mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 00:22:07 +07:00
47ec5303d7
Pull networking updates from David Miller: 1) Support 6Ghz band in ath11k driver, from Rajkumar Manoharan. 2) Support UDP segmentation in code TSO code, from Eric Dumazet. 3) Allow flashing different flash images in cxgb4 driver, from Vishal Kulkarni. 4) Add drop frames counter and flow status to tc flower offloading, from Po Liu. 5) Support n-tuple filters in cxgb4, from Vishal Kulkarni. 6) Various new indirect call avoidance, from Eric Dumazet and Brian Vazquez. 7) Fix BPF verifier failures on 32-bit pointer arithmetic, from Yonghong Song. 8) Support querying and setting hardware address of a port function via devlink, use this in mlx5, from Parav Pandit. 9) Support hw ipsec offload on bonding slaves, from Jarod Wilson. 10) Switch qca8k driver over to phylink, from Jonathan McDowell. 11) In bpftool, show list of processes holding BPF FD references to maps, programs, links, and btf objects. From Andrii Nakryiko. 12) Several conversions over to generic power management, from Vaibhav Gupta. 13) Add support for SO_KEEPALIVE et al. to bpf_setsockopt(), from Dmitry Yakunin. 14) Various https url conversions, from Alexander A. Klimov. 15) Timestamping and PHC support for mscc PHY driver, from Antoine Tenart. 16) Support bpf iterating over tcp and udp sockets, from Yonghong Song. 17) Support 5GBASE-T i40e NICs, from Aleksandr Loktionov. 18) Add kTLS RX HW offload support to mlx5e, from Tariq Toukan. 19) Fix the ->ndo_start_xmit() return type to be netdev_tx_t in several drivers. From Luc Van Oostenryck. 20) XDP support for xen-netfront, from Denis Kirjanov. 21) Support receive buffer autotuning in MPTCP, from Florian Westphal. 22) Support EF100 chip in sfc driver, from Edward Cree. 23) Add XDP support to mvpp2 driver, from Matteo Croce. 24) Support MPTCP in sock_diag, from Paolo Abeni. 25) Commonize UDP tunnel offloading code by creating udp_tunnel_nic infrastructure, from Jakub Kicinski. 26) Several pci_ --> dma_ API conversions, from Christophe JAILLET. 27) Add FLOW_ACTION_POLICE support to mlxsw, from Ido Schimmel. 28) Add SK_LOOKUP bpf program type, from Jakub Sitnicki. 29) Refactor a lot of networking socket option handling code in order to avoid set_fs() calls, from Christoph Hellwig. 30) Add rfc4884 support to icmp code, from Willem de Bruijn. 31) Support TBF offload in dpaa2-eth driver, from Ioana Ciornei. 32) Support XDP_REDIRECT in qede driver, from Alexander Lobakin. 33) Support PCI relaxed ordering in mlx5 driver, from Aya Levin. 34) Support TCP syncookies in MPTCP, from Flowian Westphal. 35) Fix several tricky cases of PMTU handling wrt. briding, from Stefano Brivio. * git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2056 commits) net: thunderx: initialize VF's mailbox mutex before first usage usb: hso: remove bogus check for EINPROGRESS usb: hso: no complaint about kmalloc failure hso: fix bailout in error case of probe ip_tunnel_core: Fix build for archs without _HAVE_ARCH_IPV6_CSUM selftests/net: relax cpu affinity requirement in msg_zerocopy test mptcp: be careful on subflow creation selftests: rtnetlink: make kci_test_encap() return sub-test result selftests: rtnetlink: correct the final return value for the test net: dsa: sja1105: use detected device id instead of DT one on mismatch tipc: set ub->ifindex for local ipv6 address ipv6: add ipv6_dev_find() net: openvswitch: silence suspicious RCU usage warning Revert "vxlan: fix tos value before xmit" ptp: only allow phase values lower than 1 period farsync: switch from 'pci_' to 'dma_' API wan: wanxl: switch from 'pci_' to 'dma_' API hv_netvsc: do not use VF device if link is down dpaa2-eth: Fix passing zero to 'PTR_ERR' warning net: macb: Properly handle phylink on at91sam9x ...
1691 lines
40 KiB
C
1691 lines
40 KiB
C
/*
|
|
* Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* 2003-10-17 - Ported from altq
|
|
*/
|
|
/*
|
|
* Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation is hereby granted (including for commercial or
|
|
* for-profit use), provided that both the copyright notice and this
|
|
* permission notice appear in all copies of the software, derivative
|
|
* works, or modified versions, and any portions thereof.
|
|
*
|
|
* THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
|
|
* WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
|
|
* SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
|
|
* DAMAGE.
|
|
*
|
|
* Carnegie Mellon encourages (but does not require) users of this
|
|
* software to return any improvements or extensions that they make,
|
|
* and to grant Carnegie Mellon the rights to redistribute these
|
|
* changes without encumbrance.
|
|
*/
|
|
/*
|
|
* H-FSC is described in Proceedings of SIGCOMM'97,
|
|
* "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
|
|
* Real-Time and Priority Service"
|
|
* by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
|
|
*
|
|
* Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
|
|
* when a class has an upperlimit, the fit-time is computed from the
|
|
* upperlimit service curve. the link-sharing scheduler does not schedule
|
|
* a class whose fit-time exceeds the current time.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/pkt_sched.h>
|
|
#include <net/netlink.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/pkt_cls.h>
|
|
#include <asm/div64.h>
|
|
|
|
/*
|
|
* kernel internal service curve representation:
|
|
* coordinates are given by 64 bit unsigned integers.
|
|
* x-axis: unit is clock count.
|
|
* y-axis: unit is byte.
|
|
*
|
|
* The service curve parameters are converted to the internal
|
|
* representation. The slope values are scaled to avoid overflow.
|
|
* the inverse slope values as well as the y-projection of the 1st
|
|
* segment are kept in order to avoid 64-bit divide operations
|
|
* that are expensive on 32-bit architectures.
|
|
*/
|
|
|
|
struct internal_sc {
|
|
u64 sm1; /* scaled slope of the 1st segment */
|
|
u64 ism1; /* scaled inverse-slope of the 1st segment */
|
|
u64 dx; /* the x-projection of the 1st segment */
|
|
u64 dy; /* the y-projection of the 1st segment */
|
|
u64 sm2; /* scaled slope of the 2nd segment */
|
|
u64 ism2; /* scaled inverse-slope of the 2nd segment */
|
|
};
|
|
|
|
/* runtime service curve */
|
|
struct runtime_sc {
|
|
u64 x; /* current starting position on x-axis */
|
|
u64 y; /* current starting position on y-axis */
|
|
u64 sm1; /* scaled slope of the 1st segment */
|
|
u64 ism1; /* scaled inverse-slope of the 1st segment */
|
|
u64 dx; /* the x-projection of the 1st segment */
|
|
u64 dy; /* the y-projection of the 1st segment */
|
|
u64 sm2; /* scaled slope of the 2nd segment */
|
|
u64 ism2; /* scaled inverse-slope of the 2nd segment */
|
|
};
|
|
|
|
enum hfsc_class_flags {
|
|
HFSC_RSC = 0x1,
|
|
HFSC_FSC = 0x2,
|
|
HFSC_USC = 0x4
|
|
};
|
|
|
|
struct hfsc_class {
|
|
struct Qdisc_class_common cl_common;
|
|
|
|
struct gnet_stats_basic_packed bstats;
|
|
struct gnet_stats_queue qstats;
|
|
struct net_rate_estimator __rcu *rate_est;
|
|
struct tcf_proto __rcu *filter_list; /* filter list */
|
|
struct tcf_block *block;
|
|
unsigned int filter_cnt; /* filter count */
|
|
unsigned int level; /* class level in hierarchy */
|
|
|
|
struct hfsc_sched *sched; /* scheduler data */
|
|
struct hfsc_class *cl_parent; /* parent class */
|
|
struct list_head siblings; /* sibling classes */
|
|
struct list_head children; /* child classes */
|
|
struct Qdisc *qdisc; /* leaf qdisc */
|
|
|
|
struct rb_node el_node; /* qdisc's eligible tree member */
|
|
struct rb_root vt_tree; /* active children sorted by cl_vt */
|
|
struct rb_node vt_node; /* parent's vt_tree member */
|
|
struct rb_root cf_tree; /* active children sorted by cl_f */
|
|
struct rb_node cf_node; /* parent's cf_heap member */
|
|
|
|
u64 cl_total; /* total work in bytes */
|
|
u64 cl_cumul; /* cumulative work in bytes done by
|
|
real-time criteria */
|
|
|
|
u64 cl_d; /* deadline*/
|
|
u64 cl_e; /* eligible time */
|
|
u64 cl_vt; /* virtual time */
|
|
u64 cl_f; /* time when this class will fit for
|
|
link-sharing, max(myf, cfmin) */
|
|
u64 cl_myf; /* my fit-time (calculated from this
|
|
class's own upperlimit curve) */
|
|
u64 cl_cfmin; /* earliest children's fit-time (used
|
|
with cl_myf to obtain cl_f) */
|
|
u64 cl_cvtmin; /* minimal virtual time among the
|
|
children fit for link-sharing
|
|
(monotonic within a period) */
|
|
u64 cl_vtadj; /* intra-period cumulative vt
|
|
adjustment */
|
|
u64 cl_cvtoff; /* largest virtual time seen among
|
|
the children */
|
|
|
|
struct internal_sc cl_rsc; /* internal real-time service curve */
|
|
struct internal_sc cl_fsc; /* internal fair service curve */
|
|
struct internal_sc cl_usc; /* internal upperlimit service curve */
|
|
struct runtime_sc cl_deadline; /* deadline curve */
|
|
struct runtime_sc cl_eligible; /* eligible curve */
|
|
struct runtime_sc cl_virtual; /* virtual curve */
|
|
struct runtime_sc cl_ulimit; /* upperlimit curve */
|
|
|
|
u8 cl_flags; /* which curves are valid */
|
|
u32 cl_vtperiod; /* vt period sequence number */
|
|
u32 cl_parentperiod;/* parent's vt period sequence number*/
|
|
u32 cl_nactive; /* number of active children */
|
|
};
|
|
|
|
struct hfsc_sched {
|
|
u16 defcls; /* default class id */
|
|
struct hfsc_class root; /* root class */
|
|
struct Qdisc_class_hash clhash; /* class hash */
|
|
struct rb_root eligible; /* eligible tree */
|
|
struct qdisc_watchdog watchdog; /* watchdog timer */
|
|
};
|
|
|
|
#define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */
|
|
|
|
|
|
/*
|
|
* eligible tree holds backlogged classes being sorted by their eligible times.
|
|
* there is one eligible tree per hfsc instance.
|
|
*/
|
|
|
|
static void
|
|
eltree_insert(struct hfsc_class *cl)
|
|
{
|
|
struct rb_node **p = &cl->sched->eligible.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct hfsc_class *cl1;
|
|
|
|
while (*p != NULL) {
|
|
parent = *p;
|
|
cl1 = rb_entry(parent, struct hfsc_class, el_node);
|
|
if (cl->cl_e >= cl1->cl_e)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
rb_link_node(&cl->el_node, parent, p);
|
|
rb_insert_color(&cl->el_node, &cl->sched->eligible);
|
|
}
|
|
|
|
static inline void
|
|
eltree_remove(struct hfsc_class *cl)
|
|
{
|
|
rb_erase(&cl->el_node, &cl->sched->eligible);
|
|
}
|
|
|
|
static inline void
|
|
eltree_update(struct hfsc_class *cl)
|
|
{
|
|
eltree_remove(cl);
|
|
eltree_insert(cl);
|
|
}
|
|
|
|
/* find the class with the minimum deadline among the eligible classes */
|
|
static inline struct hfsc_class *
|
|
eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
|
|
{
|
|
struct hfsc_class *p, *cl = NULL;
|
|
struct rb_node *n;
|
|
|
|
for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
|
|
p = rb_entry(n, struct hfsc_class, el_node);
|
|
if (p->cl_e > cur_time)
|
|
break;
|
|
if (cl == NULL || p->cl_d < cl->cl_d)
|
|
cl = p;
|
|
}
|
|
return cl;
|
|
}
|
|
|
|
/* find the class with minimum eligible time among the eligible classes */
|
|
static inline struct hfsc_class *
|
|
eltree_get_minel(struct hfsc_sched *q)
|
|
{
|
|
struct rb_node *n;
|
|
|
|
n = rb_first(&q->eligible);
|
|
if (n == NULL)
|
|
return NULL;
|
|
return rb_entry(n, struct hfsc_class, el_node);
|
|
}
|
|
|
|
/*
|
|
* vttree holds holds backlogged child classes being sorted by their virtual
|
|
* time. each intermediate class has one vttree.
|
|
*/
|
|
static void
|
|
vttree_insert(struct hfsc_class *cl)
|
|
{
|
|
struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct hfsc_class *cl1;
|
|
|
|
while (*p != NULL) {
|
|
parent = *p;
|
|
cl1 = rb_entry(parent, struct hfsc_class, vt_node);
|
|
if (cl->cl_vt >= cl1->cl_vt)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
rb_link_node(&cl->vt_node, parent, p);
|
|
rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
|
|
}
|
|
|
|
static inline void
|
|
vttree_remove(struct hfsc_class *cl)
|
|
{
|
|
rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
|
|
}
|
|
|
|
static inline void
|
|
vttree_update(struct hfsc_class *cl)
|
|
{
|
|
vttree_remove(cl);
|
|
vttree_insert(cl);
|
|
}
|
|
|
|
static inline struct hfsc_class *
|
|
vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
|
|
{
|
|
struct hfsc_class *p;
|
|
struct rb_node *n;
|
|
|
|
for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
|
|
p = rb_entry(n, struct hfsc_class, vt_node);
|
|
if (p->cl_f <= cur_time)
|
|
return p;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* get the leaf class with the minimum vt in the hierarchy
|
|
*/
|
|
static struct hfsc_class *
|
|
vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
|
|
{
|
|
/* if root-class's cfmin is bigger than cur_time nothing to do */
|
|
if (cl->cl_cfmin > cur_time)
|
|
return NULL;
|
|
|
|
while (cl->level > 0) {
|
|
cl = vttree_firstfit(cl, cur_time);
|
|
if (cl == NULL)
|
|
return NULL;
|
|
/*
|
|
* update parent's cl_cvtmin.
|
|
*/
|
|
if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
|
|
cl->cl_parent->cl_cvtmin = cl->cl_vt;
|
|
}
|
|
return cl;
|
|
}
|
|
|
|
static void
|
|
cftree_insert(struct hfsc_class *cl)
|
|
{
|
|
struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct hfsc_class *cl1;
|
|
|
|
while (*p != NULL) {
|
|
parent = *p;
|
|
cl1 = rb_entry(parent, struct hfsc_class, cf_node);
|
|
if (cl->cl_f >= cl1->cl_f)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
rb_link_node(&cl->cf_node, parent, p);
|
|
rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
|
|
}
|
|
|
|
static inline void
|
|
cftree_remove(struct hfsc_class *cl)
|
|
{
|
|
rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
|
|
}
|
|
|
|
static inline void
|
|
cftree_update(struct hfsc_class *cl)
|
|
{
|
|
cftree_remove(cl);
|
|
cftree_insert(cl);
|
|
}
|
|
|
|
/*
|
|
* service curve support functions
|
|
*
|
|
* external service curve parameters
|
|
* m: bps
|
|
* d: us
|
|
* internal service curve parameters
|
|
* sm: (bytes/psched_us) << SM_SHIFT
|
|
* ism: (psched_us/byte) << ISM_SHIFT
|
|
* dx: psched_us
|
|
*
|
|
* The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
|
|
*
|
|
* sm and ism are scaled in order to keep effective digits.
|
|
* SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
|
|
* digits in decimal using the following table.
|
|
*
|
|
* bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
|
|
* ------------+-------------------------------------------------------
|
|
* bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3
|
|
*
|
|
* 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125
|
|
*
|
|
* So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
|
|
*/
|
|
#define SM_SHIFT (30 - PSCHED_SHIFT)
|
|
#define ISM_SHIFT (8 + PSCHED_SHIFT)
|
|
|
|
#define SM_MASK ((1ULL << SM_SHIFT) - 1)
|
|
#define ISM_MASK ((1ULL << ISM_SHIFT) - 1)
|
|
|
|
static inline u64
|
|
seg_x2y(u64 x, u64 sm)
|
|
{
|
|
u64 y;
|
|
|
|
/*
|
|
* compute
|
|
* y = x * sm >> SM_SHIFT
|
|
* but divide it for the upper and lower bits to avoid overflow
|
|
*/
|
|
y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
|
|
return y;
|
|
}
|
|
|
|
static inline u64
|
|
seg_y2x(u64 y, u64 ism)
|
|
{
|
|
u64 x;
|
|
|
|
if (y == 0)
|
|
x = 0;
|
|
else if (ism == HT_INFINITY)
|
|
x = HT_INFINITY;
|
|
else {
|
|
x = (y >> ISM_SHIFT) * ism
|
|
+ (((y & ISM_MASK) * ism) >> ISM_SHIFT);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/* Convert m (bps) into sm (bytes/psched us) */
|
|
static u64
|
|
m2sm(u32 m)
|
|
{
|
|
u64 sm;
|
|
|
|
sm = ((u64)m << SM_SHIFT);
|
|
sm += PSCHED_TICKS_PER_SEC - 1;
|
|
do_div(sm, PSCHED_TICKS_PER_SEC);
|
|
return sm;
|
|
}
|
|
|
|
/* convert m (bps) into ism (psched us/byte) */
|
|
static u64
|
|
m2ism(u32 m)
|
|
{
|
|
u64 ism;
|
|
|
|
if (m == 0)
|
|
ism = HT_INFINITY;
|
|
else {
|
|
ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
|
|
ism += m - 1;
|
|
do_div(ism, m);
|
|
}
|
|
return ism;
|
|
}
|
|
|
|
/* convert d (us) into dx (psched us) */
|
|
static u64
|
|
d2dx(u32 d)
|
|
{
|
|
u64 dx;
|
|
|
|
dx = ((u64)d * PSCHED_TICKS_PER_SEC);
|
|
dx += USEC_PER_SEC - 1;
|
|
do_div(dx, USEC_PER_SEC);
|
|
return dx;
|
|
}
|
|
|
|
/* convert sm (bytes/psched us) into m (bps) */
|
|
static u32
|
|
sm2m(u64 sm)
|
|
{
|
|
u64 m;
|
|
|
|
m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
|
|
return (u32)m;
|
|
}
|
|
|
|
/* convert dx (psched us) into d (us) */
|
|
static u32
|
|
dx2d(u64 dx)
|
|
{
|
|
u64 d;
|
|
|
|
d = dx * USEC_PER_SEC;
|
|
do_div(d, PSCHED_TICKS_PER_SEC);
|
|
return (u32)d;
|
|
}
|
|
|
|
static void
|
|
sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
|
|
{
|
|
isc->sm1 = m2sm(sc->m1);
|
|
isc->ism1 = m2ism(sc->m1);
|
|
isc->dx = d2dx(sc->d);
|
|
isc->dy = seg_x2y(isc->dx, isc->sm1);
|
|
isc->sm2 = m2sm(sc->m2);
|
|
isc->ism2 = m2ism(sc->m2);
|
|
}
|
|
|
|
/*
|
|
* initialize the runtime service curve with the given internal
|
|
* service curve starting at (x, y).
|
|
*/
|
|
static void
|
|
rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
|
|
{
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
rtsc->sm1 = isc->sm1;
|
|
rtsc->ism1 = isc->ism1;
|
|
rtsc->dx = isc->dx;
|
|
rtsc->dy = isc->dy;
|
|
rtsc->sm2 = isc->sm2;
|
|
rtsc->ism2 = isc->ism2;
|
|
}
|
|
|
|
/*
|
|
* calculate the y-projection of the runtime service curve by the
|
|
* given x-projection value
|
|
*/
|
|
static u64
|
|
rtsc_y2x(struct runtime_sc *rtsc, u64 y)
|
|
{
|
|
u64 x;
|
|
|
|
if (y < rtsc->y)
|
|
x = rtsc->x;
|
|
else if (y <= rtsc->y + rtsc->dy) {
|
|
/* x belongs to the 1st segment */
|
|
if (rtsc->dy == 0)
|
|
x = rtsc->x + rtsc->dx;
|
|
else
|
|
x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
|
|
} else {
|
|
/* x belongs to the 2nd segment */
|
|
x = rtsc->x + rtsc->dx
|
|
+ seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static u64
|
|
rtsc_x2y(struct runtime_sc *rtsc, u64 x)
|
|
{
|
|
u64 y;
|
|
|
|
if (x <= rtsc->x)
|
|
y = rtsc->y;
|
|
else if (x <= rtsc->x + rtsc->dx)
|
|
/* y belongs to the 1st segment */
|
|
y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
|
|
else
|
|
/* y belongs to the 2nd segment */
|
|
y = rtsc->y + rtsc->dy
|
|
+ seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
|
|
return y;
|
|
}
|
|
|
|
/*
|
|
* update the runtime service curve by taking the minimum of the current
|
|
* runtime service curve and the service curve starting at (x, y).
|
|
*/
|
|
static void
|
|
rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
|
|
{
|
|
u64 y1, y2, dx, dy;
|
|
u32 dsm;
|
|
|
|
if (isc->sm1 <= isc->sm2) {
|
|
/* service curve is convex */
|
|
y1 = rtsc_x2y(rtsc, x);
|
|
if (y1 < y)
|
|
/* the current rtsc is smaller */
|
|
return;
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* service curve is concave
|
|
* compute the two y values of the current rtsc
|
|
* y1: at x
|
|
* y2: at (x + dx)
|
|
*/
|
|
y1 = rtsc_x2y(rtsc, x);
|
|
if (y1 <= y) {
|
|
/* rtsc is below isc, no change to rtsc */
|
|
return;
|
|
}
|
|
|
|
y2 = rtsc_x2y(rtsc, x + isc->dx);
|
|
if (y2 >= y + isc->dy) {
|
|
/* rtsc is above isc, replace rtsc by isc */
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
rtsc->dx = isc->dx;
|
|
rtsc->dy = isc->dy;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* the two curves intersect
|
|
* compute the offsets (dx, dy) using the reverse
|
|
* function of seg_x2y()
|
|
* seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
|
|
*/
|
|
dx = (y1 - y) << SM_SHIFT;
|
|
dsm = isc->sm1 - isc->sm2;
|
|
do_div(dx, dsm);
|
|
/*
|
|
* check if (x, y1) belongs to the 1st segment of rtsc.
|
|
* if so, add the offset.
|
|
*/
|
|
if (rtsc->x + rtsc->dx > x)
|
|
dx += rtsc->x + rtsc->dx - x;
|
|
dy = seg_x2y(dx, isc->sm1);
|
|
|
|
rtsc->x = x;
|
|
rtsc->y = y;
|
|
rtsc->dx = dx;
|
|
rtsc->dy = dy;
|
|
}
|
|
|
|
static void
|
|
init_ed(struct hfsc_class *cl, unsigned int next_len)
|
|
{
|
|
u64 cur_time = psched_get_time();
|
|
|
|
/* update the deadline curve */
|
|
rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
|
|
|
|
/*
|
|
* update the eligible curve.
|
|
* for concave, it is equal to the deadline curve.
|
|
* for convex, it is a linear curve with slope m2.
|
|
*/
|
|
cl->cl_eligible = cl->cl_deadline;
|
|
if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
|
|
cl->cl_eligible.dx = 0;
|
|
cl->cl_eligible.dy = 0;
|
|
}
|
|
|
|
/* compute e and d */
|
|
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
|
|
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
|
|
|
|
eltree_insert(cl);
|
|
}
|
|
|
|
static void
|
|
update_ed(struct hfsc_class *cl, unsigned int next_len)
|
|
{
|
|
cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
|
|
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
|
|
|
|
eltree_update(cl);
|
|
}
|
|
|
|
static inline void
|
|
update_d(struct hfsc_class *cl, unsigned int next_len)
|
|
{
|
|
cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
|
|
}
|
|
|
|
static inline void
|
|
update_cfmin(struct hfsc_class *cl)
|
|
{
|
|
struct rb_node *n = rb_first(&cl->cf_tree);
|
|
struct hfsc_class *p;
|
|
|
|
if (n == NULL) {
|
|
cl->cl_cfmin = 0;
|
|
return;
|
|
}
|
|
p = rb_entry(n, struct hfsc_class, cf_node);
|
|
cl->cl_cfmin = p->cl_f;
|
|
}
|
|
|
|
static void
|
|
init_vf(struct hfsc_class *cl, unsigned int len)
|
|
{
|
|
struct hfsc_class *max_cl;
|
|
struct rb_node *n;
|
|
u64 vt, f, cur_time;
|
|
int go_active;
|
|
|
|
cur_time = 0;
|
|
go_active = 1;
|
|
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
|
|
if (go_active && cl->cl_nactive++ == 0)
|
|
go_active = 1;
|
|
else
|
|
go_active = 0;
|
|
|
|
if (go_active) {
|
|
n = rb_last(&cl->cl_parent->vt_tree);
|
|
if (n != NULL) {
|
|
max_cl = rb_entry(n, struct hfsc_class, vt_node);
|
|
/*
|
|
* set vt to the average of the min and max
|
|
* classes. if the parent's period didn't
|
|
* change, don't decrease vt of the class.
|
|
*/
|
|
vt = max_cl->cl_vt;
|
|
if (cl->cl_parent->cl_cvtmin != 0)
|
|
vt = (cl->cl_parent->cl_cvtmin + vt)/2;
|
|
|
|
if (cl->cl_parent->cl_vtperiod !=
|
|
cl->cl_parentperiod || vt > cl->cl_vt)
|
|
cl->cl_vt = vt;
|
|
} else {
|
|
/*
|
|
* first child for a new parent backlog period.
|
|
* initialize cl_vt to the highest value seen
|
|
* among the siblings. this is analogous to
|
|
* what cur_time would provide in realtime case.
|
|
*/
|
|
cl->cl_vt = cl->cl_parent->cl_cvtoff;
|
|
cl->cl_parent->cl_cvtmin = 0;
|
|
}
|
|
|
|
/* update the virtual curve */
|
|
rtsc_min(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
|
|
cl->cl_vtadj = 0;
|
|
|
|
cl->cl_vtperiod++; /* increment vt period */
|
|
cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
|
|
if (cl->cl_parent->cl_nactive == 0)
|
|
cl->cl_parentperiod++;
|
|
cl->cl_f = 0;
|
|
|
|
vttree_insert(cl);
|
|
cftree_insert(cl);
|
|
|
|
if (cl->cl_flags & HFSC_USC) {
|
|
/* class has upper limit curve */
|
|
if (cur_time == 0)
|
|
cur_time = psched_get_time();
|
|
|
|
/* update the ulimit curve */
|
|
rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
|
|
cl->cl_total);
|
|
/* compute myf */
|
|
cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
|
|
cl->cl_total);
|
|
}
|
|
}
|
|
|
|
f = max(cl->cl_myf, cl->cl_cfmin);
|
|
if (f != cl->cl_f) {
|
|
cl->cl_f = f;
|
|
cftree_update(cl);
|
|
}
|
|
update_cfmin(cl->cl_parent);
|
|
}
|
|
}
|
|
|
|
static void
|
|
update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
|
|
{
|
|
u64 f; /* , myf_bound, delta; */
|
|
int go_passive = 0;
|
|
|
|
if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
|
|
go_passive = 1;
|
|
|
|
for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
|
|
cl->cl_total += len;
|
|
|
|
if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
|
|
continue;
|
|
|
|
if (go_passive && --cl->cl_nactive == 0)
|
|
go_passive = 1;
|
|
else
|
|
go_passive = 0;
|
|
|
|
/* update vt */
|
|
cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) + cl->cl_vtadj;
|
|
|
|
/*
|
|
* if vt of the class is smaller than cvtmin,
|
|
* the class was skipped in the past due to non-fit.
|
|
* if so, we need to adjust vtadj.
|
|
*/
|
|
if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
|
|
cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
|
|
cl->cl_vt = cl->cl_parent->cl_cvtmin;
|
|
}
|
|
|
|
if (go_passive) {
|
|
/* no more active child, going passive */
|
|
|
|
/* update cvtoff of the parent class */
|
|
if (cl->cl_vt > cl->cl_parent->cl_cvtoff)
|
|
cl->cl_parent->cl_cvtoff = cl->cl_vt;
|
|
|
|
/* remove this class from the vt tree */
|
|
vttree_remove(cl);
|
|
|
|
cftree_remove(cl);
|
|
update_cfmin(cl->cl_parent);
|
|
|
|
continue;
|
|
}
|
|
|
|
/* update the vt tree */
|
|
vttree_update(cl);
|
|
|
|
/* update f */
|
|
if (cl->cl_flags & HFSC_USC) {
|
|
cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
|
|
#if 0
|
|
cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
|
|
cl->cl_total);
|
|
/*
|
|
* This code causes classes to stay way under their
|
|
* limit when multiple classes are used at gigabit
|
|
* speed. needs investigation. -kaber
|
|
*/
|
|
/*
|
|
* if myf lags behind by more than one clock tick
|
|
* from the current time, adjust myfadj to prevent
|
|
* a rate-limited class from going greedy.
|
|
* in a steady state under rate-limiting, myf
|
|
* fluctuates within one clock tick.
|
|
*/
|
|
myf_bound = cur_time - PSCHED_JIFFIE2US(1);
|
|
if (cl->cl_myf < myf_bound) {
|
|
delta = cur_time - cl->cl_myf;
|
|
cl->cl_myfadj += delta;
|
|
cl->cl_myf += delta;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
f = max(cl->cl_myf, cl->cl_cfmin);
|
|
if (f != cl->cl_f) {
|
|
cl->cl_f = f;
|
|
cftree_update(cl);
|
|
update_cfmin(cl->cl_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned int
|
|
qdisc_peek_len(struct Qdisc *sch)
|
|
{
|
|
struct sk_buff *skb;
|
|
unsigned int len;
|
|
|
|
skb = sch->ops->peek(sch);
|
|
if (unlikely(skb == NULL)) {
|
|
qdisc_warn_nonwc("qdisc_peek_len", sch);
|
|
return 0;
|
|
}
|
|
len = qdisc_pkt_len(skb);
|
|
|
|
return len;
|
|
}
|
|
|
|
static void
|
|
hfsc_adjust_levels(struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_class *p;
|
|
unsigned int level;
|
|
|
|
do {
|
|
level = 0;
|
|
list_for_each_entry(p, &cl->children, siblings) {
|
|
if (p->level >= level)
|
|
level = p->level + 1;
|
|
}
|
|
cl->level = level;
|
|
} while ((cl = cl->cl_parent) != NULL);
|
|
}
|
|
|
|
static inline struct hfsc_class *
|
|
hfsc_find_class(u32 classid, struct Qdisc *sch)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct Qdisc_class_common *clc;
|
|
|
|
clc = qdisc_class_find(&q->clhash, classid);
|
|
if (clc == NULL)
|
|
return NULL;
|
|
return container_of(clc, struct hfsc_class, cl_common);
|
|
}
|
|
|
|
static void
|
|
hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
|
|
u64 cur_time)
|
|
{
|
|
sc2isc(rsc, &cl->cl_rsc);
|
|
rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
|
|
cl->cl_eligible = cl->cl_deadline;
|
|
if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
|
|
cl->cl_eligible.dx = 0;
|
|
cl->cl_eligible.dy = 0;
|
|
}
|
|
cl->cl_flags |= HFSC_RSC;
|
|
}
|
|
|
|
static void
|
|
hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
|
|
{
|
|
sc2isc(fsc, &cl->cl_fsc);
|
|
rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
|
|
cl->cl_flags |= HFSC_FSC;
|
|
}
|
|
|
|
static void
|
|
hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
|
|
u64 cur_time)
|
|
{
|
|
sc2isc(usc, &cl->cl_usc);
|
|
rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
|
|
cl->cl_flags |= HFSC_USC;
|
|
}
|
|
|
|
static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
|
|
[TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) },
|
|
[TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) },
|
|
[TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) },
|
|
};
|
|
|
|
static int
|
|
hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
|
|
struct nlattr **tca, unsigned long *arg,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *cl = (struct hfsc_class *)*arg;
|
|
struct hfsc_class *parent = NULL;
|
|
struct nlattr *opt = tca[TCA_OPTIONS];
|
|
struct nlattr *tb[TCA_HFSC_MAX + 1];
|
|
struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
|
|
u64 cur_time;
|
|
int err;
|
|
|
|
if (opt == NULL)
|
|
return -EINVAL;
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_HFSC_MAX, opt, hfsc_policy,
|
|
NULL);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (tb[TCA_HFSC_RSC]) {
|
|
rsc = nla_data(tb[TCA_HFSC_RSC]);
|
|
if (rsc->m1 == 0 && rsc->m2 == 0)
|
|
rsc = NULL;
|
|
}
|
|
|
|
if (tb[TCA_HFSC_FSC]) {
|
|
fsc = nla_data(tb[TCA_HFSC_FSC]);
|
|
if (fsc->m1 == 0 && fsc->m2 == 0)
|
|
fsc = NULL;
|
|
}
|
|
|
|
if (tb[TCA_HFSC_USC]) {
|
|
usc = nla_data(tb[TCA_HFSC_USC]);
|
|
if (usc->m1 == 0 && usc->m2 == 0)
|
|
usc = NULL;
|
|
}
|
|
|
|
if (cl != NULL) {
|
|
int old_flags;
|
|
|
|
if (parentid) {
|
|
if (cl->cl_parent &&
|
|
cl->cl_parent->cl_common.classid != parentid)
|
|
return -EINVAL;
|
|
if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
|
|
return -EINVAL;
|
|
}
|
|
cur_time = psched_get_time();
|
|
|
|
if (tca[TCA_RATE]) {
|
|
err = gen_replace_estimator(&cl->bstats, NULL,
|
|
&cl->rate_est,
|
|
NULL,
|
|
qdisc_root_sleeping_running(sch),
|
|
tca[TCA_RATE]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
sch_tree_lock(sch);
|
|
old_flags = cl->cl_flags;
|
|
|
|
if (rsc != NULL)
|
|
hfsc_change_rsc(cl, rsc, cur_time);
|
|
if (fsc != NULL)
|
|
hfsc_change_fsc(cl, fsc);
|
|
if (usc != NULL)
|
|
hfsc_change_usc(cl, usc, cur_time);
|
|
|
|
if (cl->qdisc->q.qlen != 0) {
|
|
int len = qdisc_peek_len(cl->qdisc);
|
|
|
|
if (cl->cl_flags & HFSC_RSC) {
|
|
if (old_flags & HFSC_RSC)
|
|
update_ed(cl, len);
|
|
else
|
|
init_ed(cl, len);
|
|
}
|
|
|
|
if (cl->cl_flags & HFSC_FSC) {
|
|
if (old_flags & HFSC_FSC)
|
|
update_vf(cl, 0, cur_time);
|
|
else
|
|
init_vf(cl, len);
|
|
}
|
|
}
|
|
sch_tree_unlock(sch);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (parentid == TC_H_ROOT)
|
|
return -EEXIST;
|
|
|
|
parent = &q->root;
|
|
if (parentid) {
|
|
parent = hfsc_find_class(parentid, sch);
|
|
if (parent == NULL)
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
|
|
return -EINVAL;
|
|
if (hfsc_find_class(classid, sch))
|
|
return -EEXIST;
|
|
|
|
if (rsc == NULL && fsc == NULL)
|
|
return -EINVAL;
|
|
|
|
cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
|
|
if (cl == NULL)
|
|
return -ENOBUFS;
|
|
|
|
err = tcf_block_get(&cl->block, &cl->filter_list, sch, extack);
|
|
if (err) {
|
|
kfree(cl);
|
|
return err;
|
|
}
|
|
|
|
if (tca[TCA_RATE]) {
|
|
err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est,
|
|
NULL,
|
|
qdisc_root_sleeping_running(sch),
|
|
tca[TCA_RATE]);
|
|
if (err) {
|
|
tcf_block_put(cl->block);
|
|
kfree(cl);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (rsc != NULL)
|
|
hfsc_change_rsc(cl, rsc, 0);
|
|
if (fsc != NULL)
|
|
hfsc_change_fsc(cl, fsc);
|
|
if (usc != NULL)
|
|
hfsc_change_usc(cl, usc, 0);
|
|
|
|
cl->cl_common.classid = classid;
|
|
cl->sched = q;
|
|
cl->cl_parent = parent;
|
|
cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
|
|
classid, NULL);
|
|
if (cl->qdisc == NULL)
|
|
cl->qdisc = &noop_qdisc;
|
|
else
|
|
qdisc_hash_add(cl->qdisc, true);
|
|
INIT_LIST_HEAD(&cl->children);
|
|
cl->vt_tree = RB_ROOT;
|
|
cl->cf_tree = RB_ROOT;
|
|
|
|
sch_tree_lock(sch);
|
|
qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
|
|
list_add_tail(&cl->siblings, &parent->children);
|
|
if (parent->level == 0)
|
|
qdisc_purge_queue(parent->qdisc);
|
|
hfsc_adjust_levels(parent);
|
|
sch_tree_unlock(sch);
|
|
|
|
qdisc_class_hash_grow(sch, &q->clhash);
|
|
|
|
*arg = (unsigned long)cl;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
|
|
tcf_block_put(cl->block);
|
|
qdisc_put(cl->qdisc);
|
|
gen_kill_estimator(&cl->rate_est);
|
|
if (cl != &q->root)
|
|
kfree(cl);
|
|
}
|
|
|
|
static int
|
|
hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
|
|
if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
|
|
return -EBUSY;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
list_del(&cl->siblings);
|
|
hfsc_adjust_levels(cl->cl_parent);
|
|
|
|
qdisc_purge_queue(cl->qdisc);
|
|
qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
|
|
|
|
sch_tree_unlock(sch);
|
|
|
|
hfsc_destroy_class(sch, cl);
|
|
return 0;
|
|
}
|
|
|
|
static struct hfsc_class *
|
|
hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *head, *cl;
|
|
struct tcf_result res;
|
|
struct tcf_proto *tcf;
|
|
int result;
|
|
|
|
if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
|
|
(cl = hfsc_find_class(skb->priority, sch)) != NULL)
|
|
if (cl->level == 0)
|
|
return cl;
|
|
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
head = &q->root;
|
|
tcf = rcu_dereference_bh(q->root.filter_list);
|
|
while (tcf && (result = tcf_classify(skb, tcf, &res, false)) >= 0) {
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
switch (result) {
|
|
case TC_ACT_QUEUED:
|
|
case TC_ACT_STOLEN:
|
|
case TC_ACT_TRAP:
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
|
|
fallthrough;
|
|
case TC_ACT_SHOT:
|
|
return NULL;
|
|
}
|
|
#endif
|
|
cl = (struct hfsc_class *)res.class;
|
|
if (!cl) {
|
|
cl = hfsc_find_class(res.classid, sch);
|
|
if (!cl)
|
|
break; /* filter selected invalid classid */
|
|
if (cl->level >= head->level)
|
|
break; /* filter may only point downwards */
|
|
}
|
|
|
|
if (cl->level == 0)
|
|
return cl; /* hit leaf class */
|
|
|
|
/* apply inner filter chain */
|
|
tcf = rcu_dereference_bh(cl->filter_list);
|
|
head = cl;
|
|
}
|
|
|
|
/* classification failed, try default class */
|
|
cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
|
|
if (cl == NULL || cl->level > 0)
|
|
return NULL;
|
|
|
|
return cl;
|
|
}
|
|
|
|
static int
|
|
hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
|
|
struct Qdisc **old, struct netlink_ext_ack *extack)
|
|
{
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
|
|
if (cl->level > 0)
|
|
return -EINVAL;
|
|
if (new == NULL) {
|
|
new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
|
|
cl->cl_common.classid, NULL);
|
|
if (new == NULL)
|
|
new = &noop_qdisc;
|
|
}
|
|
|
|
*old = qdisc_replace(sch, new, &cl->qdisc);
|
|
return 0;
|
|
}
|
|
|
|
static struct Qdisc *
|
|
hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
|
|
if (cl->level == 0)
|
|
return cl->qdisc;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
|
|
/* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
|
|
* needs to be called explicitly to remove a class from vttree.
|
|
*/
|
|
update_vf(cl, 0, 0);
|
|
if (cl->cl_flags & HFSC_RSC)
|
|
eltree_remove(cl);
|
|
}
|
|
|
|
static unsigned long
|
|
hfsc_search_class(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return (unsigned long)hfsc_find_class(classid, sch);
|
|
}
|
|
|
|
static unsigned long
|
|
hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
|
|
{
|
|
struct hfsc_class *p = (struct hfsc_class *)parent;
|
|
struct hfsc_class *cl = hfsc_find_class(classid, sch);
|
|
|
|
if (cl != NULL) {
|
|
if (p != NULL && p->level <= cl->level)
|
|
return 0;
|
|
cl->filter_cnt++;
|
|
}
|
|
|
|
return (unsigned long)cl;
|
|
}
|
|
|
|
static void
|
|
hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
|
|
{
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
|
|
cl->filter_cnt--;
|
|
}
|
|
|
|
static struct tcf_block *hfsc_tcf_block(struct Qdisc *sch, unsigned long arg,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
|
|
if (cl == NULL)
|
|
cl = &q->root;
|
|
|
|
return cl->block;
|
|
}
|
|
|
|
static int
|
|
hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
|
|
{
|
|
struct tc_service_curve tsc;
|
|
|
|
tsc.m1 = sm2m(sc->sm1);
|
|
tsc.d = dx2d(sc->dx);
|
|
tsc.m2 = sm2m(sc->sm2);
|
|
if (nla_put(skb, attr, sizeof(tsc), &tsc))
|
|
goto nla_put_failure;
|
|
|
|
return skb->len;
|
|
|
|
nla_put_failure:
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
|
|
{
|
|
if ((cl->cl_flags & HFSC_RSC) &&
|
|
(hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
|
|
goto nla_put_failure;
|
|
|
|
if ((cl->cl_flags & HFSC_FSC) &&
|
|
(hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
|
|
goto nla_put_failure;
|
|
|
|
if ((cl->cl_flags & HFSC_USC) &&
|
|
(hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
|
|
goto nla_put_failure;
|
|
|
|
return skb->len;
|
|
|
|
nla_put_failure:
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
|
|
struct tcmsg *tcm)
|
|
{
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
struct nlattr *nest;
|
|
|
|
tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
|
|
TC_H_ROOT;
|
|
tcm->tcm_handle = cl->cl_common.classid;
|
|
if (cl->level == 0)
|
|
tcm->tcm_info = cl->qdisc->handle;
|
|
|
|
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (nest == NULL)
|
|
goto nla_put_failure;
|
|
if (hfsc_dump_curves(skb, cl) < 0)
|
|
goto nla_put_failure;
|
|
return nla_nest_end(skb, nest);
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(skb, nest);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int
|
|
hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
|
|
struct gnet_dump *d)
|
|
{
|
|
struct hfsc_class *cl = (struct hfsc_class *)arg;
|
|
struct tc_hfsc_stats xstats;
|
|
__u32 qlen;
|
|
|
|
qdisc_qstats_qlen_backlog(cl->qdisc, &qlen, &cl->qstats.backlog);
|
|
xstats.level = cl->level;
|
|
xstats.period = cl->cl_vtperiod;
|
|
xstats.work = cl->cl_total;
|
|
xstats.rtwork = cl->cl_cumul;
|
|
|
|
if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), d, NULL, &cl->bstats) < 0 ||
|
|
gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
|
|
gnet_stats_copy_queue(d, NULL, &cl->qstats, qlen) < 0)
|
|
return -1;
|
|
|
|
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *cl;
|
|
unsigned int i;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
for (i = 0; i < q->clhash.hashsize; i++) {
|
|
hlist_for_each_entry(cl, &q->clhash.hash[i],
|
|
cl_common.hnode) {
|
|
if (arg->count < arg->skip) {
|
|
arg->count++;
|
|
continue;
|
|
}
|
|
if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
|
|
arg->stop = 1;
|
|
return;
|
|
}
|
|
arg->count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
hfsc_schedule_watchdog(struct Qdisc *sch)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *cl;
|
|
u64 next_time = 0;
|
|
|
|
cl = eltree_get_minel(q);
|
|
if (cl)
|
|
next_time = cl->cl_e;
|
|
if (q->root.cl_cfmin != 0) {
|
|
if (next_time == 0 || next_time > q->root.cl_cfmin)
|
|
next_time = q->root.cl_cfmin;
|
|
}
|
|
if (next_time)
|
|
qdisc_watchdog_schedule(&q->watchdog, next_time);
|
|
}
|
|
|
|
static int
|
|
hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct tc_hfsc_qopt *qopt;
|
|
int err;
|
|
|
|
qdisc_watchdog_init(&q->watchdog, sch);
|
|
|
|
if (!opt || nla_len(opt) < sizeof(*qopt))
|
|
return -EINVAL;
|
|
qopt = nla_data(opt);
|
|
|
|
q->defcls = qopt->defcls;
|
|
err = qdisc_class_hash_init(&q->clhash);
|
|
if (err < 0)
|
|
return err;
|
|
q->eligible = RB_ROOT;
|
|
|
|
err = tcf_block_get(&q->root.block, &q->root.filter_list, sch, extack);
|
|
if (err)
|
|
return err;
|
|
|
|
q->root.cl_common.classid = sch->handle;
|
|
q->root.sched = q;
|
|
q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
|
|
sch->handle, NULL);
|
|
if (q->root.qdisc == NULL)
|
|
q->root.qdisc = &noop_qdisc;
|
|
else
|
|
qdisc_hash_add(q->root.qdisc, true);
|
|
INIT_LIST_HEAD(&q->root.children);
|
|
q->root.vt_tree = RB_ROOT;
|
|
q->root.cf_tree = RB_ROOT;
|
|
|
|
qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
|
|
qdisc_class_hash_grow(sch, &q->clhash);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct tc_hfsc_qopt *qopt;
|
|
|
|
if (opt == NULL || nla_len(opt) < sizeof(*qopt))
|
|
return -EINVAL;
|
|
qopt = nla_data(opt);
|
|
|
|
sch_tree_lock(sch);
|
|
q->defcls = qopt->defcls;
|
|
sch_tree_unlock(sch);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hfsc_reset_class(struct hfsc_class *cl)
|
|
{
|
|
cl->cl_total = 0;
|
|
cl->cl_cumul = 0;
|
|
cl->cl_d = 0;
|
|
cl->cl_e = 0;
|
|
cl->cl_vt = 0;
|
|
cl->cl_vtadj = 0;
|
|
cl->cl_cvtmin = 0;
|
|
cl->cl_cvtoff = 0;
|
|
cl->cl_vtperiod = 0;
|
|
cl->cl_parentperiod = 0;
|
|
cl->cl_f = 0;
|
|
cl->cl_myf = 0;
|
|
cl->cl_cfmin = 0;
|
|
cl->cl_nactive = 0;
|
|
|
|
cl->vt_tree = RB_ROOT;
|
|
cl->cf_tree = RB_ROOT;
|
|
qdisc_reset(cl->qdisc);
|
|
|
|
if (cl->cl_flags & HFSC_RSC)
|
|
rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
|
|
if (cl->cl_flags & HFSC_FSC)
|
|
rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
|
|
if (cl->cl_flags & HFSC_USC)
|
|
rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
|
|
}
|
|
|
|
static void
|
|
hfsc_reset_qdisc(struct Qdisc *sch)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *cl;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < q->clhash.hashsize; i++) {
|
|
hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
|
|
hfsc_reset_class(cl);
|
|
}
|
|
q->eligible = RB_ROOT;
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
sch->qstats.backlog = 0;
|
|
sch->q.qlen = 0;
|
|
}
|
|
|
|
static void
|
|
hfsc_destroy_qdisc(struct Qdisc *sch)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hlist_node *next;
|
|
struct hfsc_class *cl;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < q->clhash.hashsize; i++) {
|
|
hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) {
|
|
tcf_block_put(cl->block);
|
|
cl->block = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < q->clhash.hashsize; i++) {
|
|
hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
|
|
cl_common.hnode)
|
|
hfsc_destroy_class(sch, cl);
|
|
}
|
|
qdisc_class_hash_destroy(&q->clhash);
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
}
|
|
|
|
static int
|
|
hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
unsigned char *b = skb_tail_pointer(skb);
|
|
struct tc_hfsc_qopt qopt;
|
|
|
|
qopt.defcls = q->defcls;
|
|
if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
|
|
goto nla_put_failure;
|
|
return skb->len;
|
|
|
|
nla_put_failure:
|
|
nlmsg_trim(skb, b);
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
|
|
{
|
|
unsigned int len = qdisc_pkt_len(skb);
|
|
struct hfsc_class *cl;
|
|
int err;
|
|
bool first;
|
|
|
|
cl = hfsc_classify(skb, sch, &err);
|
|
if (cl == NULL) {
|
|
if (err & __NET_XMIT_BYPASS)
|
|
qdisc_qstats_drop(sch);
|
|
__qdisc_drop(skb, to_free);
|
|
return err;
|
|
}
|
|
|
|
first = !cl->qdisc->q.qlen;
|
|
err = qdisc_enqueue(skb, cl->qdisc, to_free);
|
|
if (unlikely(err != NET_XMIT_SUCCESS)) {
|
|
if (net_xmit_drop_count(err)) {
|
|
cl->qstats.drops++;
|
|
qdisc_qstats_drop(sch);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
if (first) {
|
|
if (cl->cl_flags & HFSC_RSC)
|
|
init_ed(cl, len);
|
|
if (cl->cl_flags & HFSC_FSC)
|
|
init_vf(cl, len);
|
|
/*
|
|
* If this is the first packet, isolate the head so an eventual
|
|
* head drop before the first dequeue operation has no chance
|
|
* to invalidate the deadline.
|
|
*/
|
|
if (cl->cl_flags & HFSC_RSC)
|
|
cl->qdisc->ops->peek(cl->qdisc);
|
|
|
|
}
|
|
|
|
sch->qstats.backlog += len;
|
|
sch->q.qlen++;
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
hfsc_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct hfsc_sched *q = qdisc_priv(sch);
|
|
struct hfsc_class *cl;
|
|
struct sk_buff *skb;
|
|
u64 cur_time;
|
|
unsigned int next_len;
|
|
int realtime = 0;
|
|
|
|
if (sch->q.qlen == 0)
|
|
return NULL;
|
|
|
|
cur_time = psched_get_time();
|
|
|
|
/*
|
|
* if there are eligible classes, use real-time criteria.
|
|
* find the class with the minimum deadline among
|
|
* the eligible classes.
|
|
*/
|
|
cl = eltree_get_mindl(q, cur_time);
|
|
if (cl) {
|
|
realtime = 1;
|
|
} else {
|
|
/*
|
|
* use link-sharing criteria
|
|
* get the class with the minimum vt in the hierarchy
|
|
*/
|
|
cl = vttree_get_minvt(&q->root, cur_time);
|
|
if (cl == NULL) {
|
|
qdisc_qstats_overlimit(sch);
|
|
hfsc_schedule_watchdog(sch);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
skb = qdisc_dequeue_peeked(cl->qdisc);
|
|
if (skb == NULL) {
|
|
qdisc_warn_nonwc("HFSC", cl->qdisc);
|
|
return NULL;
|
|
}
|
|
|
|
bstats_update(&cl->bstats, skb);
|
|
update_vf(cl, qdisc_pkt_len(skb), cur_time);
|
|
if (realtime)
|
|
cl->cl_cumul += qdisc_pkt_len(skb);
|
|
|
|
if (cl->cl_flags & HFSC_RSC) {
|
|
if (cl->qdisc->q.qlen != 0) {
|
|
/* update ed */
|
|
next_len = qdisc_peek_len(cl->qdisc);
|
|
if (realtime)
|
|
update_ed(cl, next_len);
|
|
else
|
|
update_d(cl, next_len);
|
|
} else {
|
|
/* the class becomes passive */
|
|
eltree_remove(cl);
|
|
}
|
|
}
|
|
|
|
qdisc_bstats_update(sch, skb);
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
sch->q.qlen--;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static const struct Qdisc_class_ops hfsc_class_ops = {
|
|
.change = hfsc_change_class,
|
|
.delete = hfsc_delete_class,
|
|
.graft = hfsc_graft_class,
|
|
.leaf = hfsc_class_leaf,
|
|
.qlen_notify = hfsc_qlen_notify,
|
|
.find = hfsc_search_class,
|
|
.bind_tcf = hfsc_bind_tcf,
|
|
.unbind_tcf = hfsc_unbind_tcf,
|
|
.tcf_block = hfsc_tcf_block,
|
|
.dump = hfsc_dump_class,
|
|
.dump_stats = hfsc_dump_class_stats,
|
|
.walk = hfsc_walk
|
|
};
|
|
|
|
static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
|
|
.id = "hfsc",
|
|
.init = hfsc_init_qdisc,
|
|
.change = hfsc_change_qdisc,
|
|
.reset = hfsc_reset_qdisc,
|
|
.destroy = hfsc_destroy_qdisc,
|
|
.dump = hfsc_dump_qdisc,
|
|
.enqueue = hfsc_enqueue,
|
|
.dequeue = hfsc_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.cl_ops = &hfsc_class_ops,
|
|
.priv_size = sizeof(struct hfsc_sched),
|
|
.owner = THIS_MODULE
|
|
};
|
|
|
|
static int __init
|
|
hfsc_init(void)
|
|
{
|
|
return register_qdisc(&hfsc_qdisc_ops);
|
|
}
|
|
|
|
static void __exit
|
|
hfsc_cleanup(void)
|
|
{
|
|
unregister_qdisc(&hfsc_qdisc_ops);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
module_init(hfsc_init);
|
|
module_exit(hfsc_cleanup);
|