|
||
acpi_status status;
|
||
|
||
in[0] = 0xf100;
|
||
status = hci_raw(in, out);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "Illumination device not available\n");
|
||
return 0;
|
||
}
|
||
in[0] = 0xf400;
|
||
status = hci_raw(in, out);
|
||
return 1;
|
||
}
|
||
|
||
static void toshiba_illumination_set(struct led_classdev *cdev,
|
||
enum led_brightness brightness)
|
||
{
|
||
u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
|
||
u32 out[HCI_WORDS];
|
||
acpi_status status;
|
||
|
||
/* First request : initialize communication. */
|
||
in[0] = 0xf100;
|
||
status = hci_raw(in, out);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "Illumination device not available\n");
|
||
return;
|
||
}
|
||
|
||
if (brightness) {
|
||
/* Switch the illumination on */
|
||
in[0] = 0xf400;
|
||
in[1] = 0x14e;
|
||
in[2] = 1;
|
||
status = hci_raw(in, out);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "ACPI call for illumination failed.\n");
|
||
return;
|
||
}
|
||
} else {
|
||
/* Switch the illumination off */
|
||
in[0] = 0xf400;
|
||
in[1] = 0x14e;
|
||
in[2] = 0;
|
||
status = hci_raw(in, out);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "ACPI call for illumination failed.\n");
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Last request : close communication. */
|
||
in[0] = 0xf200;
|
||
in[1] = 0;
|
||
in[2] = 0;
|
||
hci_raw(in, out);
|
||
}
|
||
|
||
static enum led_brightness toshiba_illumination_get(struct led_classdev *cdev)
|
||
{
|
||
u32 in[HCI_WORDS] = { 0, 0, 0, 0, 0, 0 };
|
||
u32 out[HCI_WORDS];
|
||
acpi_status status;
|
||
enum led_brightness result;
|
||
|
||
/* First request : initialize communication. */
|
||
in[0] = 0xf100;
|
||
status = hci_raw(in, out);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "Illumination device not available\n");
|
||
return LED_OFF;
|
||
}
|
||
|
||
/* Check the illumination */
|
||
in[0] = 0xf300;
|
||
in[1] = 0x14e;
|
||
status = hci_raw(in, out);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "ACPI call for illumination failed.\n");
|
||
return LED_OFF;
|
||
}
|
||
|
||
result = out[2] ? LED_FULL : LED_OFF;
|
||
|
||
/* Last request : close communication. */
|
||
in[0] = 0xf200;
|
||
in[1] = 0;
|
||
in[2] = 0;
|
||
hci_raw(in, out);
|
||
|
||
return result;
|
||
}
|
||
|
||
static struct led_classdev toshiba_led = {
|
||
.name = "toshiba::illumination",
|
||
.max_brightness = 1,
|
||
.brightness_set = toshiba_illumination_set,
|
||
.brightness_get = toshiba_illumination_get,
|
||
};
|
||
|
||
static struct toshiba_acpi_dev toshiba_acpi = {
|
||
.bt_name = "Toshiba Bluetooth",
|
||
};
|
||
|
||
/* Bluetooth rfkill handlers */
|
||
|
||
static u32 hci_get_bt_present(bool *present)
|
||
{
|
||
u32 hci_result;
|
||
u32 value, value2;
|
||
|
||
value = 0;
|
||
value2 = 0;
|
||
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
||
if (hci_result == HCI_SUCCESS)
|
||
*present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
|
||
|
||
return hci_result;
|
||
}
|
||
|
||
static u32 hci_get_radio_state(bool *radio_state)
|
||
{
|
||
u32 hci_result;
|
||
u32 value, value2;
|
||
|
||
value = 0;
|
||
value2 = 0x0001;
|
||
hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
|
||
|
||
*radio_state = value & HCI_WIRELESS_KILL_SWITCH;
|
||
return hci_result;
|
||
}
|
||
|
||
static int bt_rfkill_set_block(void *data, bool blocked)
|
||
{
|
||
struct toshiba_acpi_dev *dev = data;
|
||
u32 result1, result2;
|
||
u32 value;
|
||
int err;
|
||
bool radio_state;
|
||
|
||
value = (blocked == false);
|
||
|
||
mutex_lock(&dev->mutex);
|
||
if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
|
||
err = -EBUSY;
|
||
goto out;
|
||
}
|
||
|
||
if (!radio_state) {
|
||
err = 0;
|
||
goto out;
|
||
}
|
||
|
||
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
|
||
hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
|
||
|
||
if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
|
||
err = -EBUSY;
|
||
else
|
||
err = 0;
|
||
out:
|
||
mutex_unlock(&dev->mutex);
|
||
return err;
|
||
}
|
||
|
||
static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
|
||
{
|
||
bool new_rfk_state;
|
||
bool value;
|
||
u32 hci_result;
|
||
struct toshiba_acpi_dev *dev = data;
|
||
|
||
mutex_lock(&dev->mutex);
|
||
|
||
hci_result = hci_get_radio_state(&value);
|
||
if (hci_result != HCI_SUCCESS) {
|
||
/* Can't do anything useful */
|
||
mutex_unlock(&dev->mutex);
|
||
return;
|
||
}
|
||
|
||
new_rfk_state = value;
|
||
|
||
mutex_unlock(&dev->mutex);
|
||
|
||
if (rfkill_set_hw_state(rfkill, !new_rfk_state))
|
||
bt_rfkill_set_block(data, true);
|
||
}
|
||
|
||
static const struct rfkill_ops toshiba_rfk_ops = {
|
||
.set_block = bt_rfkill_set_block,
|
||
.poll = bt_rfkill_poll,
|
||
};
|
||
|
||
static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
|
||
static struct backlight_device *toshiba_backlight_device;
|
||
static int force_fan;
|
||
static int last_key_event;
|
||
static int key_event_valid;
|
||
|
||
static int get_lcd(struct backlight_device *bd)
|
||
{
|
||
u32 hci_result;
|
||
u32 value;
|
||
|
||
hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
|
||
if (hci_result == HCI_SUCCESS) {
|
||
return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
|
||
} else
|
||
return -EFAULT;
|
||
}
|
||
|
||
static int lcd_proc_show(struct seq_file *m, void *v)
|
||
{
|
||
int value = get_lcd(NULL);
|
||
|
||
if (value >= 0) {
|
||
seq_printf(m, "brightness: %d\n", value);
|
||
seq_printf(m, "brightness_levels: %d\n",
|
||
HCI_LCD_BRIGHTNESS_LEVELS);
|
||
} else {
|
||
printk(MY_ERR "Error reading LCD brightness\n");
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int lcd_proc_open(struct inode *inode, struct file *file)
|
||
{
|
||
return single_open(file, lcd_proc_show, NULL);
|
||
}
|
||
|
||
static int set_lcd(int value)
|
||
{
|
||
u32 hci_result;
|
||
|
||
value = value << HCI_LCD_BRIGHTNESS_SHIFT;
|
||
hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
|
||
if (hci_result != HCI_SUCCESS)
|
||
return -EFAULT;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int set_lcd_status(struct backlight_device *bd)
|
||
{
|
||
return set_lcd(bd->props.brightness);
|
||
}
|
||
|
||
static ssize_t lcd_proc_write(struct file *file, const char __user *buf,
|
||
size_t count, loff_t *pos)
|
||
{
|
||
char cmd[42];
|
||
size_t len;
|
||
int value;
|
||
int ret;
|
||
|
||
len = min(count, sizeof(cmd) - 1);
|
||
if (copy_from_user(cmd, buf, len))
|
||
return -EFAULT;
|
||
cmd[len] = '\0';
|
||
|
||
if (sscanf(cmd, " brightness : %i", &value) == 1 &&
|
||
value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
|
||
ret = set_lcd(value);
|
||
if (ret == 0)
|
||
ret = count;
|
||
} else {
|
||
ret = -EINVAL;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
static const struct file_operations lcd_proc_fops = {
|
||
.owner = THIS_MODULE,
|
||
.open = lcd_proc_open,
|
||
.read = seq_read,
|
||
.llseek = seq_lseek,
|
||
.release = single_release,
|
||
.write = lcd_proc_write,
|
||
};
|
||
|
||
static int video_proc_show(struct seq_file *m, void *v)
|
||
{
|
||
u32 hci_result;
|
||
u32 value;
|
||
|
||
hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
|
||
if (hci_result == HCI_SUCCESS) {
|
||
int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
|
||
int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
|
||
int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
|
||
seq_printf(m, "lcd_out: %d\n", is_lcd);
|
||
seq_printf(m, "crt_out: %d\n", is_crt);
|
||
seq_printf(m, "tv_out: %d\n", is_tv);
|
||
} else {
|
||
printk(MY_ERR "Error reading video out status\n");
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int video_proc_open(struct inode *inode, struct file *file)
|
||
{
|
||
return single_open(file, video_proc_show, NULL);
|
||
}
|
||
|
||
static ssize_t video_proc_write(struct file *file, const char __user *buf,
|
||
size_t count, loff_t *pos)
|
||
{
|
||
char *cmd, *buffer;
|
||
int value;
|
||
int remain = count;
|
||
int lcd_out = -1;
|
||
int crt_out = -1;
|
||
int tv_out = -1;
|
||
u32 hci_result;
|
||
u32 video_out;
|
||
|
||
cmd = kmalloc(count + 1, GFP_KERNEL);
|
||
if (!cmd)
|
||
return -ENOMEM;
|
||
if (copy_from_user(cmd, buf, count)) {
|
||
kfree(cmd);
|
||
return -EFAULT;
|
||
}
|
||
cmd[count] = '\0';
|
||
|
||
buffer = cmd;
|
||
|
||
/* scan expression. Multiple expressions may be delimited with ;
|
||
*
|
||
* NOTE: to keep scanning simple, invalid fields are ignored
|
||
*/
|
||
while (remain) {
|
||
if (sscanf(buffer, " lcd_out : %i", &value) == 1)
|
||
lcd_out = value & 1;
|
||
else if (sscanf(buffer, " crt_out : %i", &value) == 1)
|
||
crt_out = value & 1;
|
||
else if (sscanf(buffer, " tv_out : %i", &value) == 1)
|
||
tv_out = value & 1;
|
||
/* advance to one character past the next ; */
|
||
do {
|
||
++buffer;
|
||
--remain;
|
||
}
|
||
while (remain && *(buffer - 1) != ';');
|
||
}
|
||
|
||
kfree(cmd);
|
||
|
||
hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
|
||
if (hci_result == HCI_SUCCESS) {
|
||
unsigned int new_video_out = video_out;
|
||
if (lcd_out != -1)
|
||
_set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
|
||
if (crt_out != -1)
|
||
_set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
|
||
if (tv_out != -1)
|
||
_set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
|
||
/* To avoid unnecessary video disruption, only write the new
|
||
* video setting if something changed. */
|
||
if (new_video_out != video_out)
|
||
write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
|
||
} else {
|
||
return -EFAULT;
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
static const struct file_operations video_proc_fops = {
|
||
.owner = THIS_MODULE,
|
||
.open = video_proc_open,
|
||
.read = seq_read,
|
||
.llseek = seq_lseek,
|
||
.release = single_release,
|
||
.write = video_proc_write,
|
||
};
|
||
|
||
static int fan_proc_show(struct seq_file *m, void *v)
|
||
{
|
||
u32 hci_result;
|
||
u32 value;
|
||
|
||
hci_read1(HCI_FAN, &value, &hci_result);
|
||
if (hci_result == HCI_SUCCESS) {
|
||
seq_printf(m, "running: %d\n", (value > 0));
|
||
seq_printf(m, "force_on: %d\n", force_fan);
|
||
} else {
|
||
printk(MY_ERR "Error reading fan status\n");
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int fan_proc_open(struct inode *inode, struct file *file)
|
||
{
|
||
return single_open(file, fan_proc_show, NULL);
|
||
}
|
||
|
||
static ssize_t fan_proc_write(struct file *file, const char __user *buf,
|
||
size_t count, loff_t *pos)
|
||
{
|
||
char cmd[42];
|
||
size_t len;
|
||
int value;
|
||
u32 hci_result;
|
||
|
||
len = min(count, sizeof(cmd) - 1);
|
||
if (copy_from_user(cmd, buf, len))
|
||
return -EFAULT;
|
||
cmd[len] = '\0';
|
||
|
||
if (sscanf(cmd, " force_on : %i", &value) == 1 &&
|
||
value >= 0 && value <= 1) {
|
||
hci_write1(HCI_FAN, value, &hci_result);
|
||
if (hci_result != HCI_SUCCESS)
|
||
return -EFAULT;
|
||
else
|
||
force_fan = value;
|
||
} else {
|
||
return -EINVAL;
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
static const struct file_operations fan_proc_fops = {
|
||
.owner = THIS_MODULE,
|
||
.open = fan_proc_open,
|
||
.read = seq_read,
|
||
.llseek = seq_lseek,
|
||
.release = single_release,
|
||
.write = fan_proc_write,
|
||
};
|
||
|
||
static int keys_proc_show(struct seq_file *m, void *v)
|
||
{
|
||
u32 hci_result;
|
||
u32 value;
|
||
|
||
if (!key_event_valid) {
|
||
hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
|
||
if (hci_result == HCI_SUCCESS) {
|
||
key_event_valid = 1;
|
||
last_key_event = value;
|
||
} else if (hci_result == HCI_EMPTY) {
|
||
/* better luck next time */
|
||
} else if (hci_result == HCI_NOT_SUPPORTED) {
|
||
/* This is a workaround for an unresolved issue on
|
||
* some machines where system events sporadically
|
||
* become disabled. */
|
||
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
|
||
printk(MY_NOTICE "Re-enabled hotkeys\n");
|
||
} else {
|
||
printk(MY_ERR "Error reading hotkey status\n");
|
||
goto end;
|
||
}
|
||
}
|
||
|
||
seq_printf(m, "hotkey_ready: %d\n", key_event_valid);
|
||
seq_printf(m, "hotkey: 0x%04x\n", last_key_event);
|
||
end:
|
||
return 0;
|
||
}
|
||
|
||
static int keys_proc_open(struct inode *inode, struct file *file)
|
||
{
|
||
return single_open(file, keys_proc_show, NULL);
|
||
}
|
||
|
||
static ssize_t keys_proc_write(struct file *file, const char __user *buf,
|
||
size_t count, loff_t *pos)
|
||
{
|
||
char cmd[42];
|
||
size_t len;
|
||
int value;
|
||
|
||
len = min(count, sizeof(cmd) - 1);
|
||
if (copy_from_user(cmd, buf, len))
|
||
return -EFAULT;
|
||
cmd[len] = '\0';
|
||
|
||
if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) {
|
||
key_event_valid = 0;
|
||
} else {
|
||
return -EINVAL;
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
static const struct file_operations keys_proc_fops = {
|
||
.owner = THIS_MODULE,
|
||
.open = keys_proc_open,
|
||
.read = seq_read,
|
||
.llseek = seq_lseek,
|
||
.release = single_release,
|
||
.write = keys_proc_write,
|
||
};
|
||
|
||
static int version_proc_show(struct seq_file *m, void *v)
|
||
{
|
||
seq_printf(m, "driver: %s\n", TOSHIBA_ACPI_VERSION);
|
||
seq_printf(m, "proc_interface: %d\n", PROC_INTERFACE_VERSION);
|
||
return 0;
|
||
}
|
||
|
||
static int version_proc_open(struct inode *inode, struct file *file)
|
||
{
|
||
return single_open(file, version_proc_show, PDE(inode)->data);
|
||
}
|
||
|
||
static const struct file_operations version_proc_fops = {
|
||
.owner = THIS_MODULE,
|
||
.open = version_proc_open,
|
||
.read = seq_read,
|
||
.llseek = seq_lseek,
|
||
.release = single_release,
|
||
};
|
||
|
||
/* proc and module init
|
||
*/
|
||
|
||
#define PROC_TOSHIBA "toshiba"
|
||
|
||
static void __init create_toshiba_proc_entries(void)
|
||
{
|
||
proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops);
|
||
proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops);
|
||
proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops);
|
||
proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops);
|
||
proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops);
|
||
}
|
||
|
||
static void remove_toshiba_proc_entries(void)
|
||
{
|
||
remove_proc_entry("lcd", toshiba_proc_dir);
|
||
remove_proc_entry("video", toshiba_proc_dir);
|
||
remove_proc_entry("fan", toshiba_proc_dir);
|
||
remove_proc_entry("keys", toshiba_proc_dir);
|
||
remove_proc_entry("version", toshiba_proc_dir);
|
||
}
|
||
|
||
static struct backlight_ops toshiba_backlight_data = {
|
||
.get_brightness = get_lcd,
|
||
.update_status = set_lcd_status,
|
||
};
|
||
|
||
static struct key_entry *toshiba_acpi_get_entry_by_scancode(unsigned int code)
|
||
{
|
||
struct key_entry *key;
|
||
|
||
for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
|
||
if (code == key->code)
|
||
return key;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static struct key_entry *toshiba_acpi_get_entry_by_keycode(unsigned int code)
|
||
{
|
||
struct key_entry *key;
|
||
|
||
for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
|
||
if (code == key->keycode && key->type == KE_KEY)
|
||
return key;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int toshiba_acpi_getkeycode(struct input_dev *dev,
|
||
unsigned int scancode, unsigned int *keycode)
|
||
{
|
||
struct key_entry *key = toshiba_acpi_get_entry_by_scancode(scancode);
|
||
|
||
if (key && key->type == KE_KEY) {
|
||
*keycode = key->keycode;
|
||
return 0;
|
||
}
|
||
|
||
return -EINVAL;
|
||
}
|
||
|
||
static int toshiba_acpi_setkeycode(struct input_dev *dev,
|
||
unsigned int scancode, unsigned int keycode)
|
||
{
|
||
struct key_entry *key;
|
||
unsigned int old_keycode;
|
||
|
||
key = toshiba_acpi_get_entry_by_scancode(scancode);
|
||
if (key && key->type == KE_KEY) {
|
||
old_keycode = key->keycode;
|
||
key->keycode = keycode;
|
||
set_bit(keycode, dev->keybit);
|
||
if (!toshiba_acpi_get_entry_by_keycode(old_keycode))
|
||
clear_bit(old_keycode, dev->keybit);
|
||
return 0;
|
||
}
|
||
|
||
return -EINVAL;
|
||
}
|
||
|
||
static void toshiba_acpi_notify(acpi_handle handle, u32 event, void *context)
|
||
{
|
||
u32 hci_result, value;
|
||
struct key_entry *key;
|
||
|
||
if (event != 0x80)
|
||
return;
|
||
do {
|
||
hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
|
||
if (hci_result == HCI_SUCCESS) {
|
||
if (value == 0x100)
|
||
continue;
|
||
/* act on key press; ignore key release */
|
||
if (value & 0x80)
|
||
continue;
|
||
|
||
key = toshiba_acpi_get_entry_by_scancode
|
||
(value);
|
||
if (!key) {
|
||
printk(MY_INFO "Unknown key %x\n",
|
||
value);
|
||
continue;
|
||
}
|
||
input_report_key(toshiba_acpi.hotkey_dev,
|
||
key->keycode, 1);
|
||
input_sync(toshiba_acpi.hotkey_dev);
|
||
input_report_key(toshiba_acpi.hotkey_dev,
|
||
key->keycode, 0);
|
||
input_sync(toshiba_acpi.hotkey_dev);
|
||
} else if (hci_result == HCI_NOT_SUPPORTED) {
|
||
/* This is a workaround for an unresolved issue on
|
||
* some machines where system events sporadically
|
||
* become disabled. */
|
||
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
|
||
printk(MY_NOTICE "Re-enabled hotkeys\n");
|
||
}
|
||
} while (hci_result != HCI_EMPTY);
|
||
}
|
||
|
||
static int toshiba_acpi_setup_keyboard(char *device)
|
||
{
|
||
acpi_status status;
|
||
acpi_handle handle;
|
||
int result;
|
||
const struct key_entry *key;
|
||
|
||
status = acpi_get_handle(NULL, device, &handle);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "Unable to get notification device\n");
|
||
return -ENODEV;
|
||
}
|
||
|
||
toshiba_acpi.handle = handle;
|
||
|
||
status = acpi_evaluate_object(handle, "ENAB", NULL, NULL);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "Unable to enable hotkeys\n");
|
||
return -ENODEV;
|
||
}
|
||
|
||
status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY,
|
||
toshiba_acpi_notify, NULL);
|
||
if (ACPI_FAILURE(status)) {
|
||
printk(MY_INFO "Unable to install hotkey notification\n");
|
||
return -ENODEV;
|
||
}
|
||
|
||
toshiba_acpi.hotkey_dev = input_allocate_device();
|
||
if (!toshiba_acpi.hotkey_dev) {
|
||
printk(MY_INFO "Unable to register input device\n");
|
||
return -ENOMEM;
|
||
}
|
||
|
||
toshiba_acpi.hotkey_dev->name = "Toshiba input device";
|
||
toshiba_acpi.hotkey_dev->phys = device;
|
||
toshiba_acpi.hotkey_dev->id.bustype = BUS_HOST;
|
||
toshiba_acpi.hotkey_dev->getkeycode = toshiba_acpi_getkeycode;
|
||
toshiba_acpi.hotkey_dev->setkeycode = toshiba_acpi_setkeycode;
|
||
|
||
for (key = toshiba_acpi_keymap; key->type != KE_END; key++) {
|
||
set_bit(EV_KEY, toshiba_acpi.hotkey_dev->evbit);
|
||
set_bit(key->keycode, toshiba_acpi.hotkey_dev->keybit);
|
||
}
|
||
|
||
result = input_register_device(toshiba_acpi.hotkey_dev);
|
||
if (result) {
|
||
printk(MY_INFO "Unable to register input device\n");
|
||
return result;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void toshiba_acpi_exit(void)
|
||
{
|
||
if (toshiba_acpi.hotkey_dev)
|
||
input_unregister_device(toshiba_acpi.hotkey_dev);
|
||
|
||
if (toshiba_acpi.bt_rfk) {
|
||
rfkill_unregister(toshiba_acpi.bt_rfk);
|
||
rfkill_destroy(toshiba_acpi.bt_rfk);
|
||
}
|
||
|
||
if (toshiba_backlight_device)
|
||
backlight_device_unregister(toshiba_backlight_device);
|
||
|
||
remove_toshiba_proc_entries();
|
||
|
||
if (toshiba_proc_dir)
|
||
remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
|
||
|
||
acpi_remove_notify_handler(toshiba_acpi.handle, ACPI_DEVICE_NOTIFY,
|
||
toshiba_acpi_notify);
|
||
|
||
if (toshiba_acpi.illumination_installed)
|
||
led_classdev_unregister(&toshiba_led);
|
||
|
||
platform_device_unregister(toshiba_acpi.p_dev);
|
||
|
||
return;
|
||
}
|
||
|
||
static int __init toshiba_acpi_init(void)
|
||
{
|
||
u32 hci_result;
|
||
bool bt_present;
|
||
int ret = 0;
|
||
struct backlight_properties props;
|
||
|
||
if (acpi_disabled)
|
||
return -ENODEV;
|
||
|
||
/* simple device detection: look for HCI method */
|
||
if (is_valid_acpi_path(TOSH_INTERFACE_1 GHCI_METHOD)) {
|
||
method_hci = TOSH_INTERFACE_1 GHCI_METHOD;
|
||
if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_1))
|
||
printk(MY_INFO "Unable to activate hotkeys\n");
|
||
} else if (is_valid_acpi_path(TOSH_INTERFACE_2 GHCI_METHOD)) {
|
||
method_hci = TOSH_INTERFACE_2 GHCI_METHOD;
|
||
if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_2))
|
||
printk(MY_INFO "Unable to activate hotkeys\n");
|
||
} else
|
||
return -ENODEV;
|
||
|
||
printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
|
||
TOSHIBA_ACPI_VERSION);
|
||
printk(MY_INFO " HCI method: %s\n", method_hci);
|
||
|
||
mutex_init(&toshiba_acpi.mutex);
|
||
|
||
toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
|
||
-1, NULL, 0);
|
||
if (IS_ERR(toshiba_acpi.p_dev)) {
|
||
ret = PTR_ERR(toshiba_acpi.p_dev);
|
||
printk(MY_ERR "unable to register platform device\n");
|
||
toshiba_acpi.p_dev = NULL;
|
||
toshiba_acpi_exit();
|
||
return ret;
|
||
}
|
||
|
||
force_fan = 0;
|
||
key_event_valid = 0;
|
||
|
||
/* enable event fifo */
|
||
hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
|
||
|
||
toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
|
||
if (!toshiba_proc_dir) {
|
||
toshiba_acpi_exit();
|
||
return -ENODEV;
|
||
} else {
|
||
create_toshiba_proc_entries();
|
||
}
|
||
|
||
props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
|
||
toshiba_backlight_device = backlight_device_register("toshiba",
|
||
&toshiba_acpi.p_dev->dev,
|
||
NULL,
|
||
&toshiba_backlight_data,
|
||
&props);
|
||
if (IS_ERR(toshiba_backlight_device)) {
|
||
ret = PTR_ERR(toshiba_backlight_device);
|
||
|
||
printk(KERN_ERR "Could not register toshiba backlight device\n");
|
||
toshiba_backlight_device = NULL;
|
||
toshiba_acpi_exit();
|
||
return ret;
|
||
}
|
||
|
||
/* Register rfkill switch for Bluetooth */
|
||
if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
|
||
toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
|
||
&toshiba_acpi.p_dev->dev,
|
||
RFKILL_TYPE_BLUETOOTH,
|
||
&toshiba_rfk_ops,
|
||
&toshiba_acpi);
|
||
if (!toshiba_acpi.bt_rfk) {
|
||
printk(MY_ERR "unable to allocate rfkill device\n");
|
||
toshiba_acpi_exit();
|
||
return -ENOMEM;
|
||
}
|
||
|
||
ret = rfkill_register(toshiba_acpi.bt_rfk);
|
||
if (ret) {
|
||
printk(MY_ERR "unable to register rfkill device\n");
|
||
rfkill_destroy(toshiba_acpi.bt_rfk);
|
||
toshiba_acpi_exit();
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
toshiba_acpi.illumination_installed = 0;
|
||
if (toshiba_illumination_available()) {
|
||
if (!led_classdev_register(&(toshiba_acpi.p_dev->dev),
|
||
&toshiba_led))
|
||
toshiba_acpi.illumination_installed = 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
module_init(toshiba_acpi_init);
|
||
module_exit(toshiba_acpi_exit);
|