mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 11:05:07 +07:00
0385971754
bmd is allocated using kmalloc in bio_alloc_map_data, so make sure
is_null_mapped is properly initialized to false for the !null_mapped
case.
Fixes: f3256075ba
("block: remove the BIO_NULL_MAPPED flag")
Reported-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
719 lines
16 KiB
C
719 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions related to mapping data to requests
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/module.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include "blk.h"
|
|
|
|
struct bio_map_data {
|
|
bool is_our_pages : 1;
|
|
bool is_null_mapped : 1;
|
|
struct iov_iter iter;
|
|
struct iovec iov[];
|
|
};
|
|
|
|
static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct bio_map_data *bmd;
|
|
|
|
if (data->nr_segs > UIO_MAXIOV)
|
|
return NULL;
|
|
|
|
bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
|
|
if (!bmd)
|
|
return NULL;
|
|
memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
|
|
bmd->iter = *data;
|
|
bmd->iter.iov = bmd->iov;
|
|
return bmd;
|
|
}
|
|
|
|
/**
|
|
* bio_copy_from_iter - copy all pages from iov_iter to bio
|
|
* @bio: The &struct bio which describes the I/O as destination
|
|
* @iter: iov_iter as source
|
|
*
|
|
* Copy all pages from iov_iter to bio.
|
|
* Returns 0 on success, or error on failure.
|
|
*/
|
|
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
ssize_t ret;
|
|
|
|
ret = copy_page_from_iter(bvec->bv_page,
|
|
bvec->bv_offset,
|
|
bvec->bv_len,
|
|
iter);
|
|
|
|
if (!iov_iter_count(iter))
|
|
break;
|
|
|
|
if (ret < bvec->bv_len)
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bio_copy_to_iter - copy all pages from bio to iov_iter
|
|
* @bio: The &struct bio which describes the I/O as source
|
|
* @iter: iov_iter as destination
|
|
*
|
|
* Copy all pages from bio to iov_iter.
|
|
* Returns 0 on success, or error on failure.
|
|
*/
|
|
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
|
|
{
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
ssize_t ret;
|
|
|
|
ret = copy_page_to_iter(bvec->bv_page,
|
|
bvec->bv_offset,
|
|
bvec->bv_len,
|
|
&iter);
|
|
|
|
if (!iov_iter_count(&iter))
|
|
break;
|
|
|
|
if (ret < bvec->bv_len)
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bio_uncopy_user - finish previously mapped bio
|
|
* @bio: bio being terminated
|
|
*
|
|
* Free pages allocated from bio_copy_user_iov() and write back data
|
|
* to user space in case of a read.
|
|
*/
|
|
static int bio_uncopy_user(struct bio *bio)
|
|
{
|
|
struct bio_map_data *bmd = bio->bi_private;
|
|
int ret = 0;
|
|
|
|
if (!bmd->is_null_mapped) {
|
|
/*
|
|
* if we're in a workqueue, the request is orphaned, so
|
|
* don't copy into a random user address space, just free
|
|
* and return -EINTR so user space doesn't expect any data.
|
|
*/
|
|
if (!current->mm)
|
|
ret = -EINTR;
|
|
else if (bio_data_dir(bio) == READ)
|
|
ret = bio_copy_to_iter(bio, bmd->iter);
|
|
if (bmd->is_our_pages)
|
|
bio_free_pages(bio);
|
|
}
|
|
kfree(bmd);
|
|
bio_put(bio);
|
|
return ret;
|
|
}
|
|
|
|
static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
|
|
struct iov_iter *iter, gfp_t gfp_mask)
|
|
{
|
|
struct bio_map_data *bmd;
|
|
struct page *page;
|
|
struct bio *bio, *bounce_bio;
|
|
int i = 0, ret;
|
|
int nr_pages;
|
|
unsigned int len = iter->count;
|
|
unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
|
|
|
|
bmd = bio_alloc_map_data(iter, gfp_mask);
|
|
if (!bmd)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We need to do a deep copy of the iov_iter including the iovecs.
|
|
* The caller provided iov might point to an on-stack or otherwise
|
|
* shortlived one.
|
|
*/
|
|
bmd->is_our_pages = !map_data;
|
|
bmd->is_null_mapped = (map_data && map_data->null_mapped);
|
|
|
|
nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
|
|
if (nr_pages > BIO_MAX_PAGES)
|
|
nr_pages = BIO_MAX_PAGES;
|
|
|
|
ret = -ENOMEM;
|
|
bio = bio_kmalloc(gfp_mask, nr_pages);
|
|
if (!bio)
|
|
goto out_bmd;
|
|
bio->bi_opf |= req_op(rq);
|
|
|
|
if (map_data) {
|
|
nr_pages = 1 << map_data->page_order;
|
|
i = map_data->offset / PAGE_SIZE;
|
|
}
|
|
while (len) {
|
|
unsigned int bytes = PAGE_SIZE;
|
|
|
|
bytes -= offset;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
if (map_data) {
|
|
if (i == map_data->nr_entries * nr_pages) {
|
|
ret = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
|
|
page = map_data->pages[i / nr_pages];
|
|
page += (i % nr_pages);
|
|
|
|
i++;
|
|
} else {
|
|
page = alloc_page(rq->q->bounce_gfp | gfp_mask);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
|
|
if (!map_data)
|
|
__free_page(page);
|
|
break;
|
|
}
|
|
|
|
len -= bytes;
|
|
offset = 0;
|
|
}
|
|
|
|
if (map_data)
|
|
map_data->offset += bio->bi_iter.bi_size;
|
|
|
|
/*
|
|
* success
|
|
*/
|
|
if ((iov_iter_rw(iter) == WRITE &&
|
|
(!map_data || !map_data->null_mapped)) ||
|
|
(map_data && map_data->from_user)) {
|
|
ret = bio_copy_from_iter(bio, iter);
|
|
if (ret)
|
|
goto cleanup;
|
|
} else {
|
|
if (bmd->is_our_pages)
|
|
zero_fill_bio(bio);
|
|
iov_iter_advance(iter, bio->bi_iter.bi_size);
|
|
}
|
|
|
|
bio->bi_private = bmd;
|
|
|
|
bounce_bio = bio;
|
|
ret = blk_rq_append_bio(rq, &bounce_bio);
|
|
if (ret)
|
|
goto cleanup;
|
|
|
|
/*
|
|
* We link the bounce buffer in and could have to traverse it later, so
|
|
* we have to get a ref to prevent it from being freed
|
|
*/
|
|
bio_get(bounce_bio);
|
|
return 0;
|
|
cleanup:
|
|
if (!map_data)
|
|
bio_free_pages(bio);
|
|
bio_put(bio);
|
|
out_bmd:
|
|
kfree(bmd);
|
|
return ret;
|
|
}
|
|
|
|
static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
|
|
gfp_t gfp_mask)
|
|
{
|
|
unsigned int max_sectors = queue_max_hw_sectors(rq->q);
|
|
struct bio *bio, *bounce_bio;
|
|
int ret;
|
|
int j;
|
|
|
|
if (!iov_iter_count(iter))
|
|
return -EINVAL;
|
|
|
|
bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
|
|
if (!bio)
|
|
return -ENOMEM;
|
|
bio->bi_opf |= req_op(rq);
|
|
|
|
while (iov_iter_count(iter)) {
|
|
struct page **pages;
|
|
ssize_t bytes;
|
|
size_t offs, added = 0;
|
|
int npages;
|
|
|
|
bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
|
|
if (unlikely(bytes <= 0)) {
|
|
ret = bytes ? bytes : -EFAULT;
|
|
goto out_unmap;
|
|
}
|
|
|
|
npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
|
|
|
|
if (unlikely(offs & queue_dma_alignment(rq->q))) {
|
|
ret = -EINVAL;
|
|
j = 0;
|
|
} else {
|
|
for (j = 0; j < npages; j++) {
|
|
struct page *page = pages[j];
|
|
unsigned int n = PAGE_SIZE - offs;
|
|
bool same_page = false;
|
|
|
|
if (n > bytes)
|
|
n = bytes;
|
|
|
|
if (!bio_add_hw_page(rq->q, bio, page, n, offs,
|
|
max_sectors, &same_page)) {
|
|
if (same_page)
|
|
put_page(page);
|
|
break;
|
|
}
|
|
|
|
added += n;
|
|
bytes -= n;
|
|
offs = 0;
|
|
}
|
|
iov_iter_advance(iter, added);
|
|
}
|
|
/*
|
|
* release the pages we didn't map into the bio, if any
|
|
*/
|
|
while (j < npages)
|
|
put_page(pages[j++]);
|
|
kvfree(pages);
|
|
/* couldn't stuff something into bio? */
|
|
if (bytes)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Subtle: if we end up needing to bounce a bio, it would normally
|
|
* disappear when its bi_end_io is run. However, we need the original
|
|
* bio for the unmap, so grab an extra reference to it
|
|
*/
|
|
bio_get(bio);
|
|
|
|
bounce_bio = bio;
|
|
ret = blk_rq_append_bio(rq, &bounce_bio);
|
|
if (ret)
|
|
goto out_put_orig;
|
|
|
|
/*
|
|
* We link the bounce buffer in and could have to traverse it
|
|
* later, so we have to get a ref to prevent it from being freed
|
|
*/
|
|
bio_get(bounce_bio);
|
|
return 0;
|
|
|
|
out_put_orig:
|
|
bio_put(bio);
|
|
out_unmap:
|
|
bio_release_pages(bio, false);
|
|
bio_put(bio);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* bio_unmap_user - unmap a bio
|
|
* @bio: the bio being unmapped
|
|
*
|
|
* Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
|
|
* process context.
|
|
*
|
|
* bio_unmap_user() may sleep.
|
|
*/
|
|
static void bio_unmap_user(struct bio *bio)
|
|
{
|
|
bio_release_pages(bio, bio_data_dir(bio) == READ);
|
|
bio_put(bio);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void bio_invalidate_vmalloc_pages(struct bio *bio)
|
|
{
|
|
#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
|
|
if (bio->bi_private && !op_is_write(bio_op(bio))) {
|
|
unsigned long i, len = 0;
|
|
|
|
for (i = 0; i < bio->bi_vcnt; i++)
|
|
len += bio->bi_io_vec[i].bv_len;
|
|
invalidate_kernel_vmap_range(bio->bi_private, len);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void bio_map_kern_endio(struct bio *bio)
|
|
{
|
|
bio_invalidate_vmalloc_pages(bio);
|
|
bio_put(bio);
|
|
}
|
|
|
|
/**
|
|
* bio_map_kern - map kernel address into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @data: pointer to buffer to map
|
|
* @len: length in bytes
|
|
* @gfp_mask: allocation flags for bio allocation
|
|
*
|
|
* Map the kernel address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
static struct bio *bio_map_kern(struct request_queue *q, void *data,
|
|
unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
unsigned long kaddr = (unsigned long)data;
|
|
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = kaddr >> PAGE_SHIFT;
|
|
const int nr_pages = end - start;
|
|
bool is_vmalloc = is_vmalloc_addr(data);
|
|
struct page *page;
|
|
int offset, i;
|
|
struct bio *bio;
|
|
|
|
bio = bio_kmalloc(gfp_mask, nr_pages);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (is_vmalloc) {
|
|
flush_kernel_vmap_range(data, len);
|
|
bio->bi_private = data;
|
|
}
|
|
|
|
offset = offset_in_page(kaddr);
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned int bytes = PAGE_SIZE - offset;
|
|
|
|
if (len <= 0)
|
|
break;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
if (!is_vmalloc)
|
|
page = virt_to_page(data);
|
|
else
|
|
page = vmalloc_to_page(data);
|
|
if (bio_add_pc_page(q, bio, page, bytes,
|
|
offset) < bytes) {
|
|
/* we don't support partial mappings */
|
|
bio_put(bio);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
data += bytes;
|
|
len -= bytes;
|
|
offset = 0;
|
|
}
|
|
|
|
bio->bi_end_io = bio_map_kern_endio;
|
|
return bio;
|
|
}
|
|
|
|
static void bio_copy_kern_endio(struct bio *bio)
|
|
{
|
|
bio_free_pages(bio);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void bio_copy_kern_endio_read(struct bio *bio)
|
|
{
|
|
char *p = bio->bi_private;
|
|
struct bio_vec *bvec;
|
|
struct bvec_iter_all iter_all;
|
|
|
|
bio_for_each_segment_all(bvec, bio, iter_all) {
|
|
memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
|
|
p += bvec->bv_len;
|
|
}
|
|
|
|
bio_copy_kern_endio(bio);
|
|
}
|
|
|
|
/**
|
|
* bio_copy_kern - copy kernel address into bio
|
|
* @q: the struct request_queue for the bio
|
|
* @data: pointer to buffer to copy
|
|
* @len: length in bytes
|
|
* @gfp_mask: allocation flags for bio and page allocation
|
|
* @reading: data direction is READ
|
|
*
|
|
* copy the kernel address into a bio suitable for io to a block
|
|
* device. Returns an error pointer in case of error.
|
|
*/
|
|
static struct bio *bio_copy_kern(struct request_queue *q, void *data,
|
|
unsigned int len, gfp_t gfp_mask, int reading)
|
|
{
|
|
unsigned long kaddr = (unsigned long)data;
|
|
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
unsigned long start = kaddr >> PAGE_SHIFT;
|
|
struct bio *bio;
|
|
void *p = data;
|
|
int nr_pages = 0;
|
|
|
|
/*
|
|
* Overflow, abort
|
|
*/
|
|
if (end < start)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
nr_pages = end - start;
|
|
bio = bio_kmalloc(gfp_mask, nr_pages);
|
|
if (!bio)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
while (len) {
|
|
struct page *page;
|
|
unsigned int bytes = PAGE_SIZE;
|
|
|
|
if (bytes > len)
|
|
bytes = len;
|
|
|
|
page = alloc_page(q->bounce_gfp | gfp_mask);
|
|
if (!page)
|
|
goto cleanup;
|
|
|
|
if (!reading)
|
|
memcpy(page_address(page), p, bytes);
|
|
|
|
if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
|
|
break;
|
|
|
|
len -= bytes;
|
|
p += bytes;
|
|
}
|
|
|
|
if (reading) {
|
|
bio->bi_end_io = bio_copy_kern_endio_read;
|
|
bio->bi_private = data;
|
|
} else {
|
|
bio->bi_end_io = bio_copy_kern_endio;
|
|
}
|
|
|
|
return bio;
|
|
|
|
cleanup:
|
|
bio_free_pages(bio);
|
|
bio_put(bio);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Append a bio to a passthrough request. Only works if the bio can be merged
|
|
* into the request based on the driver constraints.
|
|
*/
|
|
int blk_rq_append_bio(struct request *rq, struct bio **bio)
|
|
{
|
|
struct bio *orig_bio = *bio;
|
|
struct bvec_iter iter;
|
|
struct bio_vec bv;
|
|
unsigned int nr_segs = 0;
|
|
|
|
blk_queue_bounce(rq->q, bio);
|
|
|
|
bio_for_each_bvec(bv, *bio, iter)
|
|
nr_segs++;
|
|
|
|
if (!rq->bio) {
|
|
blk_rq_bio_prep(rq, *bio, nr_segs);
|
|
} else {
|
|
if (!ll_back_merge_fn(rq, *bio, nr_segs)) {
|
|
if (orig_bio != *bio) {
|
|
bio_put(*bio);
|
|
*bio = orig_bio;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
rq->biotail->bi_next = *bio;
|
|
rq->biotail = *bio;
|
|
rq->__data_len += (*bio)->bi_iter.bi_size;
|
|
bio_crypt_free_ctx(*bio);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_append_bio);
|
|
|
|
/**
|
|
* blk_rq_map_user_iov - map user data to a request, for passthrough requests
|
|
* @q: request queue where request should be inserted
|
|
* @rq: request to map data to
|
|
* @map_data: pointer to the rq_map_data holding pages (if necessary)
|
|
* @iter: iovec iterator
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Description:
|
|
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
|
|
* a kernel bounce buffer is used.
|
|
*
|
|
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
|
|
* still in process context.
|
|
*
|
|
* Note: The mapped bio may need to be bounced through blk_queue_bounce()
|
|
* before being submitted to the device, as pages mapped may be out of
|
|
* reach. It's the callers responsibility to make sure this happens. The
|
|
* original bio must be passed back in to blk_rq_unmap_user() for proper
|
|
* unmapping.
|
|
*/
|
|
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
|
|
struct rq_map_data *map_data,
|
|
const struct iov_iter *iter, gfp_t gfp_mask)
|
|
{
|
|
bool copy = false;
|
|
unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
|
|
struct bio *bio = NULL;
|
|
struct iov_iter i;
|
|
int ret = -EINVAL;
|
|
|
|
if (!iter_is_iovec(iter))
|
|
goto fail;
|
|
|
|
if (map_data)
|
|
copy = true;
|
|
else if (iov_iter_alignment(iter) & align)
|
|
copy = true;
|
|
else if (queue_virt_boundary(q))
|
|
copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
|
|
|
|
i = *iter;
|
|
do {
|
|
if (copy)
|
|
ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
|
|
else
|
|
ret = bio_map_user_iov(rq, &i, gfp_mask);
|
|
if (ret)
|
|
goto unmap_rq;
|
|
if (!bio)
|
|
bio = rq->bio;
|
|
} while (iov_iter_count(&i));
|
|
|
|
return 0;
|
|
|
|
unmap_rq:
|
|
blk_rq_unmap_user(bio);
|
|
fail:
|
|
rq->bio = NULL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_map_user_iov);
|
|
|
|
int blk_rq_map_user(struct request_queue *q, struct request *rq,
|
|
struct rq_map_data *map_data, void __user *ubuf,
|
|
unsigned long len, gfp_t gfp_mask)
|
|
{
|
|
struct iovec iov;
|
|
struct iov_iter i;
|
|
int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
|
|
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_map_user);
|
|
|
|
/**
|
|
* blk_rq_unmap_user - unmap a request with user data
|
|
* @bio: start of bio list
|
|
*
|
|
* Description:
|
|
* Unmap a rq previously mapped by blk_rq_map_user(). The caller must
|
|
* supply the original rq->bio from the blk_rq_map_user() return, since
|
|
* the I/O completion may have changed rq->bio.
|
|
*/
|
|
int blk_rq_unmap_user(struct bio *bio)
|
|
{
|
|
struct bio *mapped_bio;
|
|
int ret = 0, ret2;
|
|
|
|
while (bio) {
|
|
mapped_bio = bio;
|
|
if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
|
|
mapped_bio = bio->bi_private;
|
|
|
|
if (bio->bi_private) {
|
|
ret2 = bio_uncopy_user(mapped_bio);
|
|
if (ret2 && !ret)
|
|
ret = ret2;
|
|
} else {
|
|
bio_unmap_user(mapped_bio);
|
|
}
|
|
|
|
mapped_bio = bio;
|
|
bio = bio->bi_next;
|
|
bio_put(mapped_bio);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_unmap_user);
|
|
|
|
/**
|
|
* blk_rq_map_kern - map kernel data to a request, for passthrough requests
|
|
* @q: request queue where request should be inserted
|
|
* @rq: request to fill
|
|
* @kbuf: the kernel buffer
|
|
* @len: length of user data
|
|
* @gfp_mask: memory allocation flags
|
|
*
|
|
* Description:
|
|
* Data will be mapped directly if possible. Otherwise a bounce
|
|
* buffer is used. Can be called multiple times to append multiple
|
|
* buffers.
|
|
*/
|
|
int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
|
|
unsigned int len, gfp_t gfp_mask)
|
|
{
|
|
int reading = rq_data_dir(rq) == READ;
|
|
unsigned long addr = (unsigned long) kbuf;
|
|
struct bio *bio, *orig_bio;
|
|
int ret;
|
|
|
|
if (len > (queue_max_hw_sectors(q) << 9))
|
|
return -EINVAL;
|
|
if (!len || !kbuf)
|
|
return -EINVAL;
|
|
|
|
if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf))
|
|
bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
|
|
else
|
|
bio = bio_map_kern(q, kbuf, len, gfp_mask);
|
|
|
|
if (IS_ERR(bio))
|
|
return PTR_ERR(bio);
|
|
|
|
bio->bi_opf &= ~REQ_OP_MASK;
|
|
bio->bi_opf |= req_op(rq);
|
|
|
|
orig_bio = bio;
|
|
ret = blk_rq_append_bio(rq, &bio);
|
|
if (unlikely(ret)) {
|
|
/* request is too big */
|
|
bio_put(orig_bio);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_map_kern);
|